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Abstract—In fault-tolerant quantum computation and quan-
tum error-correction one is interested on Pauli matrices that
commute with a circuit/unitary. We provide a fast algorithm that
decomposes any Clifford gate as a minimal product of Clifford
transvections. The algorithm can be directly used for finding
all Pauli matrices that commute with any given Clifford gate.
To achieve this goal, we exploit the structure of the symplectic
group with a novel graphical approach.

I. INTRODUCTION

The Clifford group is of central importance in quantum in-

formation and computation. This paper is primarily motivated

by its importance in fault-tolerant quantum computation and

quantum error-correction [1], [2]. Traditionally, the Clifford

group is studied via its connection with the binary symplectic

group [3] and the associated decompositions of the latter. The

Bruhat decomposition of the symplectic group [4] gives a stan-

dard generating set made of qubit permutation (16), diagonal

gates (17), and partial Hadamard gates (18). Alternatively, the

Clifford group can be studied via the transvection decom-

position of the symplectic group, which we briefly describe

in Section III. It is well-known [5], [6] that the symplectic

group is generated by symplectic transvections (19). Although

these references give a constructive proof, the decomposition

primarily relies on exhaustive search. In this paper we give

a simple and fast algorithm that decomposes any symplectic

matrix as a minimal product of symplectic transvections. On

the other hand, the Clifford gates (45) correspond to symplec-

tic transvections, and for this reason we will refer to them

as Clifford transvections. By definition, Clifford transvections

are sparse (in fact, they are the most sparse Cliffords other

than Paulis and diagonal Cliffords), and given their simple

conjugation action, they are also easy to implement. This

yields directly a decomposition of any m-qubit Clifford gate

as a minimal product of Clifford transvections.
We exploit the structure of symplectic matrices with a

novel graphical approach. We associate to a symplectic matrix,

written as a minimal product of transvections, a (binary,

symmetric) Gram-type matrix (20) that captures the com-

mutativity relations of the defining transvections. Viewed as

an adjacency matrix, it yields a graph whose directed paths

completely determine the given symplectic matrix; see Theo-

rem 1. These directed paths can be counted with an invertible

upper-triangular matrix (26), and this allows us to reduce the

decomposition problem to a matrix triangulation problem over

the binary field. For the latter we make use of the results of [7].
In [8], the authors studied the Clifford group via the

support (44) of a unitary matrix. In that language, Clifford

transvections are precisely those Cliffords that have a support

of size two, which is smallest support among non-Pauli

Cliffords. On top of being a useful algebraic tool, the support

of a unitary encodes valuable information about the Paulis that

commute with the given unitary. In [8, Prop. 9], the authors

compute the support of standard Clifford gates (16)-(18). The

results of this paper provide a fast algorithm for computing

the support of any Clifford gate. Heuristically, we expect our

results to have applications in designing flag gadgets [9], [10]

for stabilizer circuits.

II. PRELIMINARIES

A. The binary symplectic group

The binary symplectic group, denoted Sp(2m; 2), consists

of 2m×2m matrices over the binary field F2 that preserve the

matrix

Ω = [ 0m Im
Im 0m

], (1)

under congruence. That is, F ∈ Sp(2m; 2) iff FΩFT = Ω.

Equivalently, symplectic matrices are precisely those matrices

that preserve the symplectic inner product over F2m
2

⟨ (a,b) ∣ (c,d) ⟩s = adT + bcT = (a,b)Ω(c,d)T. (2)

We will denote by GL(n; 2) and Sym(n; 2) the groups of

n × n invertible and symmetric matrices over the binary field

F2, respectively. A matrix F = [A B

C D
] ∈ Sp(2m; 2) satisfies

FΩFT = Ω, which in turn is equivalent with ABT,CDT ∈
Sym(m; 2) and ADT +BCT = Im. In Sp(2m; 2) we distin-

guish two subgroups:

FD ∶= {FD(P) = [ P 0m

0m P−T
] ∣ P ∈ GL(m; 2)} , (3)

FU ∶= {FU(S) = [ Im S

0m Im
] ∣ S ∈ Sym(m; 2)} . (4)

Above, ( ●)−T denotes the inverse transposed, and directly by

definition we have FD ≅ GL(m; 2) and FU ≅ Sym(m; 2).
Together with matrices

FΩ(r) = [ Im∣−r Im∣r
Im∣r Im∣−r

], (5)

with Im∣r being the block matrix with Ir in upper left corner

and 0 elsewhere, and Im∣−r = Im − Im∣r, these two groups are

the building blocks of the Bruhat decomposition with many

applications in quantum computation [4], [11]. A symplectic

matrix F ∈ Sp(2m; 2) is said to be an involution if F2 = I2m
and is said to be hyperbolic if ⟨v ∣vF ⟩s = 0 for all v ∈ F2m

2
.

It is straightforward to verify that a hyperbolic map is also an

involution. We will denote

Fix(F) ∶= ker(I +F) ∶= {v ∈ F2m
2 ∣ v = vF}, (6)

Res(F) ∶= rs (I +F) ∶= {v + vF ∣ v ∈ F2m
2 }, (7)
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where ker( ●) and rs ( ●) denote the null space and the row

space of a matrix, respectively. By definition, these spaces

satisfy

dimRes(F) + dimFix(F) = 2m. (8)

Involutions have the nice property that Res(F) ⊆ Fix(F). Ad-

ditionally, for an involution we have ⟨x ∣yF ⟩s = ⟨xF ∣y ⟩s and

thus ⟨x + xF ∣y + yF ⟩s = 0 for all x,y ∈ F2m
2

. This means

that Res(F) is self-orthogonal (or self-dual if dimRes(F) =
m) with respect to (2).

B. The Heisenberg-Weyl group

The bit-flip and the phase-flip gates are given by

X ∶= [ 0 1

1 0
] and Z ∶= [ 1 0

0 −1 ], (9)

respectively. For vectors a,b ∈ Fm
2 we will denote

D(a,b) ∶=Xa1Zb1 ⊗⋯⊗XamZbm . (10)

The Heisenberg-Weyl group is defined as

HWN ∶= {ikD(a,b) ∣ a,b ∈ Fm
2 , k ∈ Z4} ⊂ U(N), (11)

where N = 2m. We will denote by PHWN ∶=
HWN /{±IN ,±iIN} the projective Heisenberg-Weyl group.

Hermitian elements of HWN are given (and denoted) by

E(a,b) ∶= iabT

D(a,b).
C. The Clifford group

The Clifford group CliffN is defined to be the normalizer

of HWN in U(N), that is,

CliffN ∶= {G ∈ U(N) ∣GHWNG†
⊂ HWN}. (12)

In order to obtain a finite group, (12) is meant modulo U(1).
Let {e1, . . . ,e2m} be the standard basis of F

2m
2

, and con-

sider G ∈ CliffN . Let ci ∈ F
2m
2 be such that

GE(ei)G†
= ±E(ci). (13)

Then the matrix FG whose ith row is ci is a symplectic matrix

such that

GE(c)G†
= ±E(cFG) (14)

for all c ∈ F2m
2 . We thus have a group homomorphism

Φ ∶ CliffN Ð→ Sp(2m; 2), Gz→ FG. (15)

In addition, Φ is surjective with kernel kerΦ = PHWN [12],

and thus CliffN /PHWN ≅ Sp(2m; 2). It follows that CliffN
is generated by preimages of symplectic matrices (3),(4),(5).

Here a preimage Φ−1(F) is meant up to HWN . These

preimages are, respectively,

GD(P) ∶= ∣v⟩ z→ ∣vP⟩, (16)

GU(S) ∶= diag(ivSvT
mod 4)

v∈Fm
2

, (17)

GΩ(r) ∶= (H2)⊗r ⊗ I2m−r , (18)

where H2 is the Hadamard gate.

Since Φ is a homomorphism we have that Φ(G†) = F−1
G

. It

follows that if G ∈ CliffN is Hermitian then FG is a symplectic

involution. Conversely, if F is a symplectic involution then

G = Φ−1(F) satisfies G2 ∈ HWN . As mentioned, a special

class of involutions are the hyperbolic maps. If G ∈ CliffN
corresponds to a hyperbolic F ∈ Sp(2m; 2) then (14) implies

that GEG† commutes with E for all E.

III. TRANSVECTION DECOMPOSITION OF SYMPLECTIC

MATRICES

A symplectic transvection is a symplectic map with one-

dimensional residue space. It is easily seen that if Res(F) =⟨v⟩ then the matrix F ∈ Sp(2m; 2) must act as

Tv ∶= I +ΩvTv, xz→ x + ⟨x ∣v ⟩sv. (19)

We will call two transvections Tv,Tw independent if the

defining v,w are independent. Otherwise, we will call the

transvections dependent. Note also that Tv,Tw commute, that

is, Tv ⋅Tw = Tw ⋅Tv iff ⟨v ∣w ⟩s = 0, that is, iff v,w are

orthogonal (with respect to (2) of course).

It is well-known that Sp(2m; 2) is generated by transvec-

tions. It is shown in [5], [6] that a non-hyperbolic map F

can be written as a product of r independent transvections

Tv1
, . . . ,Tvr

, where r = r(F) ∶= dimRes(F) = 2m −

dimFix(F) and Res(F) = ⟨v1, . . . ,vr⟩. The strategy of [5]

is to find v such that ⟨x ∣xF ⟩s = 1 (which exists for non-

hyperbolics), and consider FTv,v = x + xF ∈ Res(F), for

which r(FTv) = r(F) − 1. One then repeats the process

accordingly until a one-dimensional residue space is reached.

The following result will enable us to restrict without loss

of generality to non-hyperbolic maps.

Lemma 1 ([5, 2.1.8]). Let F ∈ Sp(2m; 2) be hyperbolic. Then

there exists v ∈ F2m
2 such that FTv is non-hyperbolic and

Res(F) = Res(FTv).
Proof. Fix any 0 ≠ v = x + xF ∈ Res(F). Then any y such

that ⟨y ∣v ⟩s = 1 = ⟨yF ∣v ⟩s (which of course exists) satisfies⟨y ∣yFTv ⟩s = 1, and thus FTv is non-hyperbolic. Next, by

the choice of v, Res(FTv) ⊆ Res(F) holds trivially, and

equality is due to equal cardinalities.

It follows from Lemma 1 that a hyperbolic map F is a

product of r + 1 transvections, r of which form a basis for

Res(F), and the additional transvection is dependent of the

first r.

For involutions (hyperbolic or not) we have the following

nicer result.

Proposition 1. Any involution is a product of commuting

transvections. The converse is also true, that is, any product

of commuting transvections yields and involution.

Proof. The result follows immediately by the fact that two

transvections commute iff their defining vectors are orthogo-

nal, along with the fact that the residue space of an involution

is self-orthogonal.

A. A Gram-type matrix

In this section F will be a generic symplectic matrix.

We associate to a minimal transvection decomposition F =

Tv1
⋯Tvr

a Gram-type matrix

A(v1, . . . ,vr) ∶= [⟨vi ∣vj ⟩s]i,j =VΩVT, (20)



where V is the r× 2m matrix formed by stacking v1, . . . ,vr .

Obviously, A is symmetric and has zero diagonal. Since a

minimal transvection decomposition is given by some basis

of the residue space, we will assume that vi ∈ Res(F). Note

that A = 0 iff F is an involution iff V is self-orthogonal. On

the other hand,

⟨vi ∣vj ⟩s = ⟨xi + xiF ∣xj + xjF ⟩s (21)

= ⟨xiF ∣xj ⟩s + ⟨xi ∣xjF ⟩s (22)

= xiFΩxT

j + xjΩFTxT

j (23)

= xi(F +F−1)ΩxT

j (24)

= ⟨xi(F +F−1) ∣xj ⟩s. (25)

Obviously, F is an involution iff F = F−1, and thus A also

captures how far is F from being an involution, or equivalently,

how far is V from being self-orthogonal. In what follows we

will denote Au ∶= triu(A) the upper triangular part of A

and

B(v1, . . . ,vr) ∶= r−1∑
ℓ=0

Aℓ
u. (26)

By definition, it follows that B is upper triangular with all-

ones diagonal for any symplectic F, and is the identity matrix

for any involution (since in this case A = 0). Moreover, Au

is r × r upper triangular with all-zero diagonal. This yields

Ar
u = 0, and thus

B = (Ir +Au)−1 and Au = Ir +B
−1. (27)

The matrices A and B have a natural graphical interpretation.

Let us start with A, which can be thought as the adjacency

matrix of the graph with vertices vi and edges (vi,vj) iff⟨vi ∣vj ⟩s = 1. On the other hand, its upper triangular part Au

can be thought as the adjacency matrix of the corresponding

directed graph with edges (vi,vj) iff ⟨vi ∣vj ⟩s = 1 and i < j.

As for the matrix B, note first that entry (i, j) of Aℓ
u

counts

directed paths from vi to vj of length ℓ. Thus, entry (i, j)
(always for i < j) counts the number of directed paths from

vi to vj .

Before providing an example of the notions introduced, we

point out that the matrix B also captures the number of distinct

transvection decompositions of a given symplectic matrix F.

However, this treatment goes beyond the scope of this paper

and will be presented in future work.

Example 1. Let us consider an example with m = 5 and

F = Tv1
Tv2

Tv3
Tv4

Tv5
, where

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

v5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 1 0 0 1 0

1 1 0 0 0 1 1 1 1 0

0 1 1 0 1 1 0 0 1 0

0 0 0 1 0 1 1 1 1 0

0 1 0 0 0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then one computes

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0

1 0 1 1 0

0 1 0 1 1

1 1 1 0 1

0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 3 4

0 1 1 2 3

0 0 1 1 2

0 0 0 1 1

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The graphical description of this scenario is given in Figure 1.

For instance, entry b1,4 = 3 and there are precisely three

directed paths from v1 to v4, namely, (v1,v4), (v1,v2,v4),
and (v1,v2,v3,v4).

v1

v2

v3 v4

v5

Fig. 1. The directed graph with adjacency matrix Au.

Theorem 1. For any symplectic matrix F = Tv1
⋯Tvr

we

have

F = I +ΩVTBV. (28)

As a consequence, if F is an involution then F = I +ΩVTV

Proof. By the definition of transvections, the action of F on

x is given by some linear combination of vj added to x, that

is

xF = x +
r∑

j=1

wjvj , (29)

where wj depends on ⟨x ∣vi ⟩s for i < j. We claim that wj =

xΩVTBj where Bj is the jth column of B. This in turn will

complete the proof. In order to prove the claim, note that the

input of Tvj
is xTv1

⋯Tvj−1
. Thus ⟨x ∣vi ⟩s contributes to

wj only if i < j and there is a directed path form vi to vj ,

which could be of length 1 ≤ ℓ ≤ j − i. This information is

precisely encoded by Bj .

To the best of our knowledge, Theorem 1 constitutes a novel

structural result about symplectic matrices, and comparing it

with (19), should come as no surprise. This structure is the

main building block of what follows. Based on Theorem 1, it

is imperative to consider the residue matrix

F̂ ∶=Ω(I +F) =VTBV =∑
i,j

bi,jvi
T vj . (30)

The terminology comes from the obvious fact that rs (F̂) =
Res(F). Note that F̂ is symmetric iff B = I (recall that B is

lower triangular) iff F is an involution. Moreover, since F̂T

has all-zero diagonal iff F̂ does, and since

xF̂TxT = xΩ(I +FT)xT = xΩxT
+ xΩFTxT = ⟨x ∣xF ⟩s,

(31)

we conclude that F̂ has all-zero diagonal iff F is hyperbolic.

In such case F is also an involution, and thus F̂ is alternating

(that is, symmetric and all-zero diagonal). It follows by

Lemma 1 that we may restrict ourselves to non-hyperbolic

maps, and thus we will assume that F̂ is not alternating.



B. Decomposition of Symplectic Involutions

In this subsection we will present a simple algorithm for the

decomposition of (non-hyperbolic) symplectic involutions, and

provide intuition for the much more delicate decomposition of

general symplectic matrices.

Theorem 2 (Transvection Decomposition of Involutions). Let

F be a non-hyperbolic involution, so that the residue matrix

F̂ is non-alternating. Then there exists P ∈ GL(2m; 2) such

that F = Tv1
⋯Tvr

, where r = dimRes(F) and vj is the jth

row of PF̂ for 1 ≤ j ≤ r.

Proof. Let R be the matrix of row operations that transforms

F̂ into Row-Reduced Echelon form. Let E be the r × r upper

left block of RF̂RT, which is invertible by construction. It

will also be symmetric and have non-zero diagonal since F

is non-hyperbolic involution. Then there exists Q ∈ GL(r; 2)
such that QEQT = Ir; see [5, 2.1.14] for instance. Now put

P = blkdiag(Q, I2m−r)R. Then

PF̂PT = [ Ir 0

0 0
]. (32)

We will consider the nonzero rows of PF̂, that is,[QE 0 ]R−T. For 1 ≤ j ≤ r let wj denote the jth row

of PF̂, that is, wj = ejP
−T, where ej ∈ F

2m
2

is the jth

standard basis vector. Put F′ = Tw1
⋯Twr

. Since wj’s are

linear combinations of vj’s and since F is an involution

it follows that A(w1, . . . ,wr) = A(v1, . . . ,vr) = 0r and

B(w1, . . . ,wr) = B(v1, . . . ,vr) = Ir. Then (30) yields

F̂′ =
r∑

j=1

wj
Twj =

r∑
j=1

P−1ej
TejP

−T
= P−1[ Ir 0

0 0
]P−T = F̂,

(33)

and thus F = F′.

The strength of Theorem 2 is that, as we will see, it can be

generalized to non-involutions. The case of involutions can be

dealt separately with an alternate approach, which, however,

does not generalize to non-involutions. According to [13,

Thm. 4.1], an involution F is conjugate with an involution

of form

FU(S) ≡ [ I S

0 I
], S ∈ Sym(m; 2), (34)

that is, there exists M ∈ Sp(2m; 2) such that MFM−1 =

FU(S). On the other hand, the involutions of form (34) are

easy to decompose as described in [8, Prop. 9(2)]. So let us

assume FU(S) = Tv1
⋯Tvr

. It is straightforward to verify

that TvM =MTvM holds for any symplectic M. This yields

F =M−1FU(S)M (35)

= (M−1Tv1
M) ⋅ (M−1Tv2

M)⋯(M−1Tvr
M) (36)

= Tv1M⋯TvrM. (37)

C. Decomposition of Symplectic Matrices

Finding a transvection decomposition for involutions is

facilitated by the simple nature of their associated A and

B matrices. As we will see, the general case is much more

complicated. Let F be any (non-hyperbolic) symplectic matrix

and consider its residue matrix F̂, for which rank (F̂) = r.

Thus, a transvection decomposition of F is given by some

basis of Res(F) = rs (F̂). The task in hand is how to find

such basis. The main idea is to start with some fixed basis and

transform it accordingly until we reach the desired result. We

will start with a basis of Res(F) in Row-Reduced Echelon

form, that is, let R be a matrix of row operations so that

RF̂ = [V
0
], where V is a r × 2m basis. This can be done,

for instance, via Gauss Elimination over F2. Then

RF̂RT = [E 0

0 0
], E ∈ GL(r; 2). (38)

As mentioned, the basis V may or may not constitute a

transvection decomposition of F, and the idea is to consider

other bases of form QV where Q ∈ GL(r; 2). Let us denote

P = blkdiag(Q, I2m−r), and let B = B(QV).
Lemma 2. With the same notation as above, the basis QV

constitutes a transvection decomposition of F iff QEQT =

B−T.

Proof. Assume QV gives a transvection decomposition for F.

Then, by (30) we have F̂ = (QV)T ⋅B ⋅ (QV). But with the

notation above we have QV = [QE 0 ]R−T. Thus

F̂ =VTQT
⋅B ⋅QV (39)

=R−1[ETQT

0
] ⋅B ⋅ [QE 0 ]R−T (40)

=R−1[ETQT
⋅B ⋅QE 0

0 0
]R−T. (41)

It follows by (38) that E = ETQT
⋅B ⋅QE and thus QEQT =

B−T. The reverse direction follows similarly.

Lemma 3. With the same notation as above, if QEQT is

lower triangular, then QEQT = B−T.

Proof. Assume QEQT is lower triangular and put E′ =

ETQT
⋅B ⋅QE. Then

QEQT = ((QEQT)T ⋅B)−1 ⋅QE′QT. (42)

If QEQT = Ir, the statement is clear because in this case

F̂ is symmetric, and therefore B = Ir. If QEQT ≠ Ir, then

both QE′QT and (QEQT)T ⋅ B have to be invertible and

lower triangular. But (QEQT)T and B are both invertible

and upper triangular, meaning (QEQT)T ⋅ B is also upper

triangular. Thus (QEQT)T ⋅B = Ir, and QEQT = B−T

It follows by Lemmas 2 and 3 that we are seeking for

matrices Q that triangularize E from (38) by congruence.

For more on triangularizations by congruence and related

algorithms we refer the reader to [7]. It also follows by

Lemma 2 that F̂ can be triangularized by congruence for

any non-hyperbolic F (since for this, one would only need

a transvection decomposition of F, which we know it always

exists). We resume everything to the following theorem.

Theorem 3 (Transvection Decomposition of Symplectic Ma-

trices). Let F be a generic symplectic matrix. Then there exists



Algorithm 1 Transvection Decomposition of Clifford Gates

Input: A Clifford gate G.

1. Compute F from (13).

2. Compute v,v1,⋯,vr from Theorem 3.

3. G0 =Gv∏j Gvj
.

4. Find E0 = E(v0) such that G = E0G0.

Output: v0, vj’s.

an algorithm that for any generic symplectic matrix F outputs

a minimal transvection decomposition.

Proof. If the residue matrix F̂ is alternating, that is, if F

is hyperbolic, then pick v as in Lemma 1 and update the

input F with the non-hyperbolic FTv , while keeping the

residue space intact. Next, perform Gauss Elimination on F̂

with R as in (38), and let Q be such that QEQT is lower

triangular. Then, by Lemmas 2 and 3, the r nonzero rows of

blkdiag(Q, I2m−r)RF̂, where r = dimRes(F), along with

v, yield a minimal transvection decomposition for F.

IV. DECOMPOSITION OF CLIFFORD GATES

In [8], the authors studied the Clifford hierarchy via the

support of the underlying gates. Every gate U ∈ U(N) can be

written as

U =
1

N
∑

v∈F2m
2

Tr(E(v)U)E(v), (43)

and the support of U consist of the basis terms that appear

in (43), that is,

supp(U) ∶= {E(v) ∈ HWN ∣ Tr(E(v)U) ≠ 0}. (44)

Given the isomorphism E(v) ←→ v, the support can be equiv-

alently though of as a subspace of F2m
2

. On the other hand, (15)

assigns F ∈ Sp(2m; 2) to a coset HWNG = Φ−1(F) for any

G ∈ CliffN . It is straightforward to verify that the Clifford

Gv ∶=
IN ± iE(v)√

2
∈ CliffN (45)

corresponds to the transvection Tv. Then, since every sym-

plectic is a product of transvections, it follows that

G = E0

k∏
n=1

IN + iEn√
2

=
E0√∣S∣ ∑E∈SαEE, (46)

where E0 ∈ HWN , S = ⟨E1, . . . ,Ek⟩, and αE ∈ C; see [8,

Prop. 4]. From earlier discussion, it follows that the support

of any G ∈ Φ−1(F) is given by Res(F) if F is non-hyperbolic,

and by some subspace of Res(F) of index 2 otherwise. In [8,

Prop. 9], the authors determined the support of the standard

Clifford gates (16)-(18), while the general case remained open.

The difficulty arose by the fact that the support of products

is hard to compute. This problem can now be solved with the

aid of Theorem 3, as resumed in Algorithm 1. It is also worth

mentioning that in this process one may lose an eighth root of

unity; see Example 3 for instance. We point out here that G is

traceless iff E0 ∉ S. Thus the search in Step 4. of Algorithm 1

can be reduced to either outside S if G is traceless or in S

otherwise.

Example 2. The Hadamard gate can be written as

H2 =
1√
2
(X +Z) =XI + iY√

2
, (47)

where Y = iXZ as usual. Consider now the m fold transversal

Hadamard gate HN = (H2)⊗m, for which Φ(HN) = Ω.

Additionally Ω̂ = [ I I

I I
] and dimRes(Ω) = m. Then

P = [ I 0

I I
] triangularizes Ω̂:

PΩ̂PT = [ I 0

0 0
]. (48)

The first m nonzero rows of PΩ̂ are [ I I ]. We see that the

nth row yields the gate Yn with Y in qubit n and identity

elsewhere. From Step 3. of Algorithm 1 we compute

G0 =
m∏
n=1

IN + iYn√
2

. (49)

We then find HN =X
⊗mG0. A similar result holds for partial

Hadamard gates H⊗r⊗I2m−r , to which correspond symplectics

of form (5); see also [8, Prop. 9(3)]

Example 3. The symplectic and residue matrices correspond-

ing to the CNOT gate are given by

F =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 0 0

0 1 0 0

0 0 1 0

0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
and F̂ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
, (50)

from which we see that F̂ is alternating, and thus F is

hyperbolic. So first, we transform F to a non-hyperbolic map

by using the first non-zero row of F̂, that is, v = 0010. Then

we update F ← FTv, for which

F =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1 0

0 1 0 0

0 0 1 0

0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
and F̂ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 1 0

0 1 1 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
. (51)

A matrix that triangularizes F̂ is given by

P =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 1 0

0 0 1 0

1 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
. (52)

The non-zero rows of PF̂ are v1 = 0100,v2 = 0110. Note that

v = v1 + v2, and ⟨v1 ∣v2 ⟩s = 0 as in Proposition 1. Then we

compute

G0 =
(I + iI⊗X)(I − iZ⊗X)(I + iZ⊗ I)√

8
. (53)

And then we end with the observation that CNOT= ξG0,

where ξ = (1 − i)/√2 is an eighth root of unity.
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