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Abstract—Wireless body area networks (WBANs) are becom-
ing increasingly popular as they allow individuals to continuously
monitor their vitals and physiological parameters remotely from
the hospital. With the spread of the SARS-CoV-2 pandemic, the
availability of portable pulse-oximeters and wearable heart rate
detectors has boomed in the market. At the same time, in 2020
we assisted to an unprecedented increase of healthcare breaches,
revealing the extreme vulnerability of the current generation of
WBANs. Therefore, the development of new security protocols
to ensure data protection, authentication, integrity and privacy
within WBANs are highly needed. Here, we targeted a WBAN
collecting ECG signals from different sensor nodes on the
individual’s body, we extracted the inter-pulse interval (i.e., R-R
interval) sequence from each of them, and we developed a new
information theoretic key agreement protocol that exploits the
inherent randomness of ECG to ensure authentication between
sensor pairs within the WBAN. After proper pre-processing, we
provide an analytical solution that ensures robust authentication;
we provide a unique information reconciliation matrix, which
gives good performance for all ECG sensor pairs; and we can
show that a relationship between information reconciliation and
privacy amplification matrices can be found. Finally, we show
the trade-off between the level of security, in terms of key
generation rate, and the complexity of the error correction
scheme implemented in the system.

Index Terms—Key agreement, information theory, biometrics,
ECG, IPI, wireless body area networks.

I. INTRODUCTION

W IRELESS Body Area Networks (WBANs) are used
for communication between intelligent, miniaturized,

low-power biosensors that operate in and/or on the human
body in order to gather patients’ medical information (e.g.,
heart rate via electrocardiogram (ECG), brain activity via elec-
troencephalogram (EEG), oxygen saturation level via photo-
plethysmographic (PPG), body movement, body temperature,
blood pressure, etc.) and eventually generate alarms in case of
health hazards [23], [28]. WBANs represent only the first tier
in a typical e-health system, including also the inter-WBAN
tier (e.g., aggregating data from different WBANs), and the
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beyond-WBAN tier (e.g., cloud storage) [23], [24], [28]. Then,
each tier can be affected by specific security issues, as system-
atically reviewed by [26]. As WBANs become increasingly
popular, and the number of biosensors and wearables on the
market is constantly growing, the security aspects related to,
e.g., data privacy, user authentication, and data integrity are
emerging as critical issues to cope with since the WBAN
design phase [26], [27]. Furthermore, it has been widely
recognised that SARS-CoV-2 pandemic has led to a significant
increase of phishing campaigns, mishandled health record
disposals, and sophisticated cyber-attacks [25] [29]: in fact,
they represent some of the biggest healthcare data breaches
of 2020. It has been estimated that 41.4 million patient records
has been breached in 2019, with a 49% increase in hacking
(according to the Protenus Breach Barometer). Such evi-
dences have strongly highlighted the security vulnerabilities
of the healthcare sector and its information systems. The data
collected via WBAN are sensitive and can be subjected to
several well-known security issues, e.g., man-in-the-middle
attacks, cross-site request forgery, spoofing, or pishing [14].
Besides, wearables and portable devices to measure biometric
parameters have stringent resource limitations, concerning
energy, transmission and storage. Therefore, security solutions
should be lightweight as well as efficient.

In this paper, we target a WBAN collecting ECG signals
from different locations on the individual’s body, and we
propose a new information theoretic key agreement protocol
that exploits the inherent randomness of ECG signals to
ensure authentication between the nodes within the WBAN.

Compared to prior works, we assume no side information
model is available, and we show that we can generate a
secure and secret keys by properly applying information
reconciliation and privacy amplification techniques, exploiting
error correction strategies, the design of proper parity-check
and privacy amplification matrices [21], [20]. As in previous
literature, from the ECG signals, we extracted the cardiac
inter-pulse interval (IPI), i.e., the time difference between two
consecutive heart beats. IPI can be considered as a time-
and person-specific parameter and, as such, it allows the
development of authentication and, more generally, security
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protocols exploiting its inherent randomness over time. Each
IPI is transformed into a sequence of random bits, and we
assume that legitimate sensors, only, can retrieve that se-
quence, by simultaneously measuring ECG from two different
locations and applying the proposed key agreement protocol.
Previous literature has already proposed IPI-based security
mechanisms: they mainly employed fuzzy commitment and
fuzzy vault [7]–[10]. On the contrary, we provide an analytical
solution to authenticate two nodes within a WBAN: we can
show that a relationship between information reconciliation
and privacy amplification matrices can be found. Furthermore,
we can design a unique information reconciliation matrix,
which provides good performance for all the considered
ECG sensors. In fact, an ECG sensor-specific information
reconciliation matrix can be defined such that to exploit the
correlation between different pairs of ECG sensors.

The rest of the paper is organized as follows. In Section
II, prior work on security protocols for WBANs is discussed.
Section III describes the system model, including the sce-
nario, the IPI extraction, and the key agreemeent protocol
development. Numerical results are presented and discussed
in Section IV. Finally, Section V concludes the paper.

II. RELATED WORKS

The rapid penetration of wearable and portable devices
to monitor physiological parameters and vitals is posing
an increasing need for security protocols for WBAN. Very
recent and exhaustive surveys reported detailed discussions
on authentication schemes, security protocol design, and de-
velopment issues in WBANs [13], [14], and [15]. Currently,
one of the most common solutions to provide security in
WBAN is based on the identification of unique biometric
traits, e.g., voice, fingerprint, iris [15], [27] and their use to
generate cryptographic keys. The authentication of the user
of the WBAN allows to securing communications between
the sensing device (i.e., single-lead ECG, pulse-oximeter)
and the gateway device (e.g., the smartphone or the personal
digital assistant), as well as to ensure that data transmitted to
the user’s caregiver (located in a different place, beyond the
WBAN) are secure [27].

However, the abovementioned solutions make use of sta-
tionary traits, i.e., the iris or the fingerprints can have a
limited range of variation across days or conditions: this
ensures robustness to the system; but, at the same time, it
can make the system prone to possible attacks if a malicious
individual obtains such information. Therefore, recent works
have proposed the use of dynamic biometric traits, i.e.,
physiological signals, such as ECG [3], [4] and PPG [5] to
generate cryptographic keys. Not only on-body WBANs, but
also in-body WBANs could benefit of such recent approaches.
For instance, in [11], ECG is used for the authentication to
an IMD called Heart-to-Heart (H2H). The security scheme
needs a touchable medical instrument that must be in physical
contact with the user, so that it can accept and authorize
access to the user to read the signals acquired by the IMD.
The described mechanism compares the user’s ECG from the

touchable medical instrument and the IMD in order to access
the IMD data. Similarly, in [6], ECG is employed, together
with EEG, for the authentication to another IMD.

Dynamic biometric traits are characterized by a higher level
of inherent randomness, with respect to a stationary one: thus,
this can be exploited to provide additional security within
the WBAN. However, at the same time, this implies further
complexity in the processing of such signals. Therefore,
often, expert features are extracted from the signal, prior to
implement the security protocol. As an example, it is common
to use the IPI, extracted from an ECG signal, to provide
authentication in a WBAN.

In [12], the authors introduced a security scheme for IMDs
with comprehensive techniques for the ECG-based keys using
IPI with secure protocol and on the access control mechanism
on the IMD external devices with an authentication proxy
to protect it. Recently, [7] presented a new IPI-based key-
exchange protocol employing fuzzy commitment to tolerate
the expected disparity between IPIs obtained by an external
reader and an IMD, as well as a novel way of tackling heart
beat mis-detection through IPI classification. They found that
roughly one minute is the expected time for securely ex-
changing an 80-bit key with high probability (1-10−6), while
consuming only 88 µJ from an IMD. Some improvements
(both in terms of computational and communication cost and
key establishment time) of the abovementioned scheme were
reported in [8]–[10]. In particular, in [8], fuzzy-vault based
protocol was shown to shorten the key establishment time
by reducing the number of IPIs needed to generate a secret
key. In [9], an energy-efficient key exchange protocol using
IPIs was able to generate a secret key in an authenticated and
transparent manner, without any key material being exposed
before distribution or during initialization. The authors could
dramatically reduce energy consumption (in communication
and computation) compared to the state-of-the-art (e.g., [7]),
while keeping secure key exchange. Finally, in [10] the
authors proposed an improvement over the approach described
in [7], by introducing a new method to detect mis-detections
and recover IPIs using thresholds. They could show a signifi-
cant reduction of the cost for communications (which was not
only energy efficient, but it was able to generate secure keys).
Their results showed that the total number of IPI recoveries
is 19, while the key generation rate is 99.4%.

III. ECG-BASED KEY AGREEMENT PROTOCOL

A. Scenario

Fig. 1 shows the scenario taken into account. We consider
two legitimate sensors, named Alice and Bob, belonging to
the on-body network and collecting the authentic individual’s
ECG signals, indicated as x and y, respectively. We assume
that an eavesdropper, i.e., Eve, is a potential attacker that
cannot observed x or y, nor any other ECG signal correlated
with them, but can read the information exchanged by Alice
and Bob on the noiseless and authentic but otherwise insecure
public channel.
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Fig. 1. Key agreement scenario with correlated sources for Alice and Bob.
Their correlation is expressed by the joint PDF pxy .

We aim at designing a robust key agreement security
protocol exploiting the inherent correlated randomness of
ECG signals to ensure authentication, confidentiality, integrity,
and accountability within the on-body sensors network. In-
deed, the proposed key agreement protocol involves the joint
generation of a secret key by Alice and Bob based on x and y,
through the exchange of information over the public channel.

When dealing with the design of such protocol, the first
step is to evaluate the secret key capacity for the considered
scenario, in order to define the maximum rate at which Alice
and Bob can generate the secret key by communication over
the public channel. Our scenario can be cast into what is
called the “source-type model with no side information for
the attacker” in [19], and therefore the secret key capacity is
given by the mutual information rate (MIR)

Ck =
1

T
I(x; y) (1)

In the practical three-step implementation outlined in [20]
secret key agreement, Alice and Bob then have to reconcile
their random but correlated information. In other words, they
have to correct the discrepancies in their observations by
exchanging additional error correction information as dis-
cussed in III-D. Then, they have to distill secret bits from the
corrected data using a technique named privacy amplification,
as described in III-E [20], [21].

In our preliminary observations, we found that the ECG can
be hardly characterized by using well-known statistical distri-
butions. Previous literature provided tools (based on Matlab)
and theoretical approaches that lead to very long execution
times, high computational complexity, and inaccurate MIR
estimate. Thus, we considered an empirical (i.e., data-driven)
modeling of such signals obtaining that the estimate of MIR
upper and lower bounds can be derived. In particular, the MIR
between two Gaussian processes that have the same second
order joint statistics of the considered ECG represents a lower
bound of the true MIR. On the other hand, the single symbol
pairs mutual information between the two ECG is an upper
bound to their MIR.

B. ECG signals and IPIs

ECG measures the heart activity by acquiring the voltage
difference between two locations over the individual’s body.
The ECG electrodes detect the small electrical changes that
are a consequence of cardiac muscle depolarization followed
by repolarization during each cardiac cycle, i.e., the heart beat.
The resulting ECG is a quasi-period signals that includes a
well-known sequence of peaks, waves and segments in each
of its periods. Fig. 2 represents a schematic ECG signal with
two consecutive heart beats. Among other components, the
R peak identifies the heart beat and it is commonly used to
compute the heart rate, i.e., as the time difference between
two consecutive R peaks.

In order to extract the IPI feature (used as input to our key
agreement protocol), first the R peaks are identified along the
entire signal (the same pre-processing is performed at Alice’s
and Bob’s sensors node). Given the sequence of R peaks,
each IPI value is obtained by calculating the time difference
between two consecutive R peaks, as shown in Fig. 2.

Fig. 2. Representation of two consecutive ECG segments and their IPI
evaluation.

For the purpose of our work, we define as x and y the
sequences of IPIs extracted by the two legitimate sensor nodes
within the WBAN (i.e., instead of the raw ECG signals).

C. Quantization

A necessary step before processing is quantization. When
dealing with continuous signals such as physiological signals,
they need to be analog-to-digital converted (ADC) to obtain
discrete values (symbols) and generate the secret key. For the
considered ECG signals the native sensor quantization uses
b = 16 bits/sample, while the IPI is inherently quantized with
a step given by the ECG sampling period Ts.

For good quality sensors with high sampling rate, the time
resolution of IPIs is too fine and yield frequent different values
between x and y. Therefore, we aim at a coarser quantization
that, without sacrificing the key rate, reduces the discrepancy
occurrences.

Our aim is therefore to design a quantizer which uses few
bits to represent each IPI and at the same time does not
significantly decrease I(x, y), the mutual information between
x and y.

Let Qx and Qy be Alice and Bob’s quantizers and x̃ =
Qx(x) and ỹ = Qy(y) the quantized version of x and y,



with x̃, ỹ ∈ {1, 2, . . . , L}. Let us define x∗ as the coincidence
values between x̃ and ỹ

x∗ =

{
x̃ if x̃ = ỹ

∅ otherwise
(2)

Then the probability mass distribution (PMD) of x∗ is

px∗(`) =

∫
Rx

` ×Ry
`

pxy(a, b) da db, ` ∈ {1, . . . , L} (3)

where Rx
` and Ry

` are Alice and Bob’s quantizer regions
associated to ` ∈ {1, . . . , L} and P [x∗ = ∅] = 1−

∑
` px∗(`).

Our aim is to maximize the entropy times frequency of x∗

P [x∗ 6= ∅]H(x∗) =

L∑
`=1

px∗(`) · log 1
2

(
px∗(`)

P [x∗ 6= ∅]

)
. (4)

The optimal quantizer threshold values can thus be found by
numerical optimization from the joint PDF. An efficient recur-
sive implementation would reuse the optimal `-th threshold
for L levels, τ`,L as the optimal τ2`,2L and optimize each
τ2`+1,2L threshold between τ2`,2L and τ2`+2,2L. Moreover,
since an analytical model for pxy is not available we make
use of the empirical distribution derived from data, replacing
px∗(`) with N`/N where N` = |{(xi, yi) ∈ Rx

l ×R
y
l }|

Fig. 3 shows the different stages of the recursive procedure,
where the colors get darker as the number of quantization bits
increases. For example the two yellow quadrants represent the
quantization with 1 bit where there is only a delimiter for each
variable.
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Fig. 3. IPI quantization thresholds for 1- (yellow), 2- (orange), 3- (red) and
4-bit (dark red) quantization. Values are in ms

We must observe that, given the high correlation of IPI
sequences, even simplfying the choice to the non uniform
quantizers that yield uniformly distributed values px̃(`) =
pỹ(`) = 1/L yields results that are only slightly worse (not
shown here).

D. Information reconciliation

During information reconciliation, Alice compresses its
source symbols x̃ indicated as z in Fig. 1 and transmits them
over the public channel. Bob decodes z with the help of
correlated side information, that is ỹ. The goal is to allow
Bob to correct the discrepancies between his symbols ỹ and
x̃ minimizing z, that is those bits that can be seen by Eve.
In this way, Alice and Bob should be able to independently
generate the same secret key based on x and the corrected
version of y.

An Hamming distance-based syndrome decoding scheme
has been considered to do error correction. Defined a parity-
check matrix H of size NxM, with N>M, the syndrome z
of length M is computed as H · x̃. According to the received
z, Bob builds the set W of all the possible words with z as
syndrome

W = {w | H · w = z} (5)

choosing then the one, i.e., w, with the minimum Hamming
distance from ỹ.

To evaluate the information reconciliation performance, we
compute the percentage of different bits per symbol between
Alice symbols and Bob decoded symbols.

E. Privacy amplification

Once the discrepancies between Alice and Bob’s observa-
tions have been corrected by means of information reconcil-
iation, the secret bits have to be distilled from the corrected
data. Note that Eve only knows z since it is transmitted over
the public channel, that is the M bits transmitted by Alice
to Bob. For this reason, the M bits must be removed from
x̃ and x̂ before the generation of the secret key. To do so,
a privacy amplification matrix A must be designed based on
the knowledge of H so that key = Ax̃T = Ax̂T , where x̃
is Alice’s quantized message, x̂ is Bob’s message after the
reconciliation and the key has length K. It is worth noting
that the key’s bits should follow a uniform distribution (i.e.,
to assure perfect key bits uniformity) and I(key, z) = 0, that
is the mutual information between the generated key and z
should be zero (i.e., to assure perfect secrecy).
A represents an injective map: many keys are related to

the same syndrome. Moreover, A should be such that the
key set is uniformly distributed given Eve’s knowledge. In
mathematical terms, this means that the null space of A,
denoted as N (A), must be orthogonal to the null space of
H, i.e., N (H). In particular, the elements of N (H) must
be uniformly mapped into the set {0, 1}K . The elements of
N (H) are in {0, 1}N .

Assuming that H is full rank, then rank(H) = M and from
the rank–nullity theorem

rank(H) +N (H) = N (6)

meaning that N (H) = K. In other words, 2K vectors in
{0, 1}N need to be mapped into 2K vectors in {0, 1}K .
This function must be bijective assuring the uniformity of
the generated key.



Finally, if we define r = N−M
N as the rate of the considered

code, b the quantization bits and T the average time (in
seconds) between two consecutive R peaks, we have that the
rate of key generation is r · b · 1

T [bit/s].

IV. RESULTS AND DISCUSSION

The dataset used is the PTB ECG diagnostic dataset ac-
cessible online at [22]. It consists of 549 records from 290
subjects (aged 17 to 87, mean 57.2; 209 men, mean age 55.5,
and 81 women, mean age 61.6). Each subject is represented by
one to five records and each record includes 15 simultaneously
measured ECG signals: the conventional 12 leads (I, II, III,
AVR, AVL, AVF, V1, V2, V3, V4, V5, V6) and the 3 Frank
leads (Vx, Vy, Vz). The sampling frequency is fs = 1kHz,
with 16 bit resolution over a range of ±16.384 mV.

The results have been obtained considering 4 quantization
bits and different H sizes. Moreover, we considered all
possible combinations of paired ECG sensors, i.e., Alice-Bob
pairs.

Fig. 4 shows the percentage of different bits per symbol
when H size is 160x142 (averaged across all Alice-Bob
pairs). It can be seen that the difference between the binary
representations of Alice and Bob’s original messages (i.e.,
symbols), right after the quantization before z transmission, is
never zero. As a consequence, it is reasonable to expect that
Bob’s decoding performance might be sub-optimal. Indeed,
we compared different H sizes, by observing that an H with
a higher size allows to reach a zero decoding error probability
on average. It is also shown the difference between the binary
representations of Alice’s message, used for the computation
of z, and Bob’s decoded message, using z, and the difference
between the binary representations of Alice message used
to compute z and Bob’s decoded message using only the
information provided by the joint PDF estimation based on
the knowledge of the two acquired ECG signals. It can be
seen that Bob takes advantage from syndrome decoding and
this happens regardless of H size.

In addition to this, Eve’s decoding performance can be
discussed as well in terms of difference between the binary
representations of Alice’s message and the message decoded
by Eve. In this regards, it is worth underlining that the
quantizer design is important not to allow Eve to empirically
generate apriori knowledge about the quantized symbols and,
therefore, increase its decoding performance. It can be seen
that Eve’s performance are around 50%.

In general, from the obtained results we observe that the
size of H could be so that to have the decoding error
probability as small as we want, but this could come at the
expense of the total time needed to generate the final key. In
particular, considering H with size 169x142, r = 160−142

160 ,
b = 4, and T = 0.750s, we can have on average around 0.6
bit/s as a key generation rate.

However, a specific H could be designed for each (Alice,
Bob) pair in order to exploit the correlation between ECG
signals acquired by different sensors. Indeed, different (Alice,
Bob) couple can required a different H involving then a

different key generation rate. At this regards, Fig 5 shows
the key generation rate [Bit/s], i.e., secret key rate, for some
sensors pairs. As it can be seen, its value changes if we choose
different sensors. Furthermore, it can be observed that the
obtained secret key rates are in between the lower and upper
bounds evaluated as discussed in Section III-A.
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been obtained varying sensors pairs and choosing the proper H size.

In addition to the Hamming decoding approach described
in Section III-D, we implemented an LDPC-based scheme
as well. However, the Hamming-based approach seems to
work better with respect to the LDPC-based one in terms
of decoding error probability. We think that this is due to the
nature of the considered signals. Particularly, if we compare
them just after the ADC, we find that their discrepancy is
on average around 20% seeming too much for LDPC-based



scheme to work properly. On the other side, it is worth noting
that the computational complexity of the Hamming distance
decoding might become significantly huge when increasing
the number of symbols taken as the encoder input and/or the
number of quantization bits per symbol considered.

Finally, to compare the proposed approach with respect to
the literature, we consider as input the same dataset used in
[7], i.e., the MIT-BIH Arrhythmia Database. It contains 48
half-hour excerpts of two-channel ambulatory ECG record-
ings, obtained from 47 subjects and digitized at 360 samples
per second per channel with 11-bit resolution over a 10 mV
range. These new ECG signals are less noisy with respect
to [22]. This turns out in a better detection of R peaks
and, therefore, in less discrepancies between Alice and Bob’s
IPIs. Consequently, with this new dataset the r significantly
increases (up to 18

72 ) while keeping a very small decoding error
probability and finding the same key generation rate as in [7].

V. CONCLUSIONS

In this paper, we targeted a WBAN collecting ECG signals
from pairs of legitimate sensor nodes located on the individ-
ual’s chest, and we proposed a new information theoretic key
agreement protocol that exploits the inherent randomness of
the ECG signals, independently acquired by the two nodes.
The protocol is based on the capability of the sensors to cor-
rect the discrepancies between the IPIs sequence extracted by
the ECG signals, in order to generate, independently, the same
secret key. We found that proper pre-processing is needed,
before information reconciliation and privacy amplification
steps. Specifically, the design of a quantizer that maximizes
the source’s entropy is necessary to limit the effectiveness
of the attacker’s guessing. Moreover, we observed that the
complexity of the encoder (measured as the size of the parity
check matrix) is strictly related to the key generation rate.
Finally, contrary to the expectation of needing a separate
quantizer parity check matrix to fit the joint statistics of each
ECG sensor pair, the similarity between them was such that
one only quantizer, and parity check matrix, provided good
performance for all ECG sensors pairs.
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