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Abstract—In this work, we consider the problem of transmission
rate selection for a discrete time point-to-point block fading wire-
less communication link. The wireless channel remains constant
within the channel coherence time but can change rapidly across
blocks. The goal is to design a link rate selection strategy that can
identify the best transmission rate quickly and adaptively in quasi-
static channels. This problem can be cast into the stochastic bandit
framework, and the unawareness of time-stamps where channel
changes necessitates running change-point detection simultane-
ously with stochastic bandit algorithms to improve adaptivity.
We present a joint channel change-point detection and link rate
selection algorithm based on Thompson Sampling (CD-TS) and
show it can achieve a sublinear regret with respect to the number
of time steps T when the channel coherence time is larger than a
threshold. We then improve the CD-TS algorithm by considering
the fact that higher transmission rate has higher packet-loss
probability. Finally, we validate the performance of the proposed
algorithms through numerical simulations.

I. INTRODUCTION

Selecting a proper transmission rate that adapts channel
conditions is important efficient communications in the current
wireless systems, i.e., devices using IEEE802.11 standards [1],
[2]. Considering the fact that precise channel state information
(CSI) feedback is supported by few 802.11 devices [3] but
ACK/NACKs of the transmission outcomes are always avail-
able to the transmitter, rate sampling approaches [4], [5] that
select transmission rate based on historical acknowledgments
have been widely used. Online sequential decision making
frameworks such as stochastic bandit provide efficient solutions
to optimize rate sampling methods [6] when the channel
statistics remains constant. However, the use of high frequency
spectrum (e.g., mmWave) in the 5G wireless communication
systems [7] causes CSI to change more frequently than in con-
ventional spectrums. This motivates us to incorporate change-
point detection algorithms into rate sampling link rate selection
strategy in order to improve the cumulative link throughput.

Employing stochastic bandit algorithms for link rate selection
in slow and fast fading channels have been widely studied
previously. Gupta et al. designed a link rate selection algorithm
based on Thompson Sampling (TS) and showed the proposed
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algorithm achieves an average expected regret of O(log T ) [6].
The algorithm is then applied to the joint selection of modu-
lation and transmission rate [8]. By utilizing the correlations
between transmission success probabilities and transmission
rates, [9]–[11] designed modified TS algorithms that can further
decrease the expected cumulative throughput regret in higher
confidence intervals. The aforementioned techniques are useful
under the assumption that channel statistics remain constant,
which is true for both slow are fast fading scenarios. However,
when channels experience abrupt changes in block fading
scenarios and the channel statistics become non-stationary,
those algorithms may suffer from slow adaptation. Although
TS with a sliding window is proposed in [8] to overcome this
issue and is shown to achieve a high cumulative throughput
empirically, theoretic evaluations on regret performance are not
well addressed.

Designing fast adaptive stochastic bandit algorithms in quasi-
static environments are studied in [12], [13]. It is shown that
by running a simple CD algorithm to control the clearance
of historical data, the expected regret of Upper Confidence
Bound (UCB) algorithm in the quasi-static environment can be
improved. However, these algorithms are designed for general
bandit problems and can be improved when applied to link rate
selection scenarios.

Employing change-point detection algorithms to design effi-
cient transmission schemes for block-fading and quasi-static
channels has recently been considered in [14]. The key is
to estimate channel change points accurately from the high
dimensional received signals, and then re-estimate the new CSI
and re-design beamforming strategies for channel throughput
maximization. Notice that their algorithm relies on the sparse
structure of the received signal in angular domain subspace,
which requires the receiver to possess large-scale uniform
antenna arrays. Therefore, the algorithm cannot be applied
directly to mobile devices with a small number of antennas.

To overcome the aforementioned challenges, in this work, we
investigate the problem of link rate selection in block fading
quasi-static channels. The distribution of channel change points
and the probabilities of successful transmission are unknown.
The goal is to design a transmission strategy that attempts to
maximize the cumulative channel throughput by using histor-
ical transmission outcomes. We present an efficient change-
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point and online decision making algorithm, and then derive the
corresponding expected regret upper bound. We then improve
the empirical performance of the algorithm by constraining
the TS posteriors to lay in a set that can characterize the
relationship between transmission success probabilities and
transmission rates.

The rest of the paper is organized as follows: in Section II we
introduce the system model and formulate the overall optimiza-
tion problem. Section III proposes a joint channel change-point
detection and Thompson Sampling based link rate selection
algorithm (CD-TS). We then provide theoretic analysis of the
expected regret upper bound. Section IV improves the proposed
CD-TS by constraining the sampling posteriors. Section V
validates the proposed algorithms via numerical simulations
and Section VI draws the conclusion.

II. PROBLEM FORMULATION

We consider a communication rate selection problem for
a discrete-time point-to-point wireless channel and let t ∈
{1, · · · , T} denote the index of the current slot. The commu-
nication channel between the transmitter and the receiver is
quantized into Q < ∞ states, and let h(t) ∈ Q = {1, · · · , Q}
denote the current quantized channel state. The channel h(t)
experiences block fading and during slot [0, T ], there exists
M(M ≥ 1) channel state change points, whose timestamps are
denoted by {ν1, ν2, · · · , νM}. The channel state h(t) remains
the same during the interval between two change points, i.e.,
h(t1) = h(t2),∀t1, t2 ∈ [νm, νm+1 − 1] but changes rapidly
before and after the change point, i.e., h(νm−1) 6= h(νm),∀m.
The difference between two nearby change points is lower
bounded by the channel coherence time L, i.e., νi+1− νi ≥ L,
where L � 1 is predetermined by the physical channel and
mobility characteristics.

In each slot t, the transmitter chooses a transmission rate
ri(t) ∈ R = {r1, · · · , rR} indexed by i(t). The wireless chan-
nel is erroneous and let X(t) ∈ {0, 1} be the indicator function
of whether the transmission in slot t succeeds: if X(t) = 1, all
of the ri(t) transmitted packets will be successfully received by
the end of slot t; otherwise, all ri(t) packets will be lost due to
decoding error [6], [9]. The transmission success probabilities
depend on the current transmission and channel state, since
using higher transmission rate will lead to higher packet-loss
probabilities. Therefore, we assume that the transmission suc-
cess probability follows a Bernoulli distribution with parameter
E[X(t)] = θh(t),i(t). With no loss of generality, assume that
transmission rates are arranged in an increasing order, i.e.,
r1 < · · · < rR, and therefore 1 > θq,1 > · · · > θq,R > 0. The
distribution of X(t) is independent of transmission outcome of
other slots X(t′),∀t′ 6= t. At the end of slot t, the receiver
sends X(t) to the transmitter without error.

The goal of this research is to maximize the cumulative
throughput by designing a link rate selection strategy π that
chooses i(t) based on historical transmissions. The problem is
organized as follows:

Problem:

max
π

T∑
t=1

ri(t)θh(t),i(t),

where π : {((i(1), X(1)), · · · , (i(t− 1), X(t− 1))} → i(t).
(1)

III. CHANGE-POINT DETECTION AIDED THOMPSON
SAMPLING ALGORITHM (CD-TS)

Maximizing (1) can be cast in the stochastic bandit frame-
work. However, traditional bandit algorithms assume the dis-
tribution of reward remains constant across all the slots.
Therefore, adopting these algorithms directly to the quasi-static
channel link rate selection may cause large regret, because
historical data cannot reflect the current best rate after the
channel changes. To overcome this issue, we propose to run
a change-point detection (CD) algorithm simultaneously with
stochastic bandit to control the clearance of historic data and
therefore, improve adaptivity in block-fading channels.

Assume T̂ = {τ̂1, τ̂2, · · · } is the detected channel change
points sequence and let c(t) = maxm{τ̂m|τ̂m ≤ t} denote the
time-stamp of the most recently detected change point before
slot t. We use Ni(t), si(t) and fi(t) to denote the recorded
number of total transmissions, success and failure times using
transmission rate i from c(t) + 1 to t − 1. Link rate selection
algorithm for slot t based on Ni(t), si(t), fi(t) is introduced in
Section III-A. Channel change points detection algorithms to
calculate {τ̂m} are proposed in Section III-B. The two parts of
the algorithm are synthesized in Section III-C.

A. Thompson Sampling for link rate selection

Consider that in slot t, selecting rate i has succeeded for
si(t) and failed for fi(t) times from slot c(t) + 1 to t − 1. If
the channel has not changed after c(t), the posterior distribution
of transmission success probability λi = θh(t),i follows a Beta
distribution parameterized by si(t) and fi(t). The probability
density function of such Beta distribution is:

pi(λ) =Beta(si(t) + 1, fi(t) + 1)

=
1

Zi(si(t), fi(t))
λsi(t)(1− λ)fi(t), (2)

where Zi(x, y) =
∫ 1

0
λx(1− λ)ydλ is a normalizing constant.

The Thompson Sampling algorithm for link rate selection is
as follows: first sample λ̂i ∼ Beta(si(t)+1, fi(t)+1) and then
choose rate i(t) = arg maxi λ̂iri for transmission.

B. Change-Point Detection

Recall that CSI changes lead to variations in transmission
success probabilities of every transmission rate. Therefore,
we attempt to detect past channel changes by comparing
the empirical transmission success probability of the latest w
transmission outcomes and the second latest w transmission
outcomes of a transmission rate. We require there is at least a
specific transmission rate indexed by icd that is selected every F
slots, so that the change-point detection algorithm can always



be run when needed. In this work, we select icd to be the
rate with the highest historical empirical throughput during slot
c(t) + 1 ∼ c(t) + F .

To efficiently implement the change-point detection, we use
Wi(k) to record the k-th transmission outcome of using rate i.
If rate i(t) has been selected more than 2w times, i.e., Ni(t) >
2w, we run a CD algorithm by comparing the mean of the
latest w outcomes of using rate i(t) (denoted by M1) and the
second latest w transmission outcomes (denoted by M2), where
M1 and M2 can be computed by:

M1 :=
1

w

w∑
k=1

Wi(t)(Ni(t)− w + k), (3a)

M2 :=
1

w

w∑
k=1

Wi(t)(Ni(t)− 2w + k). (3b)

If the absolute difference between the two mean values is
larger than a predetermined threshold b, i.e., |M2 −M1| > b,
we conclude that a channel change point occurs recently and
append t to the detected change points set T̂ .

C. Algorithm Design

We then synthesize our proposed algorithm CD-TS by com-
bining the aforementioned CD and TS parts together.

First we initialize the historical transmission records Ni(0) =
0, si(0) = 0, fi(t) = 0,∀i ∈ R and set c(1) = 0. Then in
each slot t, we perform a joint link rate selection and channel
change-point detection as follows:
• Transmission Rate Selection:

If t = c(t) + kF, ∀k ∈ N+, then we should transmit with
rate indexed by i(t) = icd = arg maxi

si(c(t)+F )
Ni(c(t)+F )ri for

efficient channel change-point detection;
Otherwise, we select transmission rate based on Thompson
Sampling. We sample λ̂i ∼ Beta(si(t) + 1, fi(t) + 1) and
treat it as an estimation of transmission success probability
using rate i. Then we transmit with i(t) = arg maxi λ̂iri,
observe the transmission outcome X(t) and update Ni(t+
1) = Ni(t) + 1, si(t + 1) = si(t) + X(t), fi(t + 1) =
fi(t) + (1−X(t)).

• Channel Change-Point Detection: If Ni(t) > 2w, we run
a change-point detection by computing the mean transmis-
sion outcomes M1 and M2 using (3). If |M1 −M2| > b,
we conclude there is a change point before t and record
by c(t + 1) = t. Then we clear historical transmission
records by setting Ni(t+ 1), si(t+ 1), fi(t+ 1) to 0.

The algorithm flow chart is provided in the flow chart 1.

D. Regret Analysis

We evaluate the performance of the proposed CD-TS algo-
rithm via the cumulative expected throughput regret against the
optimum link rate selection algorithm when the precise CSI is
known. Denote i∗(h) , arg maxi riθh,i as the index of optimal
rate when the channel state is h. By definition, the cumulative
regret in non-stationary environment denoted by RT , is the
difference between the expected cumulative throughput of using

Algorithm 1 Joint channel change detection and Thompson
Sampling
Initialization: For each rate index i, set Ni(t), si(t), fi(t)← 0.
Let the most recently detected channel change be c(1) = 0.

for t = 1, 2, · · ·T do
if t = c(t) + kF, k ∈ N+ then

Set i(t)← maxi
si(c(t)+F )
Ni(c(t)+F )ri. {Select icd for CD}

else
Sample rate λ̂i ∼ Beta(si(t) + 1, fi(t) + 1).
Select rate i(t)← arg maxi λ̂iri. {TS}

end if
Transmit at i(t), observe ACK/NACK X(t) and record
Wi(t)(Ni(t) + 1) = X(t).
if Ni(t) + 1 > 2w then

Compute mean success probability M1,M2 from
{Wi(k)} using (3).
if |M1 −M2| > b then
{Change detected, clear historical data}
c(t+ 1)← t,Ni(t+ 1), si(t+ 1), fi(t+ 1)← 0,∀i.

else
{Record historical data}
c(t+1)← c(t), Ni(t)(t+1)← Ni(t)(t)+1, si(t)(t+
1) ← si(t)(t) + X(t), fi(t)(t + 1) ← fi(t)(t) + (1 −
X(t)).

end if
end if

end for

{i(t)}Tt=1 chosen by our algorithm and the optimum rate using
{i∗(h(t))}Tt=1, i.e.,

RT , E

[
T∑
t=1

(
ri∗(h(t))θh(t),i∗(h(t)) − ri(t)θh(t),i(t)

)]
. (4)

A lower regret (4) implies a higher expected cumulative
throughput and indicates the algorithm adapts faster to the block
fading channel. To compute the expected regret of the proposed
algorithm, we first introduce the following lemma, the proof is
provided in Appendix A:

Lemma 1: Consider the channel remains stable during slot
1 ∼ T , i.e., h(t) = h. Let ∆i = ri∗(h)θh,i∗(h) − riθh,i be the
expected throughput difference between choosing rate i and
the optimum rate i∗(h), the expected regret of the proposed
algorithm for the this time invariant channel, denoted by R̃T
can be upper bounded by the following inequality for any ε ∈
(0, 1]:

R̃T ≤max
i

∆i

(
2T 2 exp

(
−wb

2

2

)
+
T

F

)
+B log

(
1− 1

F

)
T +O

(
R

ε2

)
, (5)

where coefficient B is a constant unrelated to T ,

B = (1 + ε)
∑

i 6=i∗(h)

1

(
ri∗(h)θh,i∗(h)

ri
< 1
)

DKL

(
θi,

ri∗(h)θh,i∗(h)

ri

)∆i,



and DKL(p, q) = p log p
q +(1−p) log 1−p

1−q is the KL divergence.
With Lemma 1, we proceed to our main theorem, whose

proof is provided in B:
Theorem 1: Suppose δmin = minh,h′,i |θh,i − θh′,i|, if there

exists α > 0 so that L ≥ 48
δ2min

(MT )α logMT , then the regret of
the proposed CD-TS scales with O((MT )max(α,1−α) logMT )
if w, b and F are set to b = δmin/2, w = 12

δ2min
logMT and

F = (MT )α.

IV. IMPROVING CUMULATIVE THROUGHPUT WITH
CONSTRAINED THOMPSON SAMPLING

In this section, we improve the performance of CD-TS by
replacing TS with Constrained Thompson Sampling (CoTS)
algorithm proposed in [9]. CoTS can achieve a lower regret
performance by utilizing the fact that choosing higher trans-
mission rate will have lower success probability. Recall that
θh,i is the transmission success probability if the channel state
h(t) = h and r(t) = ri. To exploit the relationship between
{θh,i}Ni=1 for better exploration, we first define set Θ, where
the element of each vector λ ∈ Θ is monotonically decreasing:

Θ := {λ ∈ Θ|θi1 > θi2 ,∀i1 < i2}. (6)

Thus, for any fixed channel state h(t) = h, the transmission
success probability θh,: should belong to set Θ due to the fact
that transmitting at higher rate is more likely to get packet-
losses. Then we sample λ̂(t) = [λ̂1, · · · , λ̂N ] jointly from:

λ̂ ∼ 1

Z
1(λ ∈ Θ)

∏
Beta(si(t) + 1, fi(t) + 1), (7)

where Z is a normalizing constant.
To implement CoTS during link rate selection, we first

sample λ̂i ∼ Beta(si(t) + 1, fi(t) + 1) independently for
each rate. If λ̂ ∈ Θ we stop and proceed to select the rate
i(t) = arg maxi λ̂iri for transmission. Otherwise we keep
sampling λ̂i ∼ Beta(si(t) + 1, fi(t) + 1) until λ̂ ∈ Θ.

V. SIMULATION RESULTS

In this section, we provide numerical simulations to validate
the performance gain of our proposed algorithms. We consider
link rate selection settings in IEEE802.11a/g systems [15],
where we can choose from 8 possible transmission rates from
set R = [6, 9, 12, 18, 24, 36, 48, 54] (in Mbps) [6]. Suppose the
channel is quantized into 3 states and the transmission success
probabilities are shown in TABLE I. The cumulative regret is
computed for T =3000 slots with coherence time L ≥ 750
and M = 3 change points, and the time-stamps of the channel
change points are marked in the figure. The expected regret is
computed by taking the average of 100 runs.

TABLE I. Channel state settings

Channel States Transmit Success Possibility
state1 [0.59,0.45,0.34,0.22,0.15,0.10,0.03,0.01]
state2 [0.79,0.74,0.65,0.63,0.52,0.35,0.26,0.22]
state3 [0.99,0.95,0.90,0.85,0.80,0.76,0.60,0.52]

Fig. 1 plots the expected cumulative regret and Fig. 2 plots
the cumulative throughput of the proposed CD-TS, CD-CoTS,

CD-UCB [12] and pure Thompson Sampling [9] algorithm
with no change-point detection. The expected throughput/regret
are computed by taking the average over 100 runs. From
the Fig. 1, the proposed CD-TS and CD-CoTS achieve small
regret by incorporating change-point detection into stochastic
bandit framework. This is because when the channel changes,
the proposed CD-TS and CD-CoTS algorithms can efficiently
detect the changes, and they can fit quickly to newly changed
channel state by throwing away historical data, while the pure
TS algorithm without change-point detection algorithm does
not clear up historical data and therefore experiences linear
regret once the channel changes. Compared with CD-UCB
algorithm, the proposed CD-TS and CD-CoTS algorithms can
further reduce the cumulative throughput regret.

0 500 1000 1500 2000 2500 3000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Fig. 1. Cumulative Regret Comparisons of Various Algorithms

The decrease in cumulative regret implies that the pro-
posed CD-TS and CD-CoTS algorithms can achieve higher
cumulative throughput as depicted in Fig. 2. Compared with
the CD-TS algorithm, CD-CoTS algorithm achieves a smaller
cumulative regret and higher cumulative throughput empirically
by taking the non-increasing characteristics of transmission
success probabilities into account.
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Fig. 2. Average Cumulative Throughput Comparisons of Different
Algorithms



VI. CONCLUSIONS

In this paper, we study rate sampling based link rate selection
problem in block fading channel. We propose a CD-TS algo-
rithm that detects abrupt channel change points by using a slid-
ing window and then choose the best transmission rate based on
Thompson Sampling (CD-TS). We show that, theoretically, the
proposed CD-TS can achieve a sub-linear regret with respect to
the total number of time steps when the channel coherence time
is above a certain threshold. We then proceed to improve CD-
TS by sampling packet-loss probabilities of different rates from
a constrained posterior set, in which higher transmission rates
have higher packet-loss probabilities. Simulation results show
that, by detecting channel change points and performing adap-
tive link rate selection jointly, the proposed CD-TS achieves a
smaller cumulative regret and higher cumulative throughput.
The proposed CD-CoTS algorithm further improves CD-TS
empirically by taking the distribution of transmission success
probabilities into account.

Future work includes theoretic analysis of the CD-CoTS
algorithm and extending both CD-TS/CD-CoTS to multi-users
scenario with block fading channels. Moreover, currently the
selection of threshold b and window size w depend on time
length T and the number of change points M . It will be of
interest to design algorithms that can achieve sub-linear regret
without knowledge of T and M .

APPENDIX A
PROOF OF LEMMA 1

For time invariant channel with fixed channel state h, let
ω be a sample path and T̂ = {τ̂1(ω), · · · } are the time
slots of detected channel change points on the sample path.
For simplicity, denote i∗ = i∗(h) = arg maxi riθh,i to be
the optimum transmission rate. Let R̃T (ω) be the cumulative
expected throughput regret of sample path ω for the time-
invariant channel, i.e.,

R̃T (ω) ,
T∑
t=1

(ri∗θh,i∗ − ri(t;ω)θh,i(t;ω)).

Since there is no channel change points before slot T , event
F = {ω : τ̂1(ω) < T} denotes the CD algorithm raises at least
one false alarm before T . By conditional expectation, we can
decompose RT into:

R̃T = Pr(F)E[R̃T (ω)|F ] + Pr(Fc)E[R̃T (ω)|Fc]. (8)

We proceed to bound each item on the RHS respectively.
To upper bound the first item Pr(F)E[R̃T (ω)|F ], we introduce
Lemma 2 to upper bound the probability of false alarm pFA
in each slot. The proof of which is a direct application of
Hoeffding bound and is omitted due to space limitations.

Lemma 2: In each slot t, the probability that a false alarm
raises can be upper bounded by:

pFA ≤ 2 exp

(
−b

2w

2

)
. (9)

Since we can run the change-point detection algorithm for at
most T times from slot 1 to T , by union bound we can upper
bound Pr(F) by:

Pr(F) ≤ TpFA. (10)

Plugging the above equations into the first term on the RHS
of (8), we have:

RHS1 ≤ TpFAE[max
i

∆iν̂1|F ] ≤ max
i

∆iT
2pFA (11)

Next we proceed to upper bound the second item
Pr(Fc)E[R̃T (ω)|Fc]. To do this, let policy π̂ be algorithm
without a change-point detection, i.e., in each slot select i(t)
based on Thompson Sampling and transmit with rate icd every
F slots. Notice that for ω ∈ Fc, transmission strategy obtained
by the proposed CD-TS algorithm and π̂ is exactly the same.
Therefore:

Pr(Fc)ECD-TS

[
R̃T (ω)|Fc

]
=Pr(Fc)Eπ̂

[
R̃T (ω)|Fc

]
(a)

≤Pr(Fc)Eπ̂
[
R̃T (ω)|Fc

]
+ Pr(F)Eπ̂

[
R̃T (ω)|F

]
=Eπ̂

[
R̃T (ω)

]
=Eπ̂

 T∑
i=1,i6=kF

(ri∗θh,i∗ − ri(t,ω)θh,i(t;ω))


+ Eπ̂

 T∑
i=1,i=kF

(ri∗θh,i∗ − ri(t,ω)θh,i(t;ω))

 , (12)

where (a) is obtained because regret is non-negative. Then
according to [6, Theorem 1], the regret caused by TS
R̃TS
T := Eπ̂

[∑T
i=1,i6=kF (ri∗θh,i∗ − ri(t,ω)θh,i(t;ω))

]
can be

upper bounded by:

R̃TS
T ≤ B log

(
1− 1

F

)
T +O

(
R

ε2

)
, (13)

where

B = (1 + ε)
∑

i 6=i∗(h)

1

(
ri∗(h)θh,i∗(h)

ri
< 1
)

DKL

(
θi,

ri∗(h)θh,i∗(h)

ri

)∆i,

and DKL(p, q) = p log p
q+(1−p) log 1−p

1−q , ∆i = ri∗(h)θh,i∗(h)−
riθh,i are the KL divergence and difference in expected
throughput, respectively. The regret caused by frequent sample
icd can be simply upper bounded by:

R̃FS
T := Eπ̂

[∑
i=kF

(ri∗θh,i∗ − ri(t,ω)θh,i(t;ω))

]
≤max

i
∆ib

T

F
c.

Plugging the above items into (12) and then into (8) yields
Lemma 1.



APPENDIX B
PROOF OF THEOREM 1

The change-point detection algorithm guarantees after the
latest change point has been detected for 2wF slots, rate icd
can be selected at least 2w times for runnning change point
detection algorithm. DenoteMm := {ω : τ̂m > vm+2wF} to
be the event that the proposed algorithm does not detect change
point m after 2wF slots. Then by properties of conditional
expectation, the regret can be upper bounded by:

RT =Pr(Mc
1)E[RT (ω)|Mc

1] + Pr(M1)E[RT (ω)|M1]

=Pr(Mc
1)E[R1:ν1(ω)|Mc

1] + Pr(Mc
1)E[Rν1+1:τ̂1(ω)|Mc

1]

+ Pr(Mc
1)E[Rτ̂1+1:T (ω)|Mc

1]

+ Pr(M1)E[R1:ν1(ω)|M1] + Pr(M1)E[Rν1+1:T (ω)|M1]

(a)

≤R̃ν1 + max
i

∆i × 2wF + E[Rτ̂1+1:T (ω)|Mc
1]

+ max
i

∆iPr(M1)T, (14)

where equality (a) is because R̃ν1 =
Pr(Mc

1)E[R1:ν1(ω)|Mc
1] + Pr(M1)E[R1:ν1(ω)|M1], and

if Mc
1 happens, the detection delay τ̂1 − ν1 ≤ 2wF .

To upper bound Pr(M1), we then introduce Lemma 3, which
upper bounds the probability of miss detection for any channel
state h(t) = h:

Lemma 3: Let δmin = minh,h′,i |θh,i−θh′,i|, then probability
Pr(Mm) can be upper bounded by:

Pr(Mm) ≤ pMD ≤ 2 exp

(
−w(b− δmin)2

2

)
, (15)

where δmin , minh,h′,i |θh,i − θh′,i| is the minimum absolute
difference of transmission success probability.
The proof is provided in Appendix D

Let Tm = νm − νm−1 be the duration of the m-th sta-
tionary period. Notice that for each τ̂1, the expected regret
E[Rτ̂1+1:T (ω)|Mc

1] = RT−τ̂1 . Repeating the manipulation in
(14) for RT−τ̂1 and finally we have:

RT ≤2MT max
i

∆i exp

(
−w(δmin − b)2

2

)
+

M∑
m=1

R̃Tm

+ max
i

∆i × 2wFM. (16)

Plugging R̃Tm
from Lemma 1 into the equation, we have:

RT ≤max
i

∆i ×M
(

2T exp

(
−w(δmin − b)2

2

)
+2T 2 exp

(
−wb

2

2

)
+
T

F
+ 2wF

)
+B

(
M∑
m=1

log Tm

)
. (17)

Next, we discuss parameter tuning problems to achieve a
sub-linear expected regret. We simply set b = 1

2δmin for easy

implementations. To guarantee 2MT exp
(
−w(δmin−b)2

2

)
≤ C1

and 2MT 2 exp
(
−wb

2

2

)
≤ C2, we require w to satisfy:

w ≥ 1

δ2min/8
max{log

2MT

C1
, log

2MT 2

C2
}. (18)

For simplicity, we choose C2 = 2
√
MT and let w =

12
δ2min

logMT so that the first and second item on the RHS
of (17) are sub-linear with respect to T . Achieving a total
sub-linear regret R̃T then requires MT/F and MwF to be
sub-linear. To achieve this, we set F = (MT )α(α > 0)
so that MT/F is sublinear to T . If the channel coherence
time L satisfies: L/2 ≥ 2wF = 24

δ2min
(MT )α logMT , then the

proposed algorithm achieves a sub-linear expected regret of
O((MT )max(α,1−α) log T ).

APPENDIX C
PROOF OF LEMMA 2

Our change point detection compares the mean M1 and M2

computed from (3). If event |M1 −M2| > b happens, then at
least one of the events |M1 − θicd,h| > b

2 , |M2 − θh,icd | > b
2

may happen. By using the union bound we have:

PFA = Pr(|M1 −M2| > b)

≤ Pr(|M1 − θh,icd | > b/2) + Pr(|M2 − θh,icd | > b/2)

≤ 2 exp

(
−wb

2

2

)
, (19)

where the last inequality is obtained by Hoeffding inequality.

APPENDIX D
PROOF OF LEMMA 3

Suppose the channel in the m-th stationary period is h and
denote δ = |θh,icd −θh′,icd |. If eventMm happens, i.e., |M1−
M2| > b. Therefore, since change point m is not detected,
it can be conducted that either event |M1 − θicd,h| > δ−b

2 or
event |M2 − θh,icd | > δ−b

2 must happen. By using the union
bound and Hoeffding inequality we have:

Pr(Mm)

≤Pr(|M1 − θh,icd | >
δ − b

2
) + Pr(|M2 − θh′,icd | >

δ − b
2

)

≤2 exp

(
−w(b− δ)2

2

)
. (20)

Recall that δmin = minh,h′,i |θh,i − θh′,i| be the minimum
absolute difference of transmission success probability, by
taking the minimum on both sides of (20), we have:

Pr(Mm) ≤ pMD ≤ 2 exp

(
−w(b− δmin)2

2

)
. (21)
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