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Abstract—Federated learning (FL) enables devices in mobile
edge computing (MEC) to collaboratively train a shared model
without revealing the local data. Gradient compression could
be applied to FL to alleviate the communication overheads
but the existing schemes still face challenges. To deploy green
MEC, we propose FedGreen, which enhances the original FL
with fine-grained gradient compression to control the total
energy consumption of the devices. Specifically, we introduce
the relevant operations including device-side gradient reduction
and server-side element-wise aggregation to facilitate the gradient
compression in FL. According to a public dataset, we evaluate
the contributions of the compressed local gradients with respect
to different compression ratios. Furthermore, we investigate a
learning accuracy-energy efficiency tradeoff problem and the
optimal compression ratio and computing frequency are derived
for each device. Experimental results show that given the 80%
test accuracy requirement, compared with the baseline schemes,
FedGreen reduces at least 32% of the total energy consumption
of the devices.

Index Terms—Federated learning, gradient compression, mo-
bile edge computing, resource management

I. INTRODUCTION

Federated learning (FL) is a promising distributed machine

learning framework that enables multiple devices to jointly

train a shared model by their private datasets while preserving

the training data privacy [1]. In FL, a parameter server with

the central position distributes an initialized learning model to

the devices. Each device trains the model by the local dataset

and submits the local gradients to the parameter server. All

local gradients are aggregated to update the global model.

Then the updated global model is sent to each device to

perform a new local model training task. The iterative training

procedure is repeated until convergence. Recently, the emerged

computing paradigm named mobile edge computing (MEC) is

applied to facilitate the execution of FL [2]. Massive edge

devices in MEC posse versatile sensors to collect raw data

and have under-utilized resources to execute the FL algorithm.

Many research efforts have been devoted to optimizing the

performance of FL in MEC.

Researchers have integrated gradient compression into FL

to compress the local gradients of the devices and decrease

the number of bits transmitted to the parameter server. For

example, some less important local gradients were clipped

based on the magnitude [3] and let a small number of bits

represent the gradient values [4]. Similarly, a universal vector

quantization scheme was studied in [5]. But these methods

neglected that different devices have different channel states,

computing capabilities and energy consumption rates such that

they could require different compression ratios to match with

their energy states. In addition to the uniform gradient com-

pression, device scheduling is introduced to provide unified

management for all devices according to diverse optimization

goals [6]–[8]. The methods select specific devices to perform

local training tasks and this could accelerate the training

procedure of FL to a degree. But the methods directly limit

the amount of training data and cause the unbalanced usage

of all devices’ data.

Toward green deployment of MEC, FL with gradient com-

pression still faces great challenges. To execute the FL algo-

rithm, local model training requires each device to consume

a certain number of computation resources [9], [10]. At the

same time, wireless bandwidth is necessitated since learning

in a decentralized manner takes hundreds of communication

rounds until convergence. But devices in MEC are generally

battery-limited. For a green MEC system, the total energy

consumption of the devices should be controlled to create

energy savings and avoid battery degradation. In turn, a variety

of devices in MEC may have heterogeneous resources in

terms of computation, communication, and power [11]. In

FL with gradient compression, the computing frequency and

compression ratio of each device should be optimized to match

the hardware configuration and channel status.

To promote the FL with gradient compression, we adopt

different compression ratios for different devices in MEC and

study a learning accuracy-energy efficiency tradeoff problem.

We present a comprehensive scheme called by FedGreen,

which enhances the original FL with fine-grained gradient

compression to achieve green MEC. Specifically, we first

present a basic method that enables each device to choose

a specific ratio to compress the local gradient after local

model training. As a consequence, a device can switch to

a small compression ratio to report more accurate gradient

information in the resource-sufficient state, and a large one

to decrease the communication overheads and save energy in

the resource-deficient state. We further study how to derive an
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acceptable compression ratio for each device. According to a

public dataset, the quantitative relationship between gradient

compression ratio and global model accuracy is formulated. To

balance the accuracy performance and total energy consump-

tion of the devices, we investigate the learning accuracy-energy

efficiency tradeoff problem for FL with gradient compression,

and jointly optimize the compression ratios and computing

frequency of the devices. Extensive experimental results are

provided to validate the efficiency and effectiveness of the

proposed scheme.

The main contributions of the paper are summarized as

follows.

• We design a fine-grained gradient compression method by

combining device-side gradient reduction and server-side

element-wise aggregation. Based on current techniques,

FedGreen enables different devices to compress the local

gradients on demand, according to the energy states.

• We present a learning accuracy-energy efficiency tradeoff

problem for FL with gradient compression. The compres-

sion ratio and computing frequency of each device are

jointly optimized to ensure the algorithm performance of

FL while reducing the total energy consumption.

• We conduct experiments to validate the overall perfor-

mance of FedGreen. Compared with the baseline schemes

of FL, FedGreen saves energy on the devices and achieves

fine-grained gradient compression for green MEC.

The rest of this paper is organized as follows. We describe

the fine-grained gradient compression method in Section II.

Section III discusses the learning accuracy-energy efficiency

tradeoff problem and its theoretical analysis. Experiment eval-

uation of our framework is shown in Section IV. Finally,

Section V concludes this paper.

II. FINE-GRAINED GRADIENT COMPRESSION

A. Device-side Gradient Compression

Without loss of generality, we take the two-dimension

convolution layer as an example, and consider the layer-

wise gradient compression. The three-stage gradient compres-

sion consists of sparsification, quantization and encoding. Let

v ∈ R
N denote the original gradients before compression and

N = Cout × Cin ×K ×K , where Cout, Cin and K are the

#output channels, #input channels and kernel size, respectively.

Here, we use 32 bits to represent a float number.

Kernel-wise gradient sparsification. We define the kernel

with shape of K × K as the basic unit of the gradient

sparsification. As shown in the left of Fig. 1, we calculate

the L2 norm of each kernel in one layer. Given a pruning

rate of ρ ∈ [0, 1), we zero-out the first ⌊ρCoutCin⌋ kernels

with smallest norm. Let vs = v ⊙m,vs ∈ R
N represent the

sparse gradient after pruning, where m is the binary mask

with shape of Cout × Cin and ⊙ is the Hadamard product

with broadcasting. Furthermore, let v̂ represent the non-zero

entries in vs, and v̂ ∈ R
M , where M = ⌈(1− ρ)CoutCin⌉K

2.

Given a mask m and the non-zero gradient v̂, we can obtain

kernel-wise gradient sparsification
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Fig. 1. Gradient sparsification and quantization.

vs by vs = R(v̂,m), where R is the function that recon-

structs the sparse gradient from the dense one with respect

to m. Compared with the traditional filter-wise method that

zeroes out a whole filter to compress the gradient, kernel-wise

sparsification achieves fine-grained pruning while maintaining

a small mask size.

Lemma 1. For any sparse gradient vs obtained from

v ∈ R
N and ρ ∈ [0, 1) by kernel-wise sparsification, we have

‖v − vs‖
2
2 ≤ ρ ‖v‖

2
2.

Stochastic gradient quantization. Motivated by QSGD in

[12], we propose a reinforced stochastic quantization scheme

for the pruned gradient v̂. Let |v̂|min and |v̂|max be the mini-

mum and maximum value of |v̂|, and ∆ = |v̂|max−|v̂|min. Let

j index the entries in v̂, and L be the number of quantization

levels. We can quantize any non-zero scalar v̂j ∈ v̂ by

Q(v̂j , L) = sgn(v̂j) ·
[

δ(
∣

∣v̂j
∣

∣− |v̂|min ;L) + |v̂|min

]

, (1)

where sgn(v̂j) ∈ {−1,+1} denote the sign of v̂j , and x̃ =
δ(x;L) is the stochastic quantization function that maps x ∈
[0,∆] to x̃ ∈ {0, ∆

L−1 ,
2∆
L−1 , · · · ,∆}. Let l ∈ {0, 1, · · · , L−1}

be an integer such that x ∈ [∆l
L
, ∆(l+1)

L
]. Hence, [∆l

L
, ∆(l+1)

L
]

is the quantization interval of x. Then, we have

δ(x;L) =

{

∆(l + 1)/L with probability xL/∆− l
∆l/L otherwise.

(2)

After applying Q(v̂j , L) for all v̂j ∈ v̂, we obtain the

quantizated gradient ṽ. Naturally, ṽ can be represented by

a tuple (ṽ′, sgn(v̂), |v̂|min , |v̂|max), where ṽ
′ is the index

gradient with each entry of log2 L bits. Given a mask m and

its quantized gradient ṽ, we can obtain the sparse form of

quantized gradient vq = R(ṽ,m). An example of quantiza-

tion process is provided in right of Fig. 1.

Lemma 2. For any quantizated gradient vq ∈ R
N computed

from pruned gradient vs = R(v̂,m), v̂ ∈ R
M by the above

scheme with L levels, we have ‖vq − vs‖2 ≤ M∆/(L− 1).
Lossless encoding. Now, we obtain a binary mask m

and a tuple (ṽ′, sgn(v̂), |v̂|min , |v̂|max). Since m is sparse,

we utilize compressed sparse row (CSR) format to represent

m and obtain Ecsr(m). Furthermore, due to the statistical

characteristics of ṽ
′ that smaller indices are more frequent,

we apply Huffman coding to reduce the data size and get

EH(ṽ
′). Finally, we get an encoded tuple with five parts

(Ecsr(m), EH(ṽ
′), sgn(v̂), |v̂|min , |v̂|max).

Lemma 3. Given any convolution gradient v ∈ R
N , by

combining the above compression schemes with pruning rate
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Fig. 2. Gradient aggregation.

ρ and quantization levels L, the number of bits to communicate

(Ecsr(m), EH(ṽ
′), sgn(v̂), |v̂|min , |v̂|max) is upper bounded by

CoutCin + ⌈(1 − ρ)CoutCin⌉K
2(1 + log2 L) + 64. (3)

Specifically, we use a fixed L = 8 for convolution layer and

L = 4 for fully connected layer during the implementation

and the compression ratio is only determined by ρ. Naturally,

according to Lemma 3, there is a near-linear relationship be-

tween ρ and the size of compressed gradient. We can directly

acquire the gradient pruning rate ρ for a given compression

ratio. Unlike previous gradient compression methods [5], [12]

that only reduce the local gradient size with a predefined

set of compression ratios, the proposed method can perform

fined-grained gradient compression in large range sizes. Note

that the computation cost of local gradient compression is

negligible compared to that of local model training.

B. Server-side Element-wise aggregation

There exist I devices that collaboratively a shared model,

and we utilize I = {1, 2, · · · , I} to denote the device set. Af-

ter collecting the compressed gradients uploaded from differ-

ent devices, the parameter server first decodes the compressed

gradients and obtains {vq,i, ∀i ∈ I}. Then the parameter

server is responsible to compute the global gradient v.

Let vq,i = {vkq,i} (k = 1, 2, · · · , N) represent the com-

pressed gradient uploaded from device i, and mi = {mk
i }

be its corresponding mask. The aggregated gradient can be

expressed in an element-wise manner by v = {vk} (k =
1, 2, · · · , N). The k-th entry vk is calculated by

vk =

{

1∑
i
mk

i
Di

∑

i v
k
q,im

k
iDi, if

∑

im
k
iDi > 0

0, otherwise
, (4)

where Di is the number of training data of device i.
We take an example to compute v in the multilayer per-

ceptron case, as illustrated by Fig. 2. We consider a simple

application scenario of FL consisting of two devices. Here,

we paint all gradient values of v with 2 colors. Based on

Eqn. (4), the connections in blue are only updated by device

1, the connections in orange are only updated by device 2, and

the connections in black are updated by both devices 1 and 2,

etc. Note that the method is straightforward to be extended to

the case of convolution layer.
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Fig. 3. Test accuracy on proxy dataset with respect to 1/α

C. Compressed Gradient Information

Referring to the tradeoff between model accuracy and

communication overhead in [13], we infer that a high compres-

sion ratio in gradient compression leads to the deterioration

of global model accuracy. In the following, we study the

quantitative relationship between the compression ratio and

global model accuracy.

We refer to the parameter fitting method in the previous

work [14] and conduct experiments of gradient compression

to measure different global model accuracy with respect to

different compression ratios α of the devices. To this end, a

naive fitting approach is to directly acquire the corresponding

global model accuracy by enumerating a set of compression

ratios in FL. However, the cost incurred by multiple times of

decentralized training may overtake the gain of the parameter

fitting itself. Alternatively, we propose to explore the prior

knowledge of parameter fitting on a proxy task with public

dataset, and then transfer it to the target task with decentralized

dataset. Note that the idea of proxy dataset is widely used in the

study of neural architecture search [15]. The overall parameter

fitting experiments are performed in an offline manner, and the

prior knowledge of this one-time fitting can be transferred into

many FL tasks.

We adopt the CINIC [16] as the proxy dataset for the pa-

rameter fitting experiment. The details of the hyperparameter

settings are shown in Section IV. In the experiments, we apply

the control variate method. Given a unified compression ratio

of the device, we evaluate the global model accuracy as F (α)
after gradient compression. According to the previous work

of model compression [17], there is a logarithmic relationship

between the inversion of compression ratio and the compressed

model accuracy. We observe that this relationship is also

achieved in FL with gradient compression. Hence, we are

motivated to formulate the global model accuracy F (α) by

F (α) = κ1 log2(κ2/α− κ3) + κ4, (5)

where parameters κ1, κ2, κ3 and κ4 are experimentally fitted

to measure the training performance with the given unified

compression ratio α. The experimental results are presented in

Fig. 3. We obtain the constant parameters κ1 = 0.024, κ2 =
19.221, κ3 = 2.561, κ4 = 0.609. With the decrease of α, more

accurate gradient information is collected from the compressed

local gradients, which is helpful to improve the global model



accuracy. For example, when α is small enough (e.g., α ≤ 25),

the compressed local gradient is able to reveal sufficient and

accurate gradient information and at this time, the global

model accuracy is almost identical to that of the conventional

FL algorithm. Therefore, we consider that for a single device,

a lower compression ratio α could also give rise to more

accurate gradient information and vice versa.

III. PROBLEM FORMULATION AND SOLUTION

A. Learning Accuracy-Energy Efficiency Tradeoff Problem

To study FedGreen, we consider an application scenario

of FL including a parameter server co-located with a base

station and I devices. Let fi and ri denote the computing

frequency (CPU cycles/second) and uplink data rate (bps) of

device i, respectively. Given the model structure, the original

weight and gradient size S and computing workloads per

training sample W are easy to calculate. The number of

local epochs n for model training could be set empirically.

Similar to [18], we pay attention to the total latency of local

model training and gradient uploading in each communication

round of the global model training. Specifically, with the

instruction of the parameter server, each device independently

trains the published global model with the local dataset. The

local training time is nWDi/fi. During the gradient uploading

process, due to a compression ratio αi, gradient uploading time

of device i is consumed by S/(αiri). For multiple access of

the devices in the uplink data transmission, we consider device

i communicates with the base station via the frequency domain

multiple access technology. For device i, the uplink data rate

ri is calculated by

ri = bi log2(1 +
pi|hi|

2

N0bi
), (6)

where bi and pi indicate the available bandwidth and transmit-

ter power of device i respectively, hi represents channel gain

between the device and base station, and N0 indicates the noise

power-spectral-density. In addition to the time consumption,

the amount of energy consumed for local model training is

εif
2
i nDiWi, where εi is an energy coefficient of the device.

As introduced by [19], εi indicates the effective switched

capacitance relying on the chip architecture.

In FL with gradient compression, a low compression ratio

αi reduces the data size of the local gradient and causes

less communication overheads to device i in the uplink data

transmission. But this leads to less accurate gradient infor-

mation, the global model accuracy will be degraded to a

degree. Besides, similar to the conventional FL algorithm, we

consider the influence of the amount of local training data Di

when evaluating the contribution of the gradient information

submitted by device i. We utilize Di/D as a weighting factor

of device i, where D =
∑

i Di. Ultimately, we measure the

overall contribution of all the compressed local gradients from

the devices by

F({αi}1≤i≤I) =
1

D

∑

1≤i≤I

DiF (αi), (7)

where F (αi) is computed by Eqn. (5) to roughly measure the

training performance of device i after the device compresses its

local gradient by ratio αi. Until now, we introduce F({αi, ∀i})
as a new performance metric to evaluate the learning perfor-

mance of FL with gradient compression.

Considering the learning performance of FL and total en-

ergy consumption of all the devices, there exists a tradeoff

problem in FL with gradient compression. The goal function

can be expressed by

G = F({αi}1≤i≤I)−̟J
∑I

i=1
(
piS

αiri
+ εif

2
i nDiW ), (8)

where J is the predefined number of global iterations and ̟ is

a presetting weighting factor. To achieve the goal, we jointly

optimize the compression ratio αi and computing frequency

fi of each device i, 1 ≤ i ≤ I . At the same time, there are

essential constraints for the tradeoff problem. The compression

ratio αi is equal to or larger that 1 and fmax
i is an upper limit

of fi. Moreover, a parameter server-defined latency constraint

should be satisfied for each device. Here, Tmax is the training

delay requirement of a single global iteration for each device.

Finally, we summarize the whole problem with necessary

constraints as follows.

(P1) : max G
subject to: αi ≥ 1, ∀i,

0 < fi ≤ fmax
i , ∀i,

S
αiri

+ nDiW
fi

≤ Tmax, ∀i,

variables : αi, fi, ∀i

(9)

For efficiency guarantee, the above optimization problem is

solved by each device in a decentralized manner. Specifically,

finding the optimal solution {f∗
i , α

∗
i } for device i only requires

its own hardware states and channel state information. Hence,

each device can dynamically update its training strategy to

cope with the time-varying environment during the training

period. After solving the problem, each device utilizes a

suitable computation frequency to perform the local training

task and afterward compress the local gradient with a specific

ratio. In this paper, we design FedGreen to reduce the total

energy consumption of all the devices in the goal function

and also consider a latency constraint for each device. Our

scheme is beneficial to achieve FL with fine-grained gradient

compression for green MEC.

B. Solution

To tackle the above optimization problem, we first pay

attention to the bottom computing resource allocation problem.

With the decisions of gradient compression {αi, ∀i}, the

subproblem that only involves the decision variables {fi, ∀i}
is formulated to minimize the total energy consumption cost

of the devices, which is expressed as follows

(P1-Bottom) : min
∑

1≤i≤I

( piS
αiri

+ εif
2
i nDiWi)

subject to: 0 < fi ≤ fmax
i , ∀i,

S
αiri

+ nDiW
f

≤ Tmax, ∀i

variable: fi, ∀i

(10)



Since the total energy consumption increases with the increase

of fi, we realize that if αi is confirmed for device i, fi is

solved according to the time delay constraint and the upper

limit. Hence, the solution of fi is

f∗
i = min(

nDiW

Tmax − S
αiri

, fmax
i ). (11)

Note that when fmax
i is large enough, fi is straightforwardly

solved according to the equalized the time delay constraint. We

utilize an intermediate variable βi ∈ [0, 1] to suppose that for

device i,
{

S
αiri

= βiT
max,

nDiW
fi

= (1 − βi)T
max.

(12)

Considering that fi ≤ fmax
i , a lower limit of βi is required by

βmin
i = 1−

nDiW

fmax
i Tmax

. (13)

We derive the partial derivatives of G with respect to βi,























∂G
∂βi

= riT
max

S
Diκ1κ2

D(κ2λi−κ3) ln 2

−̟J(piT
max + 2εi

n3Di
3W 3

(Tmax)2(1−β)3
),

∂2G
∂β2

i

= −( riT
max

S
)2

Diκ1κ
2

2

D(κ2λi−κ3)
2 ln 2

−6̟J εin
3Di

3W 3

(Tmax)2(1−β)4
< 0,

(14)

where λi = 1/αi. Clearly, G is concave on βi and we solve

the optimal solution of βi based on the first-order optimality

condition ∂G/∂βi = 0. But it is difficult to directly solve βi.

Alternatively, we apply the binary search method to seek an

approximate solution of βi within the range [βmin
i , 1]. Finally,

αi and fi are solved by substituting the approximate solution

of βi into Eqn. (12).

IV. PERFORMANCE EVALUATION

A. Experiment Setting

We consider the application of FL for image classification

on the CIFAR-10 dataset, with 16 mobile devices. The hyper-

parameters for the FL algorithm are shown as follows: local

epoch 1, batch size 64, learning rate 0.05, the number of global

iterations 300, and decay rate per round 0.996 by default.

For the IID data setting, we shuffle the training samples and

uniformly dividing them to all the devices. For the non-IID set-

ting, we consider heterogeneous partition with distribution of

pc ∼ Dirc,i(0.5) and allocate a proportion pc,i of the training

samples of class c to device i. We conduct the experiments on

VGG-9 model [20]. The original gradient size and computing

workloads per training sample are empirically measured as

S = 111.7 Mb and W = 0.98 megacycles, respectively.

The parameter settings for the hardware configuration and

channel status of the devices are shown as follows: energy

coefficient εi ∼ U [5×10−27, 1×10−26], computing frequency

fmax
i ∼ U [1.5, 4] GHz, power-spectral-density N0 = −114

dBm, available bandwidth bi ∼ U [0.8, 5] MHz. We set the

weighting factor ̟ = 1 × 10−4 and Tmax = 100 seconds by

default.

B. Performance Evaluation

Convergence of the binary search solution. We first

show that the binary search method can converge finally and

achieve the approximately optimal solution for problem P1.

Fig. 4(a) shows the evolution of the compression strategies

of three randomly selected devices and the convergence of

goal function. In our scheme, a device with lower computation

or communication capacity is suggested to adopt a large

compression ratio in gradient compression, and vice versa.

Impact of local epoch n. A larger n encourages each

device to perform more iterations of the local model training.

But it may lead to the divergence of the local gradients. As

shown in Fig. 4(b), we observe a degradation of the final

test accuracy when n > 4, which matches with the existing

study in [21]. Besides, with the increase of n, the energy

consumption of local model training increases drastically.

Hence, it is recommended to use a moderate local epoch (e.g.,

n < 5) to save energy and avoid the gradient divergence.

Impact of weighting factor ̟. We discuss the impact

of the weighting factor on the performance of our scheme.

Fig. 4(c) shows that we conduct experiments under IID data

setting with respect to ̟. A large value of ̟ means that

the parameter server would like to reduce the total energy

consumption of the devices. The convergence accuracy of the

FL algorithm could be a sacrifice at this time. Based on the

experiments, it is empirically suggested to adjust the tradeoff

parameter from 5× 10−5 to 5× 10−4.

Comparison with baseline. Next, we compare our scheme

FedGreen with the following baseline schemes.

• Random. Each device utilizes a random strategy of

gradient compression and αi is randomly selected from

[50, 300]. Computing frequency fi is calculated according

to Eqn. (11).

• Uniform. All the devices utilize an identical ratio for

gradient compression [4]. We calculate the average com-

pression ratio α of FedGreen, and obtain {αi = α, ∀i}.

• Selection. Motivated by [6], we exclude the top 25% of

the devices with the largest energy consumption in the

uniform policy.

The convergence curves of these schemes over the consumed

energy consumption under the IID and non-IID setting are

shown as Figs. 5(a) and 5(b), respectively. With the same

energy consumption requirement, our scheme outperforms the

existing schemes to improve the global model accuracy. Mean-

while, as the record of our experiments, FedGreen achieves the

best final test accuracy in both IID and non-IID settings. In

addition, we provide the experiment results of required energy

consumption for achieving 80% test accuracy in Fig. 5(c). We

realize that FedGreen is indeed superior to the above baseline

schemes, which consumes the least energy for the convergence

performance. Particularly, to achieve the same test accuracy of

80%, compared with the Selection scheme, FedGreen reduces

32% and 57% of the energy consumption under the IID and

non-IID setting, respectively.
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Fig. 4. The convergence of binary search solution and the impact of different parameters on the overall performance of FedGreen.
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Fig. 5. Performance comparison with various baseline schemes on CIFAR-10 dataset.

V. CONCLUSION

We introduce fine-grained gradient compression for FL

in MEC, and proposes FedGreen to dynamically adjust the

compression ratios of the devices in an energy-efficient way.

We present the basic operations to enable different devices to

adopt different compression ratios on demand. Furthermore,

we pay attention to the overall performance of FL with

gradient compression and study a learning accuracy-energy

efficiency tradeoff problem. Based on the applicable methods,

we find the approximately optimal compression ratio and

computing frequency for each device. Numerical experiments

demonstrate that our scheme outperforms the baseline schemes

in saving energy on the device side while guaranteeing the

accuracy performance of FL in MEC.
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