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Abstract—With the rising demand for indoor localization,
high precision technique-based fingerprints became increasingly
important nowadays. The newest advanced localization system
makes effort to improve localization accuracy in the time or
frequency domain, for example, the UWB localization technique
can achieve centimeter-level accuracy but have a high cost.
Therefore, we present a spatial domain extension-based scheme
with low cost and verify the effectiveness of antennas extension
in localization accuracy. In this paper, we achieve sub-meter level
localization accuracy using a single AP by extending three radio
links of the modified laptops to more antennas. Moreover, the
experimental results show that the localization performance is
superior as the number of antennas increases with the help of
spatial domain extension and angular domain assisted.

Index Terms—localization, spatial domain extension, angular
domain assisted, channel state information

I. INTRODUCTION

Location-based services (LBS) become a key element of
modern mobile internet applications, which utilize real-time
geometric information from smartphones to provide naviga-
tion, entertainment, or security [1]. Although satellite posi-
tioning systems, such as global positioning system (GPS)
[2] or Beidou [3], can achieve centimeter-level localization
accuracy in the outdoor environment, they can hardly achieve
the same level in the indoor scenario, due to satellite signal
occlusions. To address this issue, more diversified wireless
signals, including wireless fidelity (WiFi) [4], Bluetooth low
energy (BLE) [5], and increasingly popular 3GPP long term
evolution (LTE) / new radio (NR) technology [6], have been
exploited to provide indoor localization services, and accurate
navigation and seamless tracking capability in both outdoor
and indoor scenarios have been specified in 3GPP Release 16
standard [7].

In order to provide a better indoor localization accuracy, the
most direct approach is to collect more observation samples,
either in the frequency or time domain [8]. For example,
the ultra wide band (UWB) localization technique adopted in
the recent iPhone product, is able to achieve centimeter-level
localization accuracy with 500 MHz bands. Fingerprint-based
localization solutions can also achieve a similar accuracy when
the observation window is sufficiently long [9]. However,
improving the localization accuracy via spatial domain exten-
sion is never straightforward due to the following reasons.
First, the existing spatial domain schemes [10], [11] rely

on calculating the geometric location through the measured
time of flight (TOF) and angle of arrival (AoA), and the
corresponding resolution does not scale linearly with respect to
the number of available radio frequency (RF) chains [12]. Sec-
ond, deploying more RF chains with expensive components,
including low-noise amplifiers, analog-to-digital, or digital-to-
analog converters, are cost-prohibitive in general [13]. Third,
the processing complexity increases exponentially with respect
to the number of RF chains as well [14]. As illustrated in
[15], the baseband processing of a 12-antenna software defined
radio (SDR) system has to be moved to ‘BigStation’ with 15
personal computers for real-time signal processing.

Last but not least, to address the aforementioned issues of
the spatial domain extension for high accuracy indoor localiza-
tion, we present in this paper a low-cost WiFi based prototype
localization system with dummy antennas to improve AoA
resolutions as well as localization accuracy. By regularly ro-
tating 12 antennas with only 3 RF chains, the proposed system
is able to achieve less than 1 meter localization accuracy in
a 40m2 corridor environment, and the main contributions of
our work are listed below.

• Low-Cost Spatial Domain Extension Conventional spatial
domain extension schemes require special hardware sup-
port. As reported in [16], Phaser builds a 9-antenna WiFi
based AoA estimation system by combining multiple
WiFi network interface cards (NICs) and the associated
RF chains together, and the hardware cost is thus signif-
icant. In this paper, we control the number of RF chains
and extend the number of antennas by introducing a four-
port switcher to reduce the hardware cost, which can
enjoy the benefit of AoA resolution improvement and
maintains the hardware cost simultaneously.

• AoA Assisted Localization Different from the conven-
tional approach to directly minimize mean square error
(MSE) in [17], we propose a two-stage localization
strategy, which contains an AoA estimation and a loca-
tion prediction. Through this approach, the localization
accuracy can be improved to less than 1 meter with more
available dummy antennas.

• Low Cost Hardware Implementation We use three low-
cost off-the-shelf single pole four throws (SP4T) RF
switchers to connect 12 dummy antennas on top of only
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one 3-port WiFi NIC. By applying a time division based
activation scheme, we are able to collect the channel
behaviors of all the available antennas, which eventually
pave a way for low-cost high precision indoor localization
with dummy antennas.

The remainder of this paper is organized as follows. In
Section II, we introduce the system model and some prelimi-
nary information, and the problem formulation is discussed in
Section III. The problem analysis, as well as the corresponding
solution, are provided in Section IV. In Section V, we present
our experimental results and the concluding remarks are given
in Section VI.

II. SYSTEM MODEL

In this section, we briefly introduce some preliminary
knowledge about channel state information (CSI), followed
by the angular based localization procedures.

A. CSI Modeling
Consider an orthogonal frequency division multiplexing

(OFDM) based modern WiFi communication system with
NSC subcarriers. For a given location L, the received signal
vector, y(L) = [y1(L), · · · , yNR

(L)]
T ∈ CNR×1, can be

modeled through,

y(L) = H(L) · x + n(L), (1)

where H(L) ∈ CNR×NSC denotes the channel frequency
responses, x ∈ CNSC×1 denotes the transmitted symbols, and
n(L) ∈ CNR×1 denotes the additive white Gaussian noise
(AWGN), respectively. If we further choose hi(L, n) to be
the collected channel state information of the ith subcarrier at
the nth received antenna for a given location L, H(L) can be
rewritten as,

H(L) =

 h1(L, 1) · · · hNSC
(L, 1)

...
. . .

...
h1(L, NR) · · · hNSC

(L, NR)

 . (2)

Without loss of generality, we denote ai(L, n) and pi(L, n)
to be the amplitude and phase information of the correspond-
ing channel responses, hi(L, n) can be modeled as,

hi(L, n) = ai(L, n) · ej·pi(L,n). (3)

P(L) =

 p1(L, 1) · · · pNSC
(L, 1)

...
. . .

...
p1(L, NR) · · · pNSC

(L, NR)

 . (4)

and thus we obtain phase matrix P(L) extracted by H(L).

B. AoA Assisted Localization
As illustrated in Fig. 1, the geometric distances between

two adjacent antennas are selected to be half of the wave-
length, and therefore, the AoA of uniform linear array (ULA)
configuration can be estimated via equation (5),

θ̄ =
1

NSC

NSC∑
i=1

arccos

(
pi(L, n+ 1)− pi(L, n)

π

)
. (5)

…

θ

d = λ/2

θ’≠ θ 

Far field Signal

Dummy Antennas

AoA Estimation 
Error with Extend 
Dummy Antennas

Fig. 1. Illustration diagram for AoA estimation with multiple receiving
antennas. With extended dummy antennas, the AoA estimation becomes
inaccurate.

However, the measured CSI usually contains information of
the non-line-of-sight (NLOS) path, in practical, which makes
the AoA estimation inaccurate, equation (5) does not work
directly. In order to mitigate the effect of NLOS, we need
to extend the number of the antenna array to estimate AoA
more accurately. When the number of antennas is greater than
the number of NLOS paths, the MUSIC algorithm could be
employed to estimate the AOA of the multi-path signal.

Considering a ULA with NR antennas, the correlation
matrix of received signals vector Ryy can be expressed by,

Ryy = E[yyH ] (6)

where E(·) and (·)H denote conjugate transpose and expecta-
tion, respectively. The singular value decomposition of Ryy is
performed, and obtain NR eigenvalues corresponding to NR
vectors U = [u1, u2, · · · , uNR

], which is divided to two parts
given as,

U = [US,UN] = [u1, · · · , up︸ ︷︷ ︸, up+1, · · · , uNR︸ ︷︷ ︸] (7)

where US and UN are the corresponding vectors of sig-
nal and noise parts. The signal steering vector a(θx) =
[1, e−j·w(2,θx), · · · , e−j·w(NR,θx)]T and noise are uncorrelated,
we have,

aH(θx)UN = 0 (8)

Based on the orthogonality based signal and noise, the AoA
spectrum of MUSIC can be expressed as,

B(θ) =
1

aH(θ)UNUH
Na(θ)

(9)

We could obtain the closed expression of steering vector
a(θ) by minimizing its spectrum function, and then AoA
of incident signal θx can be obtained by spectrum peaking
search. We define M(·) to represent the peak search process
of MUSIC algorithm as follows,

θx =M (B(θ)) (10)

Once we obtain the AoA, θx, the location information could
be further derived by combining the distance information.



III. PROBLEM FORMULATION

In this section, we formulate the localization problem using
a generalized optimization framework. Denote L̂m and Lm to
be the mth predicted and true location, respectively, and we
choose MSE of them to be the performance measure, where1

∆L = 1
M

∑M
m=1 ‖L̂m − Lm‖2. Mathematically, the location

error minimization problem can be described as follows.

Problem 1 (MSE Minimization) The original location error
minimization problem is given as follows.

minimize
g(·)

1

M

M∑
m=1

‖L̂m − Lm‖2, (11)

subject to L̂m = g
(
Ĥ(Lm), θ̄mx

)
,

θ̄mx =M (B(θ)) ,

L̂m,Lm ∈ A, (12)

where A denotes all the feasible localization areas.

In the indoor localization, the accuracy of AoA estima-
tion based on MUSIC algorithm is in general limited, due
to the complicated NLOS fading environments. Meanwhile,
the associated computational complexity could be significant,
specially when the received SNR is small [18]. To overcome
this obstacle, we minimize the mean absolute error (MAE)
of AoA rather than directly calculate the AoA value using
MUSIC. Denote θ̂m and θm to be predicted and true AoA
values, we can define the AoA MAE minimization problem
as follows.

Problem 2 (AoA MAE Minimization) The AoA MAE mini-
mization problem can be formulated as follows.

minimize
f(·)

1

M

M∑
m=1

‖θ̂m − θm‖, (13)

subject to θ̂m = f
(
P̂(Lm)

)
, (14)

where ‖ · ‖ denotes the l1 norm and θm is the ground truth
value that can be measured from Lm and the location of AP,
LAP .

By combining the above two optimization problems to-
gether, we propose the following angular domain assisted
localization scheme, where we first estimate the AoA value
from Problem 2 and then minimize the location error of
Problem 1 with the estimated AoA value, θ̂m. Mathematically,
we can directly model the regression function g?(·) described
as follows.

Problem 3 (Angular Domain Assisted Localization) The
angular domain assisted localization problem can be

1‖ · ‖2 denotes the l2 norm of the inner vector.
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Fig. 2. The architecture of the system. In the offline stage, we collected
CSI of different antennas at Reference Point with modified PC by receiving
packets from WiFi AP and the amplitude and phase extracted from collected
CSI is the input data of DNN. In offline stage, we collect the CSI at Test
Point as test data.

formulated as,

g?(·) = minimize
g(·)

1

M

M∑
m=1

‖L̂m − Lm‖2. (15)

subject to L̂m = g
(
Ĥ(Lm), θ̂m

)
,

θ̂m = f?
(
P̂(Lm)

)
,

L̂m,Lm ∈ A, (16)

where f?(·) is the optimal solution of Problem 2.

Through the above formulation, we can approximate f?(·)
using the classical logistic regression model in the offline
training rather than running MUSIC algorithms in the online
stage, which greatly reduces the computational complexity in
the localization. Meanwhile, it is also worth mentioning that
the localization accuracy and the computational complexities
can trade-off with each other in the theoretical sense, when
the numbers of training reference points or receive antennas
increase, e.g., the localization accuracy can be improved if we
increase the experimental cost and algorithm complexity in the
offline stage.



IV. DEEP LEARNING BASED LOCALIZATION SOLUTION

In this section, we propose to apply the deep neural network
(DNN) architectures to solve the AoA MAE minimization
and the angular domain assisted localization as defined in
Problem 2 and Problem 3.

A. Phase Alignment

One of the key factors for applying deep learning based
solution is to generate high quality measured CSI. However,
the measured phase information usually contains random jit-
ters and noises, due to the imperfect hardware components
that used in the practical systems. To solve this issue and
obtain high accurate localization results, we model the main
phase errors from carrier frequency offset (CFO) and sampling
frequency offset (SFO), which is given below.

p̂i = pi + 2π
i

NSC
∆t+ β + Z, (17)

where ∠̂pi and ∠pi denote the measured and genuine phase
of subcarrier i, respectively. ∆t is the SFO time lag, β is the
CFO, and Z is the random measured noise with zero mean
and unit variance.

In order to eliminate these random phase offsets, we perform
the linear regression [19] on the raw phase information across
the entire frequency band, where the slope k and the y-
intercept of the regression line b can be obtained from,

pi = p̂i − ki− b, (18)

k =
p̂Nsc

− p̂1
Nsc − 1

, (19)

b =
1

Nsc

Nsc∑
i=1

p̂i. (20)

With the above linear regression, the calibrated phase infor-
mation can be obtained by subtracting the linear phase offset
from the measured phase according to formula (18).

B. Neural Network Configuration

The full connection structure of DNN networks can extract
the features from CSI across the spatial domains. To improve
the ability to extract features, we implement AoA estimation
and localization using two DNNs with four hidden layers,
respectively. For two DNNs, we adopt rectified linear unit
(ReLU) as the non-linear activation functions in each hidden
layer to avoid the vanishing gradient problem and adopt the
linear function as the activation function of the last output
layer. The architecture of DNN is shown in Fig. 3.

In DNN1 used for AoA estimation, the input size of the
input layer is 30×N , which contains processed phase of 30
subcarriers at N received antennas, the output of DNN1 is
AoA. And we select the loss function, LAoA, to be the original
definition of f∗(·) expressed as,

LAoA =
1

NRP

NRP∑
m=1

‖θ̂m − θm‖, (21)
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Fig. 3. The architecture of the DNN, which is consisted of four full connect
layers as hidden layer.

TABLE I
AN OVERVIEW OF NETWORK CONFIGURATION AND PARAMETERS.

Layers DNN1 DNN2

Input Layers 30×N 61×N

Hidden Layer 1 FC 256 + ReLU FC 256 + ReLU

Hidden Layer 2 FC 256 + ReLU FC 256 + ReLU

Hidden Layer 3 FC 256 + ReLU FC 256 + ReLU

Hidden Layer 4 FC 256 + ReLU FC 256 + ReLU

+ Dropout 0.3 + Dropout 0.3

Output Layer FC N + Linear FC 2 + Linear

In DNN2 for used localization, every antenna has an ad-
ditional angle provided by DNN1 and amplitude information
of 30 subcarriers, and thus the size of input layer is 61. The
output of DNN2 is the coordinate of every RP. Therefore, we
select the loss function LLoc expressed as,

LLoc =
1

NRP

NRP∑
m=1

‖L̂m − Lm‖2. (22)

However, in order to avoid the biasing effects of some
unusual samples, we adopt the max-pooling technique to get
rid of unimportant features and apply the dropout technique
to further reduce the unimportant connections in both DNNs.
The logistic regression based approach can gradually converge
to the non-convex function LAoA and LLoc with satisfied
performance via respective DNN networks. The detail of the
configuration is shown in Table I.

V. EXPERIMENTAL RESULTS

In this section, we provide some experimental results to val-
idate the proposed high precision indoor localization scheme
with 12 dummy antennas. With more receiving antennas
installed at the localization terminals, we offer a low cost
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implementation strategy on top of an off-the-shelf laptop,
and compare AoA estimation and localization results with
baselines in what follows.

A. Low Cost Implementation

The laptop used in this experiment consists of three receiv-
ing antennas. In order to facilitate more receiving antennas,
we connect the original three radio chains with 12 antennas
via three SP4T RF switches as shown in Fig. 4. Through this
approach, each radio chain can serve four antennas through
SP4T RF switches via a time division multiplexing mode, and
an external micro-controller unit is applied to control the active
durations for each antenna.

To implement localization service, we select a 1.2× 12m2

corridor environment with 20 reference points (RPs) and
a single WiFi AP. The entire layout of the experimental
environment is shown in Fig. 5, where we uniformly select
9 additional testing points to obtain more reliable results. The
12-antenna modified laptop communicates with WiFi AP to
obtain the CSI information through Linux-802.11n-CSI-Tool
[20] and WiFi network interface cards (NICs). Since we can
not concurrently measure all 12 antennas, we divide them
into four groups, and collect the corresponding CSIs by fast
switching and matching.

During each receiving period, we obtain one CSI packet per
antenna, which contains a total of 30 subcarriers. In the testing
stage, we collect 20000 CSI packets per RP for each antenna
to construct the training data set, while in the validation stage,
1000 CSI packets per testing point (TP) for each antenna is
applied.

B. AoA Estimation Results

In the first experiment, we compare the accuracy of AoA
estimation for different antenna configurations. The cumulative
distribution functions (CDFs) of absolute AoA errors for 3, 6,
9, and 12 receiving antennas are plotted in Fig. 6 and the AoA
MAE values are summarized in Table II.

From the above results, we find that the AoA MAE value
decreases when the number of receiving antennas increases
from 3 to 9 antennas. The physical interpretation is that the
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Additional test 
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Office OfficeOffice Office OfficeOffice
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Fig. 5. A sketch map of the experiment environment. Blue, red and
yellow points represent WiFi AP, reference point, and additional test point,
respectively.

Fig. 6. The CDF of AoA errors for different number of antennas.

performance of AoA estimation can be improved, when the
number of receiving antennas increases. However, when the
number of receiving antennas is greater than 12, the AoA
estimation error may become worse. This is due to the fact that
the estimated AoA value will be inaccurate when the size of
receiving antennas becomes significant as illustrated in Fig. 1.

C. Localization Results

In the second experiment, we further compare the local-
ization accuracy in terms of RMSE for different antenna
configurations. The CDF of absolute localization errors for
3, 6, 9, and 12 antennas are plotted in Fig. 7 and the overall
RMSEs of localization schemes are listed in Table II.

As illustrated in Fig. 7, the localization accuracy in terms
of RMSE improves when the number of receiving antennas
grows, e.g. from 1.747 m for 3 antennas to 0.918 m for 12
antennas, which is equivalent to 47.5% improvement. From
Table II, we can also conclude that the absolute localization
errors improves when the number of receiving antennas grows
as well.

It is worth noting that, different from AoA estimation,
the localization accuracy for 12 antennas is still better than
that of other antenna configurations. This is because the



Fig. 7. The CDF of localization errors for different number of antennas.

localization estimation utilizes the amplitude information of
CSI, which compensates the AoA estimation errors in the
previous process.

TABLE II
THE MAE OF AOA ESTIMATION AND RMSE OF LOCALIZATION.

Numbers of Antennas AoA errors(°) Localization errors(m)

3 antennas 5.633 1.747

6 antennas 4.234 1.445

9 antennas 2.893 1.172

12 antennas 3.635 0.918

VI. CONCLUSION

In this paper, we propose an angular domain assisted
localization scheme for multi-antennas configuration. With
more spatial domain diversity, we propose a logistic regres-
sion based AoA estimation scheme, and substitute the AoA
estimated results in the later location. Through this approach,
we can achieve better localization accuracy. With the increased
number of receiving antennas, e.g. from 1.746 meters with 3
antennas to 0.918 meters with 12 antennas.
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