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Abstract—We propose a dynamic resource allocation al-
gorithm in the context of future wireless networks endowed
with edge computing, to enable accurate energy efficient clas-
sification with end-to-end delay guarantees. In our scenario,
sensor devices continuously upload data to an Edge Server
(ES) for classification purposes. Merging Lyapunov stochastic
optimization and ensemble inference, we propose DEsIreE,
a low-complexity method that dynamically selects the data
quantization level, the device transmit power, and the ES’s CPU
scheduling, without any prior knowledge of the statistics of
wireless channels and data arrivals. Numerical simulations run
on two real datasets assess the effectiveness of our algorithm
in optimizing sensors’ energy consumption and classification
accuracy, with the ensemble yielding considerable gain.

Keywords—Edge machine learning, energy efficiency, green
edge computing, ensemble learning, mobile edge computing.

I. INTRODUCTION

The future of wireless networks is to embed human,
physical and digital world into the same ecosystem1, with
a holistic view of communication, computation, caching
and control [1]. This complex integration will be driven
by different pillars, including a performance boost over the
wireless interface, and a pervasive deployment of cloud
resources at the edge of the network. The latter will bring
Machine Learning (ML) and Artificial Intelligence close to
the end users, thus achieving new targets in terms of energy
efficiency, delay, reliability and, in general, a sustainable
deployment of 6G services. However, this comes with several
drawbacks and challenges, among which we aim to address
the following: i) Edge computing resources are limited with
respect to the central cloud; ii) Reliability/dependability
has to increase also from a computation point of view.
Indeed, while communication reliability refers to the correct
reception of packets sent through the wireless channels,
computation reliability refers to the performance (e.g. in
terms of accuracy) of learning/inference tasks running on the
edge servers [2]. Therefore, when a learning/inference task
is offloaded from end users (such as mobile phones, sensor
devices, cars) to Edge Servers (ESs) through a wireless
connection, the whole procedure can encounter different
adversarial events. In this paper, we focus on the computation
reliability, in order to design a methodology to increase the
accuracy of a classification task running in the ES on data
transmitted by sensor devices or, equivalently, the energy
efficiency for a given classification accuracy. The basic idea,

This work was partly funded by the European Commission through the
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EU/TW Project 5G CONNI, Nr. 861459, and by MIUR under the PRIN
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1https://hexa-x.eu/

first presented in [2], is to introduce a certain distortion on the
transmitted data through a coarser quantization, in order to
save transmit energy. The drawback of a coarser quantization
is a reduced classification performance in terms of accuracy.
A possible counteracting measure, presented in this paper, is
to exploit diversity from a computation point of view, with
the decision based on the ensemble of more classification
methods. Our work falls under the framework known as Edge
Machine Learning (EML), whose brief literature review is
presented in the following, along with the contribution of
this paper.

Recently, different contributions on resource allocation
for EML have been proposed [2]–[5]. In [3], a scheduling
algorithm based on Lyapunov optimization is proposed, with
Age of Information guarantees and predictive control of
industrial actuators. In [4], the authors investigate a scenario
where a single device uploads data to an edge server running
a training model based on stochastic gradient descent, jointly
considering communication and computation time, and opti-
mizing the packet payload size, considering the ratio between
communication and computation rates. The authors in [5]
propose a communication-efficient decentralized machine
learning algorithm that dynamically optimizes a stochastic
quantization method, with applications to regression and
image classification. Finally, in [2] we propose three dif-
ferent resource allocation strategies to explore the trade-off
between energy, latency and accuracy in EML scenarios.
None of these works consider ensemble inference to improve
the aforementioned trade-off. In [6], the authors propose
an ensemble method for edge inference with deep neural
networks. However, they only consider delay and not the
joint optimization of delay, accuracy and energy.

Instead, in this paper, we propose DEsIreE, an online
method based on Lyapunov stochastic optimization [7] and
ensemble inference, to optimize a weighted sum of energy
consumption and inference performance, with constraints on
the average End-to-End (E2E) delay. In particular, DEsIreE
dynamically adjusts the data quantization, the devices’ trans-
mit power, and the CPU scheduling at the ES, to strike
the best trade-off between energy consumption, delay, and
accuracy of the classification task, exploiting diversity from
a computation point of view to increase reliability. Our
contribution is twofold: i) We design an online method able
to strike a trade-off between energy, latency and inference
without any knowledge of the statistics of context parame-
ters; ii) We propose a novel ensemble method to combine
different classifiers, based on a notion of confidence of their
classification. Our method is tested on the MNIST dataset
[8], as in [5], and on the Hydraulic System Monitoring
(HSM) dataset [9], with different ensembles of Support
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Fig. 1: Reference scenario for edge classification

Vector Machines (SVMs) [10] and Neural Networks (NNs).
Numerical results show that our ensemble method is able
to guarantee the same classification performance within the
same E2E delay, with considerable gains in terms of sensor
energy consumption. To the best of our knowledge, this is the
first work that considers a dynamic joint resource allocation
strategy for edge classification, with ensemble inference. As
in [2], we assume a goal-oriented perspective, where the
goal is to accomplish the classification task with acceptable
accuracy, given the final application, with the lowest energy
consumption, and not necessarily to perfectly convey all the
original data. Classical approaches focus on energy efficiency
in terms of, e.g., energy per bit. Focusing on the energy
per goal, we can rely on the following notion of energy
efficiency: EE = Energy

goal = Energy
bit ×

bits
goal . Our proposal is not

only to reduce the first term on the energy per bit, but also the
bits per goal, thus further improving the energy efficiency.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider sensors that con-
tinuously generate data and upload them via the wireless
connection with an Access Point (AP), to an ES, which runs
an inference task. Typical examples are cameras uploading
video frames to the edge server ES for object detection
and recognition, or industrial sensors uploading physical
quantities for anomaly detection, predictive maintenance and
process diagnosis. As we can notice from Fig. 1, each device
buffers its data into a local communication queue (in red),
to then transmit them to the ES, which stores the data into a
remote computation queue (in blue) before computation. The
output of the computation is a classification result (top right
of the figure), coming from a single classifier, or from an
ensemble strategy. Since we deal with a dynamic scenario,
time is organized in time slots t of equal duration τ .

A. End-to-End delay

In this paper, we refer to a data unit as the smallest piece
of information to be sent by a sensor and elaborated by the

ES, as in [2]. For example, in image processing, the data unit
is one image. We denote by Sk the number of samples in
one data unit, for example the number of pixels in an image.
Denoting by nqk,t the number of bits per sample used by
device k in time slot t, a transmitted data unit is represented
by Skn

q
k,t bits. The overall delay experienced by a data unit,

from its generation to its classification at the ES, is related
to both the uplink queueing and transmission delays, and the
remote queueing and computation delays at the ES. Then, in
this paper, as in [2], we define an uplink transmission queue
Qlk,t, and a remote queue Qmk,t of data to be computed at
the ES. The uplink queue is fed by the new data arrivals,
and drained by the uplink data transmission. Thus, denoting
by Rk,t the uplink data rate (in bits/s) of device k, the total
number of transmitted data units in time slot t is

Nu
k,t =

⌊
τRk,t
Skn

q
k,t

⌋
, (1)

where bxc denotes the largest integer smaller than x, and it
is assumed that nqk,t is the number of bits used to represent
all data units sent by device k, during time slot t. Then, the
local communication queue evolves as follows:

Qlk,t+1 = max
(
0, Qlk,t −Nu

k,t

)
+Ak,t (2)

where Ak,t are the new data arrivals, whose statistics are
supposed to be unknown a priori. The importance of the
quantization level will be clear later on in this section, when
we introduce the accuracy of the edge inference task. At the
server, the remote queue is fed by the uplink data arrivals,
and is drained by the task computation. In particular, in this
work, as in [2], we assume that there exist a linear relation
between the number of CPU cycles, and the computed data
units. This assumption builds on the fact that, given a trained
classification model, a fixed number of operations (summa-
tions, non-linear operations, etc.) need to be performed on a
new pattern to output the result. Then, denoting by 1/Jk the
number of CPU cycles needed to elaborate one data unit, the
number of computed data is given by

N c
k,t = bτfk,tJkc, (3)
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where fk,t is the CPU cycle frequency assigned to device k
during time slot t. As we will detail later on, Jk depends
on the specific learning algorithm run by the ES (SVM, NN,
etc.). Then, the remote queue evolves as follows:

Qmk,t+1 = max(0, Qmk,t −N c
k,t) + min

(
Qlk,t, N

u
k,t

)
(4)

In particular, as we will show later on, the parameter Jk is
estimated offline for each classification algorithm, with the
ensemble being more computational demanding. The overall
service delay is directly related to the sum of the local and
the computation queues Qtot

k,t = Qlk,t+Q
m
k,t. One of our aims

is to guarantee a long-term average delay Davg
k , as follows

lim
T→∞

1

T

∑T

t=1
E
{
Qtot
k,t

}
≤ Qavg

k := Davg
k Āk, ∀k (5)

where Āk = E{Ak,t}/τ , due to the Little’s law [11]. Here,
the expectation is taken with respect to the random channel
and data arrivals, whose statistics are unknown in advance.

B. Energy consumption

In this paper, we aim to optimize a combination of
the sensors’ energy consumption and inference accuracy. In
particular, we consider the energy spent for the transmission
of patterns from the sensor devices to the AP, thus in the
uplink direction. Given a data rate Rk,t, from Shannon’s
formula, the energy spent for transmission during time slot
t by device k is

ek,t =
τN0Bk
hk,t

(
exp

(
Rk,t ln(2)

Bk

)
− 1

)
,

where N0 is the noise power spectral density at the receiver,
Bk is the bandwidth assigned to device k, and hk,t is
the channel power gain, which is time varying in wireless
scenarios and in general includes path loss, shadowing and
fading.

C. Inference Accuracy

As already mentioned, an important aspect pertaining to
edge inference is the reliability of the task. In the case of a
classification task, this translates into the percentage of cor-
rectly classified patterns. This parameter is strongly affected
by the learning algorithm (or ensemble of algorithms), and
the number of bits used to quantize the data. In particular,
denoting by Gk(nqk) the accuracy (a function of the number
of quantization bits), we make the following assumption:
Assumption 1: Gk is a non decreasing function of nqk.
Assumption 1 is based on the fact that the quantization
represents a noise over the test data set. For more specific ar-
guments involving rate-distortion theory limits, the interested
author is referred to [2]. However, it should be noted that,
while a higher nqk leads to better accuracy, it also requires
higher energy consumption to upload the data and process
them within the E2E delay constraint, and viceversa. Due
to Assumption 1, since one of our aims is to maximize the
accuracy, we will directly consider nqk in the following.

III. PROBLEM FORMULATION AND SOLUTION

Since the goal is to explore the trade-off between en-
ergy consumption, E2E delay, and inference accuracy, we
consider the following weighted sum of inference accuracy

(directly the number of bits due to Assumption 1) and energy
consumption:

Ewt =
∑K

k=1
(−αknqk,t + (1− αk)ek,t), (6)

where αk ∈ [0, 1] is a parameter that assigns more or less
importance to the energy or the accuracy. For instance, αk =
1 leads to a pure energy minimization problem as in [12].
Then, the problem can be formulated as:

min
ξt

lim
T→∞

1

T

∑T

t=1
E {Ewt } (7)

s.t. (a) Eqn. (5);
(b) 0 ≤ Rk,t ≤ Rmax

k,t , ∀k, t; (c) nqk,t ∈ N
q
k , ∀k, t;

(d) fk,t ≥ 0 ∀k, t; (e)
∑K

k=1
fk,t ≤ fmax

c , ∀t;

where ξt = [{Rk,t}Kk=1, {fk,t}Kk=1, {n
q
k,t}Kk=1]. The con-

straints in (7) have the following meaning: (a) the average
E2E delay does not exceed a predefined threshold Davg

k =
Qavg
k /Āk, with Āk being the data arrival rate; (b) the data

rate is non negative and is lower than Rmax
k,t (maximum

achievable rate given the current channel state); (c) nqk,t
belongs to a discrete set of possible quantization levels N q

k ;
(d) the CPU clock frequency allocated to each device is non
negative; (e) the sum of the CPU frequencies allocated to
each device does not exceed the total computational capacity
of the ES, denoted by fmax

c . Solving problem (7) is difficult
due to the lack of knowledge of wireless channel and data
arrival statistics. Then, we propose a solution based on
Lyapunov stochastic optimization [7].

A. Algorithmic solution

The first challenge of problem (7) is to handle the long-
term constraint (a) without assuming prior knowledge on the
statistics of radio channels and data arrivals. Then, to handle
this, we introduce virtual queues Zk,t,∀k, which evolves as

Zk,t+1 = max
(
0, Zk,t +Qtot

k,t+1 −Q
avg
k

)
, ∀k. (8)

The virtual queue is used to capture the state of the system
(in terms of constraint violations) and take suitable actions to
meet the long-term constraint, as it will be clarified later in
this section. The virtual queues are used to transform problem
(7) into a pure stability problem through the definition of
suitable functions. In particular, the mean rate stability of
these virtual queues ensures that the associated constraints
(i.e. (a)) are met [7], and is defined as limT→∞

E{Zk,T }
T =

0,∀k. Then, we introduce the Lyapunov function L(Zt) =
1
2

∑K
k=1 Z

2
k,t, and the drift-plus-penalty function as [7]:

∆p(Zt) = E{L(Zt+1)− L(Zt) + V Ewt |Zt} (9)

The drift-plus-penalty function is the conditional expected
change of L(Zt) over one slot, plus a penalty factor with a
weighting parameter V , used to trade-off the queue backlogs
and the objective function of (7). In particular, a higher
value of V leads to a lower energy consumption but higher
delay, and viceversa. Now, if (9) is upper bounded by a finite
constant, the virtual queues are mean rate stable, so that (a)
is satisfied. Also, as V increases, the optimal value of the
objective function of (7) is asymptotically reached [7]. To
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this aim, we define the following upper bound of the drift-
plus-penalty function:

∆p(Zt) ≤ C + E
{∑K

k=1

[
χk,t + 2(Qmk,t −Qlk,t)Nu

k,t

+ Zk,t
(
max(0, Qlk,t −Nu

k,t) + max(0, Qmk,t −N c
k,t)
)

+ V Ewt
]∣∣Zt} (10)

where C is a positive constant given by

C=
K∑
k=1

[
(Qavg

k )2

2
+(Amax

k )2+2(Nu
k,max)2+(N c

k,max)2
]
(11)

and χk,t reads as

χk,t =(2Qlk,t + Zk,t)Ak,t + (Qlk,t)
2 + (Qmk,t)

2

+ Zk,t min(Qlk,t, N
u
k,max) (12)

The simple mathematical derivations of (10), (11) and (12)
are omitted due to space limitations, but follow similar
arguments as in [12]. Finally, hinging on the concept of
opportunistically minimizing an expectation, our strategy
greedily minimizes (10) in each time slot. In particular,
following some simple manipulations, omitted for the lack of
space, we solve the following per-slot optimization problem:

min
ξt

K∑
k=1

(
−
τQ̃lk,t
Skn

q
k,t

Rk,t − Q̃mk,tτfk,tJk + V Ewt

)
(13)

s.t. (a) 0 ≤ Rk,t ≤ R̃max
k , ∀k; (b) nqk,t ∈ N

q
k , ∀k;

(c) 0 ≤ fk,t ≤
(Qmk,t + 1)

(τJk)
∀k; (d)

∑K

k=1
fk,t ≤ fmax

c ,

where Q̃lk,t = 2Qlk,t−2Qmk,t+Zk,t and Q̃mk,t = 2Qmk,t+Zk,t,
and R̃max

k,t = min(Rmax
k,t , (Q

l
k,t + 1)Skn

q
k,t/τ). Note that,

given nqk, (13) is a convex optimization problem, separable
among radio (Rk,t) and computation (fk,t) resource allo-
cation. In particular, given nqk,t, it is easy to show that, if
Q̃lk,t ≤ 0, the optimal solution is R∗k,t = 0. Otherwise, by
solving the Karush-Kuhn-Tucker conditions [13], the optimal
data rate is

R∗k,t =

[
Bk log2

(
hk,tQ̃

l
k,t

N0Skn
q
k,t(1− αk)V

)]R̃max
k,t

0

(14)

Then, in each time slot, the optimal data rate and the number
of quantization bits are optimized by computing R∗k for
each nqk ∈ N

q
k (which is generally a discrete set with low

cardinality), plugging the result into the objective function of
(13), and choosing the solution that yields the lowest possible
value. With respect to fk, (13) is a Linear Programming
problem, so that it can be efficiently solved via the iterative
Algorithm 1 that requires, at most, K iterations.

IV. BUILDING THE ENSEMBLE

Naı̈vely speaking, an ensemble can be built by consider-
ing a finite number M of classifiers that can either be trained
simultaneously or independently, provided that in the latter
case a decision rule is determined in order to mark the final
predictions. In our proposed scheme, given an ensemble of
M classifiers and a test pattern x to be classified, the decision
rule, hence the predicted label l(x), is given by the classifier

Algorithm 1: Optimal CPU scheduling at the ES
Input data: {Zk,t}k, {Qmk,t}k, {Jk}k, fmax, K
fav = fmax, U = {k = 1, . . . ,K}

while fav > 0 & U 6= ∅ do
S1. k̃ = argmax

k∈U

{
JkQ̃

m
k

}
;

S2. fk̃ = min
(

(Qm
k̃

+ 1)/(τJk̃), fav

)
;

S3. U = U −
{
k̃
}

;

S4. fav = fav − fk̃.
end

Algorithm 2: DEsIreE

Input data: {Zk,0}k, {Ql,mk,0 }k, {Jk}k, K
S1. Compute Jk as in (17), ∀k;
for t = 1 : Nslot do

S2. Compute the optimal data rate as in (14) and
transmit Nu

k,t patterns, ∀k (cf. (1));
S3. Find the optimal CPU scheduling with
Algorithm 1 and classify N c

k,t patterns (cf.(3))
using (16);

S4. Update Qlk,t, Q
m
k,t and Zk,t as in (2), (4)

and (8), respectively.
end

having the highest confidence on its prediction. That is, each
classifier, alongside its predicted label ŷ, returns a probability
vector of the form

pi = Pr{y = i|x}, i = 1, . . . , s, (15)

where s is the number of classes. It should be noted
that returning a posteriori probabilities is possible with
most of the existing classification algorithms (e.g., SVM,
NNs, bagged/boosted trees, random forests, etc.) [14], [15].
Now, starting from (15), it is possible to evaluate the
entropy of the prediction as H =

∑s
i=1 pilog(1/pi).

Hence, the output of the ensemble has the form
{(ŷ(1), H(1)), . . . , (ŷ(M), H(M))}. Finally,

l(x) = ŷ(i), where i = argmin{H(1), . . . ,H(M)} (16)

It is worth addressing two caveats of the entropy: i) it does
not require any ground-truth label (i.e., the true y), making it
a suitable index for assessing the behaviour of the classifier in
an online fashion; ii) it is a non-increasing function of the
number of classifiers composing the ensemble. Obviously,
exploiting an ensemble of M > 1 classifiers comes with the
drawback of an increased computation time. This is taken
into account through the parameter Jk (cf. (3)). Indeed, if
device k exploits an ensemble, the parameter Jk is reduced
to take into account the fact that more CPU cycles are needed
to elaborate a single pattern, since we assume that the M
classifiers composing the ensemble run on the same core. In
general, given M classifiers with

{
J
(1)
k , . . . , J

(M)
k

}
we have

Jk =

(∑M

n=1

1

J
(n)
k

)−1
(17)

Finally, the overall procedure for ensemble classification at
the edge is summarized in Algorithm 2.
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Fig. 2: Energy-delay-accuracy trade-off over the MNIST and HSM datasets

V. NUMERICAL RESULTS

In this section, we show the performance of the proposed
method. To test the proposed system on real data, the
MNIST and HSM datasets are considered. The choice behind
these two datasets stems from their realistic applications in
edge scenarios (cf. Section II): in fact, whereas the former
can emulate images sent from cameras for object (digit,
in this case) recognition, the latter regards sensors that
send measurements about some mechanical equipment for
anomaly detection. However, let us note that our method is
general and can be applied to any dataset. For the ensemble,
two classifiers are considered as potential candidates: SVM
with polynomial kernel (poly-SVM) and standard Multilayer
Perceptron (MLP). As SVMs are concerned, Eq. (15) is
evaluated thanks to a calibration phase of the classifier
[16], [17], whereas MLPs, being provided with a soft-
max activation function in the output layer, natively return
probability estimates [18], [19]. In this work, we considered
ensembles composed by M = 2 classifiers. All classifiers
have been trained on the dataset which has been properly split
in training, validation and test set. Training and validation
sets have been used for hyper-parameters tuning, the test set
has been left aside for assessing the final performance. For
each dataset, homologous classifiers are trained with different
hyper-parameters to ensure diversity within the ensemble. We
consider K = 5 sensor devices, uniformly distributed over a
square area of side 100 m, with the AP in the middle, each of
them generating data with Poisson arrivals, with parameter
uniformly distributed in [3, 8]. The channel model is the
one presented in [20], with a unit variance Rayleigh fading.
The noise power spectral density is −174 dBm/Hz, the total
bandwidth is B = 10 MHz, equally shared among devices,
each transmitting with 100 mW maximum power, at a carrier

frequency of 6 GHz. The ES’s CPU cycle frequency is set to
fmax
c = 3.3 GHz. The number Jk of CPU cycles needed to

process each pattern has been estimated offline, by running
the different classification algorithms: multiplying the CPU
speed (in Hz) by the estimated time (in seconds) required to
classify a given pattern, then one gets the number of cycles
needed to perform the classification. Jk reads as the inverse
of the latter, and in the case of single classifier the values are:
JMNIST
k = 1.4×10−7, JHSM

k = 3.54×10−7, and are halved in
the case of the ensemble. Our aim is to show the performance
of the proposed strategy in terms of trade-off between energy
and E2E delay, when achieving the same accuracy, and
the associated convenience in using an ensemble instead of
a single classifier. Let us first concentrate on the MNIST
dataset, whose results are shown in Figs. 2 (a),(b),(c). In
particular, Figs. 2a and 2b have to be read together as
follows. Fig 2a shows the trade-off between average energy
consumption (x-axis) and average E2E delay (y-axis), which
is explored by increasing the trade-off parameter V (cf. (9))
from right to left (as shown in the plot). As we can notice, for
all curves, the energy consumption decreases as V increases,
while the average E2E delay increases until reaching the
imposed constraint (black horizontal dashed line) with the
minimum energy. The different curves represent a different
value of αk (cf. (6)), which weights energy consumption and
accuracy. Also, the solid lines refer to the results obtained
with a single classifier (poly-SVM), while the dashed lines
represent the results obtained with the ensemble of two poly-
SVMs. Furthermore, the curves (solid and dashed) with the
same color and marker, refer to strategies achieving the same
accuracy, which is shown in Fig. 2b. In particular, in Fig.2b,
we plot the accuracy as a function of V , corresponding to
the same simulation of Fig. 2a, and compare the performance
of the single classifier and the ensemble in terms of energy-
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delay trade-off. Indeed, by looking at Fig. 2b, we can notice
how, for the highest value of V (which attains the optimum
of (7)), both methods achieve the same accuracy (same color,
same marker, but different line styles), also highlighted by
the black circles on the right side of the figure. At the
same time, looking at the trade-off in Fig. 2a, we can notice
the non-negligible gain of the ensemble with respect to the
single classifier. As a clarifying example, let us consider
the blue curves (�) in Figs. 2a and 2b. From an accuracy
point of view (Fig. 2b), they achieve the same value (around
88%), but the ensemble achieves a lower energy consumption
(around 26% gain), within the same delay (Fig. 2a). This
is clearly visible for all the other curves (the couples to
be compared are highlighted with the black ellipses in Fig.
2a). Furthermore, the green curve (•) is not shown for the
single classifier, due to the fact that the ensemble achieves an
accuracy not achievable by the single classifier. In this regard,
it should be noted that the green curve achieves a lower
energy consumption than the yellow solid curve (N), which
represent the best accuracy case for the single classifier. This
result further motivates the use of the ensemble, which is
able to achieve an accuracy higher than the best case for the
single classifier, with lower energy consumption, and equal
E2E average delay.
Now, the question is: Why does the ensemble achieve lower
energy consumption?
The answer is illustrated in Fig. 2c, which shows the average
data rate necessary to achieve the performance in terms
of E2E delay (plotted for the highest value of V of Fig.
2a). In particular, since the ensemble allows the use of a
lower number of quantization bits without sacrificing the
accuracy, the average data rate decreases, thus reducing
the necessary transmit energy consumption. Concerning the
HSM dataset, similar considerations can be done by looking
at Figs. 2d, 2e, 2f, with even more gain achieved by the
ensemble (83% for the yellow curves). In this case, the
ensemble is composed by two MLPs. The higher gain comes
from the fact that HSM presents much more features than
MNIST, so that a lower nqk means a much lower number
of bits to be transmitted. Thus, the final message of Fig. 2
is twofold: i) Our method is able to minimize the objective
function of (7), thus minimizing the energy consumption and
maximizing the accuracy, depending on the value of αk, as
V increases; ii) Using ensembles of algorithms, the same
accuracy performance can be achieved with non negligible
gains in term of average energy consumption, for the same
average E2E delay. This is due to the reduction of the number
of quantization bits to represent the data.

VI. CONCLUSIONS

In this paper, we proposed a novel dynamic method
for latency constrained reliable classification at the edge.
Starting from a long-term average optimization problem with
unknown statistics of wireless channels and data arrivals, we
exploited Lyapunov stochastic optimization tools to solve the
problem in a per-slot fashion, with low complexity solutions.
First, our method is able to explore trade-offs between
energy consumption, delay and accuracy for edge inference.
Second, by exploiting ensembles of classification algorithms,
DEsIreE reduces the overall sensor energy consumption
without any loss on the E2E delay and on the classification
performance. The effectiveness of the proposed strategy has
been tested on two real datasets.
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