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Abstract—This paper presents a deep learning-based method
to automatically recognize low probability of intercept (LPI)
radar waveforms against diversified jamming attacks. Concretely,
an efficient convolutional neural network (CNN) architecture,
namely Densely-Accumulated Network (DANet), is introduced
to learn the time-frequency representation transformed by the
Wigner-Ville distribution. Such an architecture has several novel
densely-accumulated connection modules specified by various
symmetric and asymmetric convolutional layers to enrich diver-
sified features at multiple representational maps. Besides, the
skip-connection and dense-connection are leveraged to improve
feature learning efficiency and prevent the vanishing gradient
when the network goes deeper. Some image processing techniques
(e.g., global thresholding and digital filtering) are adopted to
enhance the quality of time-frequency image. Relying on sim-
ulations, we benchmark the proposed method on a synthetic
13-waveform dataset and also investigate the influence of hyper-
parameters (such as image size, number of modules, training
data size) on the overall recognition performance. Remarkably,
with average accuracy of 98.2% at 0 dB signal-to-noise ratio
(SNR), DANet outperforms several backbone CNNs and state-of-
the-art networks of LPI waveform recognition while keeping a
cost-efficient model.

Index Terms—LPI radar, waveform recognition, convolutional
neural network, densely-accumulated connection.

I. INTRODUCTION

One of the most effective counter-jamming techniques com-
monly deployed in automotive radar systems is the utilization
of low probability of intercept (LPI) radar waveform [1].
This urgently requires the development of a high-performance
method to automatically recognize LPI waveform signals.
Numerous existing waveform recognition approaches have ex-
ploited several principal time-frequency analysis (TFA) tech-
niques [2], such as short-time Fourier transforms, Wigner-Ville
distribution (WVD), and Choi-William distribution (CWD),
to extract the radio characteristics in the time and frequency

This research was financially supported by National Research Founda-
tion of Korea (NRF) through Creativity Challenge Research-based Project
(2019R1I1A1A01063781), and in part by the Priority Research Centers
Program through the NRF funded by the Ministry of Education, Science and
Technology (2018R1A6A1A03024003).

domains [3], [4]. However, the traditional machine learning
algorithms adopted by conventional approaches cannot learn
high-level representational features in time-frequency image
(TFI) to discriminate many waveforms explicitly [5].

Recently, the emergence of deep learning (DL) with convo-
lutional neural network (CNN) architectures [6], [7] has been
inspiring to radio signal processing in communications [8],
[9]. By deploying multiple stacks of convolutional kernels (so-
called filters), convolutional networks are able to automatically
capture spatial features from high-dimensional data at multi-
scale representations. In [10], Wang et al. proposed a radar
waveform recognition framework with a cascade-connected
CNN to learn five waveform patterns from the visual features
of WVD-TFIs. Zhang et al. [11] and Kong et al. [12] desig-
nated several fully connected layers in the network architecture
to precisely recognize a large number of waveform classes
from CWD-TFIs. Transfer learning, one of the widely used
techniques to take advantage of learned rich representational
features, was leveraged in [13], [14] to dramatically save
training time and computing resources. Although existing
DL-based methods can improve the recognition performance
by exploiting the superior learning ability of CNNs when
compared with traditional classification algorithms, two chal-
lenging issues remain: (i) the low quality of time-frequency
representation is caused by channel impairments and (ii) the
learning efficiency is embarrassed by plain-designed network
architectures without considering the overfitting and vanishing
gradient problems [15].

To overcome these above-mentioned issues, we propose a
high-performance LPI radar waveform recognition approach.
A densely-accumulated convolutional neural network (DANet)
is introduced to learn the highly discriminative features of
TFIs converted by the smoothed pseudo Wigner-Ville distri-
bution (SPWVD). With several advanced-designed modules
to densely accumulate features at multi-resolution maps, our
proposed CNN achieves a high accuracy of 13-class classi-
fication under the channel impairment with multipath fading
propagation and additive noise. The main contributions of this
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Fig. 1. Example of various LPI radar waveform signals analyzed by Wigner-
Ville distribution.

work are summarized as follows:

• We propose an LPI radar waveform recognition method
by exploiting CNNs to learn representational features of
SPWVD-TFIs.

• We design DANet having a series of densely-accumulated
connection modules, where each module is specified
by multiple convolutional layers with different symmet-
ric and asymmetric kernels in an association of skip-
connection and dense-connection to improve learning ef-
ficiency and prevent the network from vanishing gradient
problem.

• We investigate the influence of various hyper-parameters
on the overall recognition performance and compare
DANet with other deep networks, where our proposed
CNN demonstrates the superiority in terms of accuracy
and cost efficiency.

II. TFA FOR SIGNAL REPRESENTATION

A. Smoothed Pseudo Wigner–Ville Distribution

WVD is one of the most widely used TFA techniques
to provide a high-resolution time-frequency representation
of a radio signal. Given an auto-correlation expression
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where t is the time stamp, f is the ordinary frequency, and
τ is the time lag. For a discrete signal with K samples, the
WVD is written by
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For the multiple components in a synthetic signal like the
intercepted noisy radar signal y (t) = x (t) + n (t), this

distribution can be formulated by
WVDy (t, f) =WVDx+n (t, f) ,

=WVDx (t, f) +WVDn (t, f)

+ 2<{WVDxn (t, f)} ,
(3)

where WVDx and WVDn are the auto-correlation terms
of free-noise signal and additive noise, respectively, and
2<{WVDxn} is the disturbing cross-term (or interference
term) that corrupts the auto-terms when visualizing WVD dis-
tribution. To suppress the cross-term interference components,
the Cohen’s class is considered for the bilinear transforma-
tion of multiple single-frequency signals. Definitely, SPWVD
allows smoothing the distribution in time and frequency by uti-
lizing the adjustable sampling windows independently, which
can be written as follows:
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where G (t) and H (f) are the window functions in time and
frequency domains, respectively.

B. LPI Signal Model

In a typical radar system, the complex sample of an inter-
cepted LPI signal is disturbed by additive noise at the receiver

y (k) = x (k) + n (k) = Aejϕ(k) + n (k) , (5)
where x (k) is the noise-free signal specified by the amplitude
A = 1 and the instantaneous phase ϕ; n (k) is the complex
additive white Gaussian noise (AWGN). The instantaneous
phase is determined by instantaneous frequency and phase
offset [12]. The index k is termed for every interval Ts with
the sampling rate fs. The pulse period γpp = 1/fpp is assumed
to be larger than the signal pulse width γpw, where fpp
denotes the pulse repetition frequency. Thus, the duty cycle
ρ = γpw/γpp is less than 1. If y (k) contains only the real
component, the Hilbert transformation, denoted H, is applied
to return a complex output as follows:

y′ (k) = y (k) + jH [y (k)] . (6)

C. Data Generation with Image Processing

In this research, we comprehensive recognize 13 LPI radar
waveform fashions: linear frequency modulation (LFM), rect-
angular (Rect), Costas code, Barker code, five polyphase
codes (Frank, P1, P2, P3, and P4), and four polytime codes
(T1, T2, T3, and T4). The detailed waveform parameters
are summarized in Table I, where fs = 100 MHz is the
sampling frequency, fc is the center frequency, fm is the
fundamental frequency, B is the bandwidth, N is the number
of samples, FH is the frequency hop, Lc is the code length,
cpp is the number of cycles per phase code. In addition, other
parameters M , ns, ng , and np are the numbers of frequency
steps, sub-codes, segments, and phase states, respectively. For
performance evaluation, we produce a challenging dataset of
LPI radar waveforms bearing a synthetic channel impairment,
including multipath Rayleigh fading channels and AWGN,
where signal-to-noise ratio (SNR) varies from −20 dB to +10
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Fig. 2. Densely-accumulated convolutional neural network (DANet) with the detailed structure of DAC module.

TABLE I
WAVEFORM PARAMETER CONFIGURATION.

Waveforms Parameters Range of value

LFM N [512, 1024]
B U (fs/20, fs/15)

Rect N [512, 1024]

Costas
N [512, 1024]
FH {3, 4, 5, 6}
fm U (fs/32, fs/25)

Barker Lc {7, 11, 13}
cpp [2, 5]

Frank cpp [3, 5]
M {6, 7, 8}

P1, P2 cpp [3, 5]
M {6, 8}

P3, P4 cpp [3, 5]
ns {36, 64}

T1, T2
np 2
ng {4, 5, 6}
N [512, 1024]

T3, T4

np 2
ng {4, 5, 6}
N [512, 1024]
B U (fs/20, fs/15)

Note: All waveforms are configured with fc = U (fs/6, fs/5).

dB with the step size of 2.0 dB. The multipath fading channel
is configured as follows: the path delay τ = U (1, 1000) ns, the
path gain G = U (−20, 0) dB, and the maximum Doppler shift
fD = U (10, 1000) Hz. From radio signal to time-frequency
representation, we produce 1,000 TFIs (corresponding 1,000
signals) per LPI waveform per SNR, that means, the whole
dataset has 208,000 images for training model and evaluating
performance.

With the SPWVD-based TFA technique, we transform raw
LPI signals to color TFIs having the size of 112× 112, where
the TFIs of different radar waveforms of interest are illustrated
in Fig. 1. To increase the performance of recognition model,
we improve the quality of TFIs by adopting some digital image
processing techniques for denoising, including median filtering
and Otsu-based global thresholding. The median filtering
process, which calculates each output pixel as the median
value in a 3 × 3 region around the corresponding pixel in
the input image, aims to reduce salt and pepper noise [16].
The thresholding process determines a global threshold by the
Otsu’s method to separate the background (containing noise)
and the foreground (a.k.a., useful information) in an image.

Consequently, the noise in SPWVD-TFI is reduced with the
preservation of meaningful spectrum information.

III. DANET: CNN FOR TFA-BASED WAVEFORM
RECOGNITION

In this section, we describe our proposed DANet for TFA-
based waveform recognition, where the overall architecture
is shown in Fig. 2. At the beginning, DANet is specified
with the input size of 112 × 112 identical to the resolution
of color TFIs. Subsequently, a processing unit comprising a
convolutional (conv) layer with the kernels of size 5 × 5,
a batch-normalization (bn) layer, and a rectified linear unit
(ReLU) layer is specified to capture coarse representational
features via a large receptive field.

As the core of network architecture, DANet is particularized
by four feature extraction modules, namely densely accumu-
lated connection (DAC), to effectively learn the meaningful
information at multi-scale visual feature representations. As
illustrated in Fig. 2, each DAC module is cleverly configured
with multiple conv layers having different filter sizes, where
the outcomes of these conv layers are associated via skip-
connection (so-called residual connection) [17] and dense-
connection [18]. In particular, each DAC module begins with
a unit processing block (comprising one conv layer with the
filter size of 1 × 1 followed by a bn layer, and a ReLU
layer). A max pooling (maxpool) layer with the pool size
of 3 × 3 is then arranged to reduce the computational cost
of subsequent layers. With the stride of (2, 2), the maxpool
layer divides the spatial dimension of feature maps in half. To
learn the time-frequency characteristics in the horizontal and
vertical dimensions individually, two processing units, which
are principally specified by two conv layers leveraging one-
dimensional (1D) asymmetric filters of sizes 1×3 and 3×1, are
organized in a parallel connection. Their output feature maps
are stacked along the third dimension (or channel dimension)
via a depth-wise concatenation (concat) layer. A dropout layer
with the dropout probability of 0.5 is configured in each DAC
module to prevent the network from overfitting. When the
network goes deeper, the vanishing gradient problem arises in
the training stage to reduce the efficiency of pattern learning.
To handle this kind of problem, we adopt the skip connection
using an element-wise addition layer, where the gradient
identity from the maxpool layer is utilized to strengthen
the gradient flow after a series of nonlinear operations. The



TABLE II
NETWORK CONFIGURATION.

DAMod Output Size No. filters
(all conv layers)

First module 56× 56× 32 16
Second module 28× 28× 64 32
Third module 14× 14× 128 64
Fourth module 7× 7× 256 128

module is finalized with a concat layer to enrich the diversified
features by gathering the outcome of the skip connection and
the output of a processing block with a convolutional (conv)
layer specified by the kernels of size 3 × 3 and the stride of
(2, 2). It is worth noting that two unit processing blocks with
1×1 conv layers are arranged in the structure to pool features
across channels and to align the number of feature maps.

For a better description, we now present the feature flow in
each the DAC module. Given an input of the module FDAC

in ∈
RH×W×D (where the size of the input is defined by the height
H , the width W , and the depth D), the outcome of the first
unit processing block, denoted as F1×1, can be written by

F1×1 = F1×1

(
FDAC
in

)
, (7)

where Fa×b denotes the unified operation of a convolution
operation (with the filter size of a × b), a normalization, and
an activation. Then, the pooled output can be obtained by
computing the maximum of each 3× 3 region as follows:

Fp = P(F1×1), (8)
where P denotes the max pool operation which reduces the
spatial size (i.e., height × width) of Fp ∈ R(H/2)×(W/2)×D. It
should be noticed that there is no parameter to learn in pooling
layers and the subsequent feature maps have the same spatial
size with Fp. Subsequently, the first concat layer is executed
to stack the feature maps as follows:

Fdw−c = C(F1×3 (Fp) ,F3×1 (Fp)), (9)
where C represents the depth-wise feature maps concatenation.
The skip connection with the add layer can be written as

Fadd = Fp + F1×1(Fdw−c), (10)
where Fadd is the output of skip connection. The DAC module
is finalized with the second concat layer, where its output can
be represented as follows:

FDAC
out = C(Fadd,F3×3 (F1×1)). (11)

The above-described processing flow with notations can be
referred in Fig. 2. It is observed that the DAC module halves
the spatial size of feature maps, which allows the network
to extract the intrinsic features at multi-scale representations
and reduce the computational cost of subsequent conv layers.
The detailed configuration of conv layers in DAC modules is
summarized in Table II, in which the number of kernels and
the size of output are provided sufficiently.

At the end of architecture, the network is finalized with
a global average pooling (gap) layer, a fully connected (fc)
layer and a softmax layer for classification. The number of
hidden neurons of the fc layer is identical to the number of

waveform classes in a given dataset. Regarding the registered
architecture, DANet has around 447K trainable parameters,
including weights and biases. Some primary network training
properties are configured as follows: the optimizer is Adam
with the gradient decay factor of 0.9, the maximum number
of epochs is 90, the initial learning rate is 0.001 (drop 90%
after 45 epochs), and the mini-batch size is 64. The network is
evaluated by using a single GeForce GTX 1080Ti GPU. The
generated dataset in Section II-C is split with 70% for training
and 30% for testing.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the proposed DL-based
LPI radar waveform recognition method is evaluated on the
dataset generated with 13 waveform types, in which we com-
prehensively produce four experiments: deep model robust-
ness, ablation study and parameter investigation, and method
comparison: accuracy and complexity. We measure the average
accuracy (a.k.a., the percentage of correct classification) on
the test set with several times, meanwhile, the complexity
is assessed via the network size based on the number of
parameters and the computational cost using floating point
operations (FLOPs).

A. Model Robustness

In Fig. 3(a), we present the recognition results of 13 LPI
waveforms on the test set, where the accuracy increases along
the increment of SNR. Remarkably, some waveforms, such
as Costas, LFM, Rect, and P2, obtain the recognition rate
of over 92.0% at −10 dB SNR. Moreover, we report the
waveform classification accuracy of DANet on the test set by
the confusion matrices. From the confusion matrix at 0 dB
SNR as shown in Fig. 3(b), the network achieves the average
accuracy of 98.20%, in which many LPI waveforms are
recognized with the accuracy greater than 96%. Remarkably,
some such waveforms as Costas, LFM, Rect, and T3 reach
100% recognition rate, whereas some confusions occur with
Frank and P1 (e.g., they are mostly confused with P3 by 6.2%
and P4 by 9.5%). With respect to all SNR levels distributed in
a range [−20 : 10] dB, where the confusion matrix is given in
Fig. 3(c), DANet presents the overall accuracy of 76.6%. Due
to the multipath fading propagation channel coupled with the
additive noise at low SNR, many waveforms are misclassified
by DANet (for example, P1 and P4 are critically confused
together by around 12.5− 15.0%).

B. Ablation Study and Parameter Investigation

Fig. 4 shows the recognition results of ablation study and
hyper-parameter investigation. We first analyze the effective-
ness of SPWVD for time-frequency analyse and image pro-
cessing for denoising via an ablation study, where the proposed
strategy is compared with two variants (i.e., WVD without
image processing and SPWVD without image processing) in
Fig. 4(a). In general, without image processing, SPWVD is
better than WVD by the overall accuracy of 6.14% while
the accuracy increases by around 3.75% by applying image
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Fig. 3. The LPI radar waveform recognition accuracy: (a) detailed accuracy along SNR values, (b) confusion matrix at 0 dB SNR with the average accuracy
of 98.20% and (c) confusion matrix at all SNR levels with the average accuracy of 76.63%.
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Fig. 4. Ablation study and hyper-parameters investigation with: (a) the
effectiveness of SPWVD and image processing, (b) various number of DAC
modules, (c) different image sizes, and (d) different training set sizes.

denoising for SPWVD-TFIs. We then investigate the influence
of different hyper-parameters (such as the number of DAC
modules, the image size of SPWVD-TFIs, and training data
size) on the overall performance of our proposed method.
In Fig. 4(b), the accuracy increases along the increment of
the number of DAC modules configured in DANet because
more diversified features are extracted at multiple deeper levels
to gain a more discriminative pattern recognition. From the
numerical results of DANet with different image sizes in
Fig. 4(c), encoding higher resolution images for LPI signal
representation can improve recognition accuracy thanks to the
more details of time-frequency analysis. Notably, increasing
the number of DAC modules and the size of SPWVD-TFIs
will boost the computational cost and the memory resource
for deep feature calculation and data storage, respectively.
Experimentally, we select four modules and specify the image
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Fig. 5. Method comparison: (a) with backbone networks and (b) with other
CNNs specifically designed for TFI-based radar waveform recognition.

size of 112 × 112 to keep a nice balance between accuracy
and complexity. In data-centric supervised learning methods,
the dataset often has an crucial impact on the quality of
classification model, hence we consider the influence of the
training data size (i.e., the total number of training signals) in
Fig. 4(d). With 4% data of 208,000 TFIs for training model,
DANet presents the overall accuracy of 29.3% and improves
by 9.68 − 13.92% for each time of doubling the size up to
70% (around 145,600 signals). The numerical results illustrate
that having sufficient training data is important to improve the
performance of deep learning models.

C. Method Comparison: Accuracy and Complexity

In the last experiment, we compare the recognition accuracy
between DANet with several backbone networks (which are
originally introduced for the image classification task) and
other CNNs (which are specifically designed for TFI-based
radar waveform recognition). In Fig. 5(a), DANet outper-
forms ShuffleNet [19], SqueezeNet [20], GoogleNet [21], and
ResNet18 [17] by the overall accuracy of around 5.49−9.89%.
Notably, the accuracy of DANet is greater than that of ResNet
(as the second best model of this test) by 6.96 − 10.85%
at [−14,−4] dB SNR. Compared with the shufflenet unit
in ShuffleNet, the fire module in SqueezeNet, the inception
module in GoogleNet, and the residual block in ResNet18,
the DAC module in our DANet learns intrinsic features more
effectively. All comparison backbone CNNs are adapted with



the input size of 112×112 and trained with the same condition.
In Fig. 5(b), there are big accuracy gaps between DANet with
other CNNs proposed by Wang et al. [10], Zhang et al. [11],
and Kong et al. [12], where DANet is considerably better
by 10.01 − 12.27%. With the plain architecture designs (i.e.,
adopting a cascade structures of multiple conv layers and acti-
vation layers without skip-connection and dense-connection),
these CNNs cannot acquire high-relevant features diversely to
optimize learning efficiency.

Besides recognition accuracy, we also compare the deep
networks in terms of computational complexity. Concretely,
we measure the number of trainable parameters and the
number of floating point operations (FLOPs). Fig. 6 shows the
relationship between accuracy and computational cost, where
the area of each bubble is proportional to the number of
parameters. Despite producing the highest accuracy, DANet
has a lightweight architecture with approximately 447K pa-
rameters and 83 megaFLOPs. In [10]–[12], deep CNNs were
regularly designed with two-dimensional filter size of 3 × 3
and without the global average pooling layer, which increase
the FLOPs of conv layers and the number of parameters of fc
layers. Compared with ResNet18 and GoogleNet, ShuffleNet
and SqueezeNet are more low-efficient by leveraging some
advanced structures and techniques, such as grouped conv
layers, unit conv layers with 1×1 replacing 3×3, and channel
reduction of input activation.

V. CONCLUSIONS

In this paper, we developed a high-performance LPI radar
waveform recognition approach in automotive sensing sys-
tems. A novel CNN, namely DANet, was designated with
specific modules to densely accumulate relevant features of
SPWVD-TFIs at multiple representational maps. Furthermore,
image processing techniques were leveraged to enhance image
quality critically reduced by additive noise. In the simulations,
DANet achieved the high accuracy of 13-LPI recognition and
further outperformed several state-of-the-art CNNs in term
of accuracy and computing expense. In future, we intend to
improve the recognition performance of DANet with attention
connection to selectively collect high relevant features and
grouped convolution to reduce network complexity.
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