
A Practical Algorithm Design and Evaluation for
Heterogeneous Elastic Computing with Stragglers

Nicholas Woolsey1, Jörg Kliewer2, Rong-Rong Chen1 and Mingyue Ji1
1University of Utah, 2New Jersey Institute of Technology

Email: {nicholas.woolsey@utah.edu, jkliewer@njit.edu, rchen@ece.utah.edu, mingyue.ji@utah.edu}

Abstract—Our extensive real measurements over Amazon EC2
show that the virtual instances often have different computing
speeds even if they share the same configurations. This motivates
us to study heterogeneous Coded Storage Elastic Computing
(CSEC) systems where machines, with different computing
speeds, join and leave the network arbitrarily over different
computing steps. In CSEC systems, a Maximum Distance Sep-
arable (MDS) code is used for coded storage such that the
file placement does not have to be re-defined with each elastic
event. Computation assignment algorithms are used to minimize
the computation time given computation speeds of different
machines. While previous studies of heterogeneous CSEC do not
include stragglers – the slow machines during the computation,
we develop a new framework in heterogeneous CSEC that intro-
duces straggler tolerance. Based on this framework, we design
a novel algorithm using our previously proposed approach for
heterogeneous CSEC such that the system can handle any subset
of stragglers of a specified size while minimizing the computation
time. Furthermore, we establish a trade-off in computation time
and straggler tolerance. Another major limitation of existing
CSEC designs is the lack of practical evaluations using real
applications. In this paper, we evaluate the performance of our
designs on Amazon EC2 for applications of the power iteration
and linear regression. Evaluation results show that the proposed
heterogeneous CSEC algorithms outperform the state-of-the-art
designs by more than 30%.

I. INTRODUCTION

Coded Storage Elastic Computing (CSEC) was introduced
by Yang et al. [1] as an effective method to perform distributed
computing on elastic cloud systems where machines have
limited storage capacity. Here, elasticity means that machines
can join and leave the network periodically as machines may
be reserved or freed from other higher priority jobs. The main
advantage of CSEC is that machines store coded data such
that a computation on the data can be recovered as long as
enough machines are available. This is in contrast to storing
uncoded data where if some machine leaves with a particular
subset of data, then a computation on the entire data set may
not be recovered; or, in order to tolerate the same number of
preempted machines, the required storage/computation over-
head is larger. The use of coded storage alleviates the need to
re-distribute the storage with each elastic event which could
greatly slow down the cloud computing system.

While coded computing has been studied in the literature
for straggler mitigation [2]–[14], CSEC is different from these
works because, at the beginning of a computation step, we
know which machines are available a priori. This allows us

to design an effective computation assignment to the machines.
Assume we use a Maximum Distance Separable (MDS) code
to encode the data matrix with a recovery threshold of L and
each machine stores one of coded sub-matrices (cs-matrices).
If there are exactly L available machines for the given time
step, then each machine will perform computations on all
locally available data and the master machine will collect all
computation results to recover the original computation task.
However, if there are more than L machines, we can strate-
gically assign computations such that each machine performs
computations on a fraction of its local coded data, effectively
reducing the overall computation time. The overall computa-
tion is split into many steps, where in each step we know which
machines are available, even though their availability may
change over computation steps. The original CSEC design [1]
studied homogeneous CSEC systems where machines have the
same computation speed. It proposed a cyclic homogeneous
computation assignment design to minimize the computation
load at each machine such that no computation redundancy is
present in the network.

Based on our measurements of the computation speeds on
Amazon EC2 instances, we found that these virtual instances
often have different computation speeds even if they share the
same configuration. Hence, in [15], for heterogeneous elastic
computing systems where machines have different computa-
tion speeds, we reformulated the CSEC problem as a combina-
torial optimization problem with the objective of minimizing
the overall computation time, instead of per machine compu-
tation load as in [1]. This combinatorial optimization problem
was solved using a novel approach, which decomposed this
problem into two sub-optimization problems consisting of a
convex optimization problem and a combinatorial “filling”
problem, where an optimal solution was found. Then, in [16],
Dau et al. introduced a new concept called Transition Waste
(TW) that measures the difference between the total number
of changes and the necessary changes of the computation
assignment. The authors proposed novel algorithms to find the
minimum TW for some parameter settings in homogeneous
CSEC systems.

However, a question often arises for CSEC designs. What
happens if an elastic event occurs during a computation step?
Computation assignments are designed such that the set of
available machines is known during a computation step. If
a machine does not respond during a computation step, it is

ar
X

iv
:2

10
7.

08
49

6v
2

 [
cs

.I
T

]
 1

5
Se

p
20

21

deemed as a failed node and we have to re-assign computations
to recover the intended computation. In addition, a machine
may not respond for reasons other than an elastic event such
as becoming unpredictably slow, unresponsive or otherwise
simply fails. In general, we will label any one of these events
during a computation step as a straggler. Adding straggler
tolerance in CSEC is an interesting problem that has not
been studied in the literature. Given the MDS coded storage
placement used in [1], Kiani et al. in [17] proposed hierar-
chical computation assignment algorithms for homogeneous
CSEC systems. However, the performance evaluation in [17]
were done using computer simulations, where stragglers are
modeled to take place with certain probabilities, instead of
using practical cloud computing systems such as Amazon EC2
or Microsoft Azure. In addition, the computation task is only
matrix-matrix multiplication rather than real applications.

In this paper, our focus is to 1) incorporate straggler
toleration into the heterogeneous CSEC framework and 2)
conduct actual performance evaluations over Amazon EC2
without any assumptions or models of stragglers. In particular,
using the existing MDS coded storage design, we will show
that straggler tolerance can be incorporated into our proposed
heterogeneous CSEC optimization framework [15]. The main
advantage of our proposed approach is to provide straggler
tolerance by adjusting computation assignments. Furthermore,
we show that there is an interesting trade-off between the
computation time of heterogeneous CSEC system and the
number of stragglers that can be tolerated. One extreme case is
the heterogeneous CSEC with no straggler tolerance and the
other extreme case is to maximize straggler tolerance using
the coded computing design of [2]. We will present a general
framework that includes these designs and show there is a
straggler tolerance and computation time trade-off.

Our contributions are summarized as follows:

1) We develop a new framework in heterogeneous CSEC
that introduces straggler tolerance. Based on this frame-
work, we design a novel algorithm using our previously
proposed approach for heterogeneous CSEC such that the
system can handle any subset of stragglers of a specified
size and the computation time is minimized.

2) The proposed new heterogeneous CSEC framework intro-
duces a trade-off between computation time and straggler
tolerance of CSEC systems. An analytical expression is
derived to characterize the optimized computation time
as a function of the computation speeds and the straggler
tolerance.

3) We validate our proposed CSEC designs by actual im-
plementations on Amazon EC2 instances for applications
of both the power iteration algorithm and linear regres-
sion. In particular, the computation assignment for the
proposed CSEC is based on real-time measurements of
the computation speeds of Amazon EC2 instances.

Notation Convention: We use | · | to represent the cardi-
nality of a set or the length of a vector and [n] := [1, 2, . . . , n].

II. NETWORK MODEL AND PROBLEM FORMULATION

A set of N machines each store a coded sub-matrix derived
from a q × r data matrix, X . The coded matrices are defined
by an N ×L generator matrix G = [gn,`] which represents an
MDS code such that any L rows of G are invertible. The data
matrix,X , is row-wise split into L disjoint, q

L×r sub-matrices,
X1, . . . ,XL. Each machine n ∈ [N] stores the coded sub-
matrix (cs-matrix)

X̃n =

L∑
`=1

gn,`X`. (1)

of size q
L × r.

The machines collectively perform matrix-vector computa-
tions over multiple computation steps. In a given step only
a subset of the N machines are available to perform matrix
computations. More specifically, in computation step t, a set
of available machines Nt ⊆ [N] aims to compute

yt =Xwt (2)

where wt is some vector of length r. The machines of [N]\Nt

are preempted.
The machines of Nt do not compute yt directly. In-

stead, each machine n ∈ Nt computes the set Vn ={
v = X̃

(i)

n wt : i ∈ Wn

}
, where X̃

(i)

n is the i-th row of X̃n

and Wn ⊆
[
q
L

]
is the set of rows assigned to machine n in

time step t.
Definition 1: (Computation load) The computation load

vector, µ, is defined as

µ[n] =
|Wn|(

q
L

) , ∀n ∈ Nt, (3)

which is the fraction of rows of the corresponding stored cs-
matrix computed by machine n in time step t. ♦
Note that, µ, Vn and Wn change with each computation
step, but reference to t is omitted for ease of disposition.
Moreover, the machines have varying computation speeds
defined by the strictly positive vector, s, which is known for
each computation step and defined as follows.

Definition 2: (Computation Speed) The computation speed
vector s is a length-N vector with elements s[n], n ∈ [N],
where s[n] is the speed of machine n measured as the inverse
of the time it takes machine n to compute all rows of its cs-
matrix. The normalized computation speed is the computation
speed divided by the average computation speed among all
available machines. ♦

The computation time is dictated by the machine that takes
the most time to perform its assigned computations, defined
as follows.

Definition 3: (Computation Time) The computation time
in a particular computation step is defined as

c(µ) = max
n∈Nt

µ[n]

s[n]
. (4)

♦

In a given computation step, for each i ∈
[
q
L

]
, at least L

machines perform the vector-vector multiplication with the i-
th row of their local cs-matrix and wt. The results are sent
to a master machine which can resolve the elements of yt by
the MDS code design.

A computation assignment is defined by F disjoint sets of
rows, Mt = (M1, . . . ,MF) whose union is

[
q
L

]
. Then,

F sets of machines, Pt = (P1, . . . ,PF), are defined such
that Pf ⊆ Nt and |Pf | = L for all f ∈ [F]. The rows of
Mf are assigned to the machines of Pf . In other words,
the rows computed by machine n ∈ Nt in time step t are
in the set Wn =

⋃
{Mf : f ∈ [F], n ∈ Pf} and therefore,

µ is a function of (Mt,N t). The sets M1, . . . ,MF and
P1, . . . ,PF and F may vary with each computation step based
on machines’ availability.

In a given computation step t, our goal is to design the
task assignments, Mt and N t, such that the computation
yt = Xwt can be recovered even when some machines are
stragglers that do not provide their assigned computations to
the master machine. We define S as the straggler tolerance
of the network, such that the computation can be recovered
even when S of the available machines become stragglers.
Furthermore, let St ⊂ Nt be the subset of the available
machines that become stragglers. When designing the com-
putation assignment, St is not known and in general can be
any subset of S available machines.

Then, we aim to design the computation assignment that
minimizes the computation time of (4) resulting from the com-
putation load vector defined in (3). In computation step t, given
Nt and s, the optimal computation time, c∗, is the minimum
of computation times defined by all possible task assignments,
(Mt,N t), such that S stragglers can be tolerated and the
computation can be recovered. In particular c∗ is the optimal
value of the following combinatorial optimization problem.

min
(Mt,N t)

c (µ (Mt,N t)) (5a)

s.t.
⋃

Mf∈Mt

Mf =
[q
L

]
, (5b)

|Pf \ St| ≥ L ∀Pf ∈ Pt, ∀St ⊂ Nt, |St| = S (5c)
|Mt| = |Pt|. (5d)

Remark 1: The main difference between this problem for-
mulation and that of [15] is the consideration of the straggler
machine set St. The computation assignment is designed such
that the computation on each row set is guaranteed to be
computed at least L times across the machines (excluding
stragglers). In general, all possibilities of St must be consid-
ered which could be any subset of S available machines.

III. EXAMPLES

We first compare the CSEC designs [1], [15] to the strag-
gler tolerant design of [2]. Then, we present examples of
the proposed design which bridge the gap between the two
design methodologies. Homogeneous systems are discussed
first, followed by heterogeneous systems where machines have
varying computation speeds.

A. Homogeneous Examples

Consider a set of Nt = 5 available machines in a compu-
tation step. Each machine n has the same computation speed
of s[n] = 1. The storage at these machines adopts a (5, 3)-
MDS code where the machines store the coded matrices of
X̃1 = X1, X̃2 = X2, X̃3 = X3, X̃4 = X1 +X2 +X3,
and X̃5 = X1 + 2X2 + 4X3. Here L = 3, is the recovery
threshold of the MDS code. With these 5 available machines,
we can assign computations such that each row is computed
by at least L machines.

Homogeneous Cyclic CSEC Design [1], (S = 0): Using the
cyclic homogeneous design, the rows of the coded matrices
are split into F = 5 disjoint subsets. The first row set
is computed at machines 1 through 3, the next row set is
computed at machines 2 through 4 and so on. Following
the notation of the problem formulation, the row sets are
Mi = {1 + (i − 1) q

5L , . . . , i
q
5L} for i ∈ [5] and the machine

sets are P1 = {1, 2, 3}, P2 = {2, 3, 4}, P3 = {3, 4, 5},
P4 = {4, 5, 1}, and P5 = {5, 1, 2}. The main advantage of
this design is that each machine n computes µ[n] = 3

5 of its
local cs-matrix. Since each machine has a speed of 1, we see
that the computation time is c = 3

5 . However, this design is
susceptible to stragglers. Since each row set is assigned to
exactly L machines, if any one machine becomes a straggler,
then the matrix-vector multiplication cannot be recovered.

Straggler Design of [2], (S = 2): Alternatively, each ma-
chine computes the entire local cs-matrix. In other words, the
assignment is F = 1, M1 = {1, . . . , q

L}, P1 = {1, 2, 3, 4, 5}.
In this case, it is clear that S = 2 stragglers can be tolerated,
since we only need computations recovered from any L = 3
machines. However, this is at a cost of computation time which
increases to c = 1, or the time for a machine to compute all
rows of its local cs-matrix.

A Homogeneous CSEC Straggler Design, (S = 1): The
question remains if the computation time can be reduced when
the straggler tolerance is only S = 1 straggler. It turns out
there is a computation-straggler tolerance trade-off if we use
another computation assignment. For example, using the prin-
ciples of the cyclic assignment, we can assign computations
to L+S = 4 machines instead of just L machines. That is, we
define F = 5 row sets,Mi = {1+(i−1) q

5L , . . . , i
q
5L} for i ∈

[5], and assign these to the machine sets of P1 = {1, 2, 3, 4},
P2 = {2, 3, 4, 5}, P3 = {3, 4, 5, 1}, P4 = {4, 5, 1, 2}, and
P5 = {5, 1, 2, 3}, respectively. Note that each row set is
assigned to 4 machines, such that if any one machine becomes
a straggler, the computation on that row set can be recovered.
Also, note that the computation time is now c = 4

5 since each
machine performs computations on 4 row sets each containing
1
5 of the rows.

B. Heterogeneous Examples

Assume that there are Nt = 5 available machines which
have the same storage as in the homogeneous examples. Again,
L = 3 and each row computation required computations from
L = 3 machines to be recovered. However, this time, the
machines have heterogeneous computation speeds defined by

s = [1, 1, 2, 2, 3] such that machine 5 is the fastest with a
computation speed of 3 and machines 1 and 2 are the slowest
with a computation speed of 1.

Heterogeneous Algorithm CSEC Design [15], (S = 0): We
define a computation assignment that minimizes the computa-
tion time. It is ideal to assign each machine an amount of
computations relative to the speed of the machine. In this
case, we define the computation load of the machines to be
µ =

[
1
3 ,

1
3 ,

2
3 ,

2
3 , 1
]
, where, for example, machines 1 and

3 will compute a 1
3 and 2

3 fraction, respectively, of their
local cs-matrix. Moreover, the computation load vector sums
to L = 3 such that it allows each row to be computed 3
times. A computation assignment that yields this computation
load is F = 3 row sets each with 1

3 of the rows assigned
to the machines of P1 = {1, 4, 5}, P2 = {2, 3, 5} and
P3 = {3, 4, 5}. Each machine takes the same time to perform
their assigned computations and the computation time of the
network is c = 1

3 . However, there is no straggler tolerance.
Straggler Design of [2], (S = 2): Each machine computes

the entirety of its local cs-matrix. In this case, S = 2 stragglers
are tolerated. However, the computation time is dictated by the
slowest machines which are machines 1 and 2. Since we plan
for the possibility of any machine straggling, we may need to
wait for machines 1 and 2 to finish their computations. This
means the computation time is c = 1.

Proposed Heterogeneous CSEC Straggler Design, (S = 1):
The computation time can be improved if we reduce the
straggler tolerance to S = 1. We assign computations to
L + S = 4 machines yielding a computation load vector
of µ =

[
1
2 ,

1
2 , 1, 1, 1

]
, where machines 3 through 5 have

a computation load of 1 and compute the entirety of their
local matrix. Adapting the assignment algorithm of [15], the
following computation assignment yields this computation
load. There are F = 2 row sets each containing half of
the rows assigned to the machines of P1 = {1, 3, 4, 5} and
P2 = {2, 3, 4, 5}, respectively. Notice that each row set is
assigned to 4 machines, such that if any one machine straggles,
the result can be recovered. Furthermore, the computation time
is defined by the local computation time of machines 1 through
4 which each take the same time to finish. The computation
time is c = 1

2 .

IV. PROPOSED HETEROGENEOUS CSEC DESIGN

Our proposed straggler tolerant CSEC design, given by
Algorithm 1, is obtained by solving the combinatorial op-
timization (5) in a similar fashion as in [15] (line 6 in
Algorithm 1), and measuring (line 14 in Algorithm 1) and
updating (line 4 in Algorithm 1) the speed vector at each
iteration. This algorithm adapts previous CSEC designs [15]
to assign computations to L + S machines instead of just L
machines. We will explain the proposed heterogeneous CSEC
design in the following. For completeness, we start with the
homogeneous CSEC design first.

Homogeneous CSEC Straggler Tolerant Design: Given Nt

available machines, Nt = {1, 2, . . . , Nt}, define a compu-
tation assignment with F = Nt row sets. There are Nt

disjoint equally-sized row sets that collectively span all rows:
Mi = {1 + (i − 1) q

LNt
, . . . , i q

LNt
} for i ∈ [Nt]. Then,

define a cyclic assignment such that machine set Pi =
{i%Nt, . . . , (i + L + S − 1)%Nt} for i ∈ [Nt], where we
define a%Nt , a−

⌊
a−1
Nt

⌋
Nt to facilitate the cyclic design.

Proposed Heterogeneous CSEC Straggler Tolerant Design:
Assume there are Nt available machines, Nt = {1, 2, . . . , Nt}
with computation speeds in ascending order s[1] ≤ s[2] ≤
· · · ≤ s[Nt]. Define the computation load vector to be

µ∗[n] =

{
c∗s[n] if 1 ≤ n ≤ k∗

1 if k∗ + 1 ≤ n ≤ Nt,
(6)

where k∗ is the largest integer in [Nt] such that

1

s[k∗ + 1]
< c∗ =

L+ S −Nt + k∗∑k∗

n=1 s[n]
≤ 1

s[k∗]
. (7)

Given the computation load vector µ∗, we can obtain the
computation assignment by applying the assignment algorithm
of [15] to assign computations to L+ S machines instead of
L machines (line 6 in Algorithm 1). This naturally includes
straggler tolerance and yields the following theorem.

Theorem 1: The computation times of the straggler tolerant
CSEC designs are:

Homogeneous design:

c∗ =
L+ S

Nt
· 1

minn s[n]
(8)

Heterogeneous design:

c∗ =
L+ S −Nt + k∗∑k∗

n=1 s[n]
(9)

where k∗ is defined in the heterogeneous design. �
Remark 2: For both designs, we observe that the compu-

tation time c increases with the straggler tolerance, S. This
demonstrates a trade-off between the computation time and
straggler tolerance of the system.

V. EVALUATION ON AMAZON EC2

A. Evaluation Setup

We evaluate the proposed algorithm using two representa-
tive real applications including the power iteration and linear
regression algorithms on Amazon EC2 instances as follows.

Power Iteration: The power iteration algorithm computes
the largest eigenvalue and the corresponding eigenvector of
a large matrix X. In particular, it starts with a vector b0,
which may be an approximation to the dominant eigenvector
or a random vector. The method is described by the recursive
relation, bk+1 = Xbk

‖Xbk‖ . The sequence bk converges to
an eigenvector associated with the dominant eigenvalue. It
can be seen that at each iteration, we can directly apply
the proposed Algorithm 1. In particular, a dense 60, 000-
by-60, 000 symmetric matrix is row-wise split into L = 10
sub-matrices which are used to define the coded matrices
stored at each machine. A vector of length 60, 000 is updated
by performing a matrix-vector multiplication in a distributed

Algorithm 1 Adaptive Straggler Tolerant Coded Storage Elas-
tic Computing
Input: ŝ, γ, S, T , w1

1: ν ← ŝ
2: for t ∈ [T] do
3: At Master Machine:
4: ŝ ← γν + (1 − γ)ŝ (update estimate of speed

vector).
5: Nt ← list of available machines
6: (F ,M1, . . . ,MF , P1, . . . ,PF)← Results of com-

putation assignment algorithm with straggler tolerance of
S for available machines Nt with speeds of ŝ

7: Send wt and (F , M1, . . . ,MF , P1, . . . ,PF) to
Worker Machines

8: At Worker Machines:
9: n← index of worker machine

10: µ← computation load of worker machine n
11: τ1 ← current time
12: Perform assigned computations based on (F ,
M1, . . . ,MF , P1, . . . ,PF)

13: τ2 ← current time
14: ν[n] ← µ[n]/(τ2 − τ1) (calculate speed based on

current computation step)
15: Send computations and ν[n] to Master Machine
16: At Master Machine: after receiving results from L

workers.
17: wt+1 ← Decode and combine worker results
18: end for
Output: wT

manner on the available worker machines. The master machine
combines the results and normalizes the vector. This process
is repeated such that the vector converges to the eigenvector
associated with the largest eigenvalue.

Linear Regression: A linear regression problem is to solve
minb ‖Xb − y‖2. One typical approach to solve such algo-
rithm is to use gradient descent bk+1 = bk−ηXT (Xbk − y).
Letting Xbk − y = zk, we see that in each iteration, the
algorithm consist of 2 matrix-vector multiplications, which are
Xbk and XT zk. We apply Algorithm 1 to both of them. In
particular, we use a 200, 000-by-5, 000 matrix representing a
dataset with 200, 000 entries each with 5, 000 features. We
follow the distributed gradient descent design of [1], [2]. Each
worker machine stores two coded data matrices, one coded
row-wise and the other coded column-wise and L = 10. These
are used to perform matrix multiplication with the data matrix
and its transpose in a distributed fashion to update the weights.

The network has one t2.x2large master machine with 8
vCPUs and 32 GiB of memory. The worker machines consist
of 10 t2.large instances, each with 2 vCPUs and 8 GiB of
memory, and 10 t2.xlarge instances, each with 4 vCPUs
and 16 GiB of memory. Each machine is either a stable
machine or an elastic machine such that with each iteration,
the 12 stable machines (6 t2.large and 6 t2.xlarge)
are always available for computation assignment and the

elastic machines (4 t2.large and 4 t2.xlarge) are each
available with a probability of 0.5. The availability of the
elastic machines are independent across machines and also
each computation step. Note that, any available machine that
is assigned computations in a computation step could become
a straggler (slowest machine). In this case, the master machine
will not wait for the 2 slowest machines (stragglers) to finish
their computations (“with straggler” scenario in Figs. 1 and 2).
We define the uncoded and no straggler scenarios as follows.

Uncoded: No straggler tolerance is considered. The stable
machines include 5 t2.large and 5 t2.xlarge machines
which store uncoded matrices of the dataset without redun-
dancy. We do not consider elastic machines in this case.

No Stragglers: No straggler tolerance is considered. The
stable machines consist of 5 t2.large and 5 t2.xlarge
machines and the elastic machines consist of 4 t2.large and
4 t2.xlarge machines for a total of 18 worker machines.

B. Heterogeneous Computation Speed

In Table I, we give an example of the measured relative
computation speeds of Amazon EC2 instances during a trial
of the power iteration and gradient descent algorithm for
linear regression, resp., using CSEC. The slowest speed is
shown in blue and the highest speed is shown in red. One
interesting observation is that the speeds can vary widely even
for the same instance type with the same configurations. For
example, in the linear regression application, the normalized
computation speed of the t2.large instances varies from
0.48 to 0.90 and the t2.xlarge instances vary from 0.58
to 1.37. Furthermore, while not shown here, we observed the
computation speeds remained nearly constant on the order of
minutes and the speeds are predictable between computation
steps which are on the order of seconds.

TABLE I
NORMALIZED COMPUTATION SPEED

Power Iteration Linear Regression
t2.large t2.xlarge t2.large t2.xlarge
0.85 0.84 1.28 1.20 0.70 0.53 1.30 1.26
0.76 0.88 0.92 1.27 0.90 0.90 1.26 1.34
0.59 0.64 1.20 0.91 0.88 0.77 0.88 1.26
0.59 0.88 1.34 0.85 0.90 0.48 1.23 1.37
0.90 0.70 1.29 0.90 0.52 0.48 0.83 0.58

C. Evaluation Results

The results of using the CSEC designs on Amazon EC2
are shown in Figs. 1 and 2 for power iteration and linear
regression, respectively. We observe similar trends for both
applications. When no straggler tolerance is considered, the
results are shown as solid lines in Figs. 1 and 2. We can see
that the proposed heterogeneous CSEC algorithm converges
faster than other cases. In particular, for power iteration,
nearly 40% gain can be obtained compared to the uncoded
design and about 30% gain can be obtained compared to the
homogeneous design. This occurs because each computation
step, which updates the vector or weights, is performed faster

0 10 20 30 40 50 60 70
Computation Time (s)

10-10

10-8

10-6

10-4

10-2

100

M
ea

n
Sq

ua
re

 E
rro

r

Uncoded
Hom. (no stragglers)
Hom. (with stragglers)
Het. (no straglers)
Het. (with stragglers)

Fig. 1. Power Iteration: Results using CSEC designs on Amazon EC2
without stragglers and with 2 stragglers each iteration. The y-axis represents
the normalized mean square error between the true dominant eigenvector and
the estimated eigenvector.

0 5 10 15 20 25 30
Computation Time (s)

103

104

Ob
je

ct
iv

e
Fu

nc
tio

n

Uncoded
Hom. (no stragglers)
Hom. (with stragglers)
Het. (no stragglers)
Het. (with stragglers)

Fig. 2. Linear Regression: Results using CSEC designs on Amazon EC2
without stragglers and with 2 stragglers each iteration.

when compared to the other designs. Both the uncoded design
and homogeneous cyclic design assign the same computation
load to each machine. These designs are hindered by slower
machines with lower computation speed, even though they
may share the same configurations. Faster machines will com-
plete and then wait for slower machines to finish. However,
for the proposed heterogeneous design, computation load is
assigned relative to computation speed so that ideally each
machine will finish at approximately the same time regardless
of its speed.

There are several key observations from the experiments
with straggler tolerance whose results are shown as dashed
lines in Figs. 1 and 2. First, the heterogeneous CSEC design
converges faster than the homogeneous CSEC design for
similar reasons as those of the experiments without straggler
tolerance. Second, the straggler tolerance algorithms improve
the performance of homogeneous designs. This is because the
slowest machines are slow enough so that ignoring them while
assigning more tasks to other machines can help. However,

interestingly, for the proposed heterogeneous design, since the
slowest machines are optimally assigned less tasks and the
speed of machines changes slowly in our experiments, the
algorithms without straggler tolerance can be better.

VI. CONCLUSION

We introduce straggler tolerance in CSEC systems and
bridge the gap between CSEC and straggler tolerant distributed
computing. We demonstrate a trade-off between computation
time and straggler tolerance under our new general framework.
We validate our straggler tolerant CSEC designs on Amazon
EC2 for the applications of the power iteration and gradient
descent for linear regression. We find the proposed heteroge-
neous CSEC designs to be particularly effective and robust in
heterogeneous environments where machine speeds can vary
widely even though they share the same configurations.

REFERENCES

[1] Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer,
“Coded elastic computing,” in 2019 IEEE International Symposium on
Information Theory (ISIT), July 2019, pp. 2654–2658.

[2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” IEEE
Transactions on Information Theory, vol. PP, no. 99, pp. 1–1, 2017.

[3] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Advances
In Neural Information Processing Systems, 2016, pp. 2100–2108.

[4] N. S. Ferdinand and S. C. Draper, “Anytime coding for distributed com-
putation,” in 2016 54th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), Sept 2016, pp. 954–960.

[5] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp.
1920–1933, 2020.

[6] Malihe Aliasgari, Jörg Kliewer, and Osvaldo Simeone, “Coded com-
putation against processing delays for virtualized cloud-based channel
decoding,” IEEE Transactions on Communications, vol. 67, no. 1, pp.
28–38, 2019.

[7] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in Advances in Neural
Information Processing Systems, 2017, pp. 5434–5442.

[8] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed
gradient descent using reed-solomon codes,” in 2018 IEEE International
Symposium on Information Theory (ISIT). IEEE, 2018, pp. 2027–2031.

[9] G. Suh, K. Lee, and C. Suh, “Matrix sparsification for coded matrix
multiplication,” in 2017 55th Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), Oct 2017, pp. 1271–1278.

[10] R. K. Maity, A. S. Rawat, and A. Mazumdar, “Robust gradient descent
via moment encoding with ldpc codes,” in SysML Conference, 2018.

[11] M. F. Aktas, P. Peng, and E. Soljanin, “Straggler mitigation by delayed
relaunch of tasks,” SIGMETRICS Perform. Eval. Rev., vol. 45, no. 3,
pp. 224–231, Mar. 2018.

[12] S. Wang, J. Liu, N. Shroff, and P. Yang, “Fundamental limits of coded
linear transform,” arXiv:1804.09791, 2018.

[13] M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” arXiv:1802.03475, 2018.

[14] K. Wan, H. Sun, M. Ji, and G. Caire, “Distributed linearly separable
computation,” arXiv preprint arXiv:2007.00345, 2020.

[15] N. Woolsey, R. Chen, and M. Ji, “Heterogeneous computation as-
signments in coded elastic computing,” in 2020 IEEE International
Symposium on Information Theory (ISIT), 2020.

[16] H. Dau, R. Gabrys, Y.C. Huang, C. Feng, Q.H. Luu, E. Alzahrani, and
Z. Tari, “Optimizing the transition waste in coded elastic computing,”
in 2020 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2020, pp. 174–178.

[17] S. Kiani, T. Adikari, and S. C. Draper, “Hierarchical coded elastic
computing,” in ICASSP 2021 - 2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 4045–
4049.

	I Introduction
	II Network Model and Problem Formulation
	III Examples
	III-A Homogeneous Examples
	III-B Heterogeneous Examples

	IV Proposed Heterogeneous CSEC Design
	V Evaluation on Amazon EC2
	V-A Evaluation Setup
	V-B Heterogeneous Computation Speed
	V-C Evaluation Results

	VI Conclusion
	References

