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Abstract—The paper studies distributed binary hypothesis
testing over a two-hop relay network where both the relay and
the receiver decide on the hypothesis. Both communication links
are subject to expected rate constraints, which differs from the
classical assumption of maximum rate constraints. We exactly
characterize the set of type-II error exponent pairs at the
relay and the receiver when both type-I error probabilities are
constrained by the same value ε > 0. No tradeoff is observed
between the two exponents, i.e., one can simultaneously attain
maximum type-II error exponents both at the relay and at the
receiver. For ε1 6= ε2, we present an achievable exponents region,
which we obtain with a scheme that applies different versions
of a basic two-hop scheme that is optimal under maximum rate
constraints. We use the basic two-hop scheme with two choices of
parameters and rates, depending on the transmitter’s observed
sequence. For ε1 = ε2, a single choice is shown to be sufficient.
Numerical simulations indicate that extending to three or more
parameter choices is never beneficial.

Index Terms—Multi-hop, distributed hypothesis testing, error
exponents, expected rate constraints, variable-length coding,

I. INTRODUCTION

In many Internet of things (IoT) and sensor networks,
the sensors may not communicate directly with the decision
center due to limited resources or environmental effects.
This motivates us to consider multi-hop networks where the
sensor can communicate to the decision center only via a
relay. In certain scenarios, the relays also wish to decide on
the hypothesis, for example to faster raise alarms. In such
distributed hypothesis testing problems, the relays and the
receiver have to decide on a binary hypothesis to determine
the joint distributions underlying all terminals’ observations
including their own. In particular, maximizing the accuracy
of any taken decision under imposed communication rate
constraints is an important concern in many applications
related to security, health monitoring, or incident-detection.
In these applications, often the error under the alternative
hypothesis corresponding to a missed detection is more critical
than the error under the null hypothesis corresponding to false
alarms. We thus aim at maximizing the exponential decays
of the missed detection probabilities under given thresholds
on the false alarm probabilities. As we shall see, a particular
challenge arises when the relay and the decision center have
different thresholds on the tolerable false-alarm probabilities.

Most information-theoretic works on distributed hypothesis
testing focus on maximum rate constraints [1]–[6]. Expected

rate constraints were introduced in [7], [8], which also charac-
terized the maximum error exponents for single-sensor single-
decision center setups in the special case of testing-against
independence. The optimal coding and decision scheme in
[7], [8] chooses an event Sn of probability close to the
permissible type-I error probability ε. Under this event, the
transmitter sends a single flag bit to the decision center,
which then decides on the hypothesis H = 1. Otherwise,
the transmitter and the receiver run the optimal scheme under
the maximum rate constraints [1], [2]. The described scheme
achieves same type-II error exponent as in [1], [2], but with a
communication rate reduced by the factor of (1− ε). Similar
conclusions also hold for more complicated networks with
multiple communication links, as we showed in [9] at hand
of the partially-cooperating multi-access network with two
sensors.

In this paper, we consider the two-hop network, where the
observations at the transmitter Xn, the relay Y n, and the
receiver Zn form a Markov chain Xn → Y n → Zn. Such
a Markov chain often occurs simply because the transmitter is
closer to the relay than to the receiver. Under maximum rate-
constraints, the optimal exponents at the relay and the receiver
were characterized in [10], [11]. We show that when both
the transmitter and the relay have same ε1 = ε2, then under
expected rate constraints one can boost both rates by a factor
(1−ε)−1 as compared to a maximum rate-constraint. The case
ε1 6= ε2 differs in various ways. Firstly, our set of achievable
exponent pairs indicates a tradeoff between the relay’s and the
receiver’s exponents. Secondly, a more complicated coding
and decision scheme is required. Specifically, we propose
a strategy where the transmitter chooses three events, and
depending on the event, applies either a degenerate single-
flagbit strategy or the scheme in [10] with one of two different
choices of parameters and rates, depending on the transmitter’s
observation. Extending to more than three events (i.e., to more
than two parameter and rate choices for the scheme in [10])
however does not seem to yield further improvements.

Notation: We follow the notation in [12], [8]. In particular,
we use sans serif font for bit-strings: e.g., m for a deterministic
and M for a random bit-string. We let string(m) denote the
shortest bit-string representation of a positive integer m, and
for any bit-string m we let len(m) and dec(m) denote its
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length and its corresponding positive integer. In addition, T (n)
µ

denotes the strongly typical set given by [13, Definition 2.8].

II. SYSTEM MODEL

Consider the distributed hypothesis testing problem in Fig. 1
under the Markov chain

Xn → Y n → Zn (1)

and in the special case of testing against independence, i.e.,
depending on the binary hypothesis H ∈ {0, 1}, the tuple
(Xn, Y n, Zn) is distributed as:

under H = 0 : (Xn, Y n, Zn) ∼ i.i.d.PXY · PZ|Y ; (2a)
under H = 1 : (Xn, Y n, Zn) ∼ i.i.d.PX · PY · PZ (2b)

for given probability mass functions (pmfs) PXY and PZ|Y .

Fig. 1: Cascaded two-hop setup with two decision centers.

The system consists of a transmitter TX , a relay RY , and a
receiver RZ . The transmitter TX observes the source sequence
Xn and sends its bit-string message M1 = φ

(n)
1 (Xn) to RY ,

where the encoding function is of the form φ
(n)
1 : Xn →

{0, 1}? and satisfies the expected rate constraint

E [len (M1)] ≤ nR1. (3)

The relay RY observes the source sequence Y n and with the
message M1 received from TX , it produces a guess ĤY of the
hypothesis H using a decision function g(n)

1 : Yn×{0, 1}? →
{0, 1}:

ĤY = g
(n)
1 (M1, Y

n) ∈ {0, 1}. (4)

Relay RY also computes a bit-string message M2 =

φ
(n)
2 (Y n,M1) using some encoding function φ

(n)
2 : Yn ×

{0, 1}? → {0, 1}? that satisfies the expected rate constraint

E [len (M2)] ≤ nR2. (5)

Then it sends M2 to the receiver RZ , which guesses hypothesis
H using its observation Zn and the received message M2, i.e.,
using a decision function g

(n)
2 : Zn × {0, 1}? → {0, 1}, it

produces the guess:

ĤZ = g
(n)
2 (M2, Z

n) ∈ {0, 1}. (6)

The goal is to design encoding and decision functions such
that their type-I error probabilities

α1,n , Pr[ĤY = 1|H = 0] (7)

α2,n , Pr[ĤZ = 1|H = 0] (8)

stay below given thresholds ε1 > 0, ε2 > 0 and the type-II
error probabilities

β1,n , Pr[ĤY = 0|H = 1] (9)

β2,n , Pr[ĤZ = 0|H = 1] (10)

decay to 0 with largest possible exponential decay.
Definition 1: Fix maximum type-I error probabilities

ε1, ε2 ∈ [0, 1] and rates R1, R2 ≥ 0. The exponent pair
(θ1, θ2) is called (ε1, ε2)-achievable if there exists a sequence
of encoding and decision functions {φ(n)

1 , φ
(n)
2 , g

(n)
1 , g

(n)
2 }n≥1

satisfying ∀i ∈ {1, 2}:

E[len(Mi)] ≤ nRi, (11)
lim
n→∞

αi,n ≤ εi, (12)

lim
n→∞

1

n
log

1

βi,n
≥ θi. (13)

Definition 2: The closure of the set of all (ε1, ε2)-achievable
exponent pairs (θ1, θ2) is called the (ε1, ε2)-exponents region
and is denoted by E∗(R1, R2, ε1, ε2).

The maximum exponents that are achievable at each of the
two decision centers are also of interest:

θ∗1,ε1(R1) := max{θ1 : (θ1, θ2) ∈ E∗(R1, R2, ε1, ε2)

for some ε2 > 0, θ2 ≥ 0} (14)
θ∗2,ε2(R1, R2) := max{θ2 : (θ1, θ2) ∈ E∗(R1, R2, ε1, ε2)

for some ε1 > 0, θ1 ≥ 0}. (15)

Remark 1: The multi-hop hypothesis testing setup of Fig. 1
and Equations (2) was also considered in [10] and [11], but
under maximum rate constraints:

len(Mi) ≤ nRi, i ∈ {1, 2}, (16)

instead of the expected rate constraints (3) and (5).
As shown in [11], for any rates R1, R2 ≥ 0 and permissible

type-I error probabilities ε1, ε2 ∈ [0, 1/2], the exponents region
under the maximum-rate constraints (16) is:

E∗max(R1, R2, ε1, ε2) = {(θ1, θ2) : θ1 ≤ θ∗1,ε1,max (R1) , (17)
θ2 ≤ θ∗2,ε2,max (R1, R2)}, (18)

where

θ∗1,ε1,max (R1) = max
PU1|X :

R1≥I(U1;X)

I (U1;Y ) (19)

θ∗2,ε2,max (R1, R2) = θ∗1,ε1,max (R1) + max
PU2|Y :

R2≥I(U2;Y )

I (U2;Z) (20)

and the mutual information quantities are calculated using the
joint pmfs PU1XY , PU1|XPXY and PU2Y Z , PU2|Y PY Z .

In the following subsection III-A we present a coding and
decision scheme that achieves E∗max(R1, R2, ε1, ε2). It is a
simplification of the scheme in [10].

III. CODING AND DECISION SCHEMES

In Subsection III-A, we present a basic two-hop hypothesis
testing scheme, which we obtain by simplifying the general
scheme in [10] and which suffices to achieve the exponents
region E∗max under maximum rate constraints.

For the setup with expected rate constraints studied in this
paper, in Subsections III-B–III-D we propose to use different



versions of this two-hop scheme (with different parameters and
different communication rates) depending on the transmitter’s
observation xn, where for certain sequences xn we even apply
degenerate versions of the scheme where only zero-rate flag-
bits are sent over one or both communication links. Notice that
in principle, we could apply a different set of parameters for
each observation xn ∈ Xn. Our numerical examples however
indicate that without loss in optimality one can restrict to only
one or two parameter choices and an additional degenerate
version of the scheme with zero communication rates on
both links. As proved by the scheme in Subsection III-B and
Theorem 1 a single parameter choice suffices when ε1 = ε2.
For ε1 6= ε2 two parameter choices are strictly better as we
show in our numerical simulations in Section IV-A. More
choices seem unnecessary.

A. A basic two-hop coding and decision scheme [10]

We revisit a simplified version of the scheme in [10], which
achieves the exponents region under maximum rate constraints
E∗max(R1, R2, ε1, ε2) for any ε1, ε2.

Fix a blocklength n and choose the following parameters:
a small positive number µ > 0, conditional pmfs PU1|X
and PU2|Y . In the following, all mutual informations will
be evaluated according to the joint pmf PXY ZU1U2

:=
PXPY |XPZ|Y PU1|XPU2|Y .

Randomly generate the codebooks

CU1
,
{
un1 (m1) : m1 ∈

{
1, · · · , 2n(I(U1;X)+µ)

}}
(21)

CU2 ,
{
un2 (m2) : m2 ∈

{
1, · · · , 2n(I(U2;Y )+µ)

}}
, (22)

by drawing all entries i.i.d. according to the marginal pmfs
PU1

and PU2
.

TX : Assume it observes Xn = xn. If xn ∈ T (n)
µ (PX), it

looks for indices m1 satisfying (un1 (m1), xn) ∈ T (n)
µ (PU1X),

randomly picks one of these indices, and sends its correspond-
ing bit-string

M1 = [string(m1)]. (23)

If no such index exists or if xn /∈ T (n)
µ (PX), then TX sends

M1 = [0]. (24)

RY : Assume it observes Y n = yn and receives the bit-string
message M1 = m1.

If m1 = [0], then

ĤY = 1 and M2 = [0]. (25)

Else it checks if (un1 (m1), yn) ∈ T (n)
µ (PU1Y ). If the check

is successful RY declares ĤY = 0; otherwise it declares
ĤY = 1 and sends M2 = [0].

If ĤY = 0, RY next looks for indices m2 satisfying
(un2 (m2), yn) ∈ T (n)

µ (PU2Y ), randomly picks one of them
and sends

M2 = string(m2) (26)

to the receiver.

If no such index m2 exists, RY directly sends string

M2 = [0]. (27)

RZ : Assume it observes the sequence Zn = zn and receives
message M2 = m2.

If m2 = [0], it declares ĤZ = 1.
Else it sets m2 = dec(m2), and checks if (un2 (m2), zn) ∈
T (n)
µ (PU2Z). It declares ĤZ = 0 if the check succeeds, and
ĤZ = 1 otherwise.

In the following subsections, we explain how to employ this
basic scheme in a variable-length coding framework.

B. Variable-length coding for ε1 = ε2

We employ only a single version of the two-hop scheme,
and combine it with a degenerate scheme that has zero com-
munication rates over both links. Specifically, as for the point-
to-point setup in [8], we choose a subset Sn ⊆ T (n)

µ (PX) of
probability

Pr [Xn ∈ Sn] = ε2 − µ = ε1 − µ, (28)

for some small number µ > 0.
Whenever Xn ∈ Sn, TX and RY both send

M1 = M2 = [0] (29)

and RY and RZ decide on

ĤY = ĤZ = 1. (30)

Whenever Xn /∈ Sn, the terminals TX , RY , RZ all follow
the basic two-hop scheme in Subsection III-A for parameters
µ, PU1|X , PU2|Y satisfying

R1 = (1− ε1 + µ) (I(U1;X) + 2µ) (31)
R2 = (1− ε2 + µ) (I(U2;Y ) + 2µ) . (32)

The factors (1−ε1 +µ) and (1−ε2 +µ) in front of the mutual
information terms represent the gain obtained by expected rate
constraints, because with probability ε1 − µ = ε2 − µ in our
scheme both messages M1 and M2 are of zero rate, see (29).

In Appendix A, we prove that the presented scheme achieves
the error exponents in Eq. (48) of Theorem 1 when n → ∞
and µ ↓ 0.

C. Variable-length coding for ε2 > ε1

We employ two versions of the basic two-hop scheme as
we will explain shortly. Moreover, we again choose a subset
Sn ⊆ T (n)

µ (PX) of probability

Pr [Xn ∈ Sn] = ε1 − µ, (33)

and all terminals TX , RY , RZ apply the degenerate scheme
in (29)–(30) whenever Xn ∈ Sn.

We now partition the remaining set Xn\Sn into two disjoint
sets D′n and D′′n

D′n ∪ D′′n = Xn\Sn and D′n ∩ D′′n = ∅ (34)

such that

Pr [Xn ∈ D′n] = 1− ε2 + µ (35)



Pr [Xn ∈ D′′n] = ε2 − ε1. (36)

We further split R1 = R′1 +R′′1 for R′1, R
′′
1 > 0.

Then, whenever xn ∈ D′n, all terminals TX , RY , RZ
follow the basic two-hop scheme for a set of parameters
µ, PU ′1|X , PU ′2|Y satisfying

R′1 = (1− ε2 + µ)(I(U ′1;X) + 2µ) (37)
R2 = (1− ε2 + µ)(I(U ′2;Y ) + 2µ). (38)

To inform the relay and the receiver about the event xn ∈ D′n,
both TX and RY add [1, 0]-flag bits at the beginning of their
communication to RY and RZ , respectively. (Notice that two
additional bits do not change the rate of communication.)

For xn ∈ D′′n, the transmitter and the relay still follow
the basic two-hop scheme in Subsection III-A but now for
a different parameter choice µ, PU ′′1 |X satisfying

R′′1 = (ε2 − ε1)(I(U ′′1 ;X) + 2µ), (39)

and where TX additionally sends the [1, 1]-flag as part of M1

to RY , which simply relays this flag M2 = [1, 1] without
adding additional information. Upon observing M2 = [1, 1],
RZ immediately declares ĤZ = 1.

In Appendix B, we prove that the presented scheme achieves
the error exponents in Eq. (49) of Theorem 1 when n → ∞
and µ ↓ 0.

D. Variable-length coding for ε1 > ε2

In this case, we employ two full versions of the basic
two-hop scheme. Moreover, we again choose a subset Sn ⊆
T (n)
µ (PX) of probability

Pr [Xn ∈ Sn] = ε2 − µ, (40)

and partition the remaining subset of Xn into two disjoint sets
D′n and D′′n

D′n ∪ D′′n = Xn\Sn and D′n ∩ D′′n = ∅ (41)

such that

Pr [Xn ∈ D′n] = 1− ε1 + µ (42)
Pr [Xn ∈ D′′n] = ε1 − ε2. (43)

We further split R1 = R′1 + R′′1 and R2 = R′2 + R′′2 for
R′1, R

′′
1 , R

′
2, R

′′
2 > 0.

Whenever Xn ∈ Sn, TX , RY , and RZ , all apply the
degenerate scheme in (29)–(30).

Whenever Xn ∈ D′n, all terminals TX , RY , and RZ
follow the basic two-hop scheme for a choice of parameters
µ, PU ′1|X , PU ′2|Y satisfying

R′1 = (1− ε1 + µ)(I(U ′1;X) + 2µ) (44)
R′2 = (1− ε1 + µ)I(U ′2;Y ) + 2µ). (45)

Additionally, TX and RY add [1, 0]-flag bits to their messages
M1 and M2 to indicate to RY and RZ that Xn ∈ D′n.

Whenever Xn ∈ D′′n, all terminals TX , RY , and RZ mostly
follow the basic two-hop scheme but now for parameters
µ, PU ′′1 |X , PU ′′2 |Y satisfying

R′′1 = (ε1 − ε2)(I(U ′′1 ;X) + 2µ) (46)

R′′2 = (ε1 − ε2)(I(U ′′2 ;Y ) + 2µ). (47)

The only exceptions are that TX and RY add a [1, 1]-flag to
their messages M1 and M2 to indicate to RY and RZ that
Xn ∈ D′′n, and that RY always declares ĤY = 1 upon
observing this [1, 1]-flag in M1, irrespective of the remaining
bits of M1 or its observation Y n. Besides this decision, RY
however follows the protocol of the basic two-hop scheme
which forces it to compute a tentative decision Ĥ′′Y , which
determines its communication to RZ . (In particular, if Ĥ′′Y = 1,
RY sends only the [1, 1]-flag to RZ so that RZ immediately
declares ĤZ = 1.) Notice that while RY can ignore the
tentative decision Ĥ′′Y because of its larger permissible type-I
error probability ε1 > ε2, this decision is important for RZ so
that this latter can satisfy its constraint on the type-I probability
ε2.

In a similar way to the previous schemes, it can be shown
that this scheme achieves the error exponents in Eq. (50) of
Theorem 1 when n→∞ and µ ↓ 0. Details are presented in
Appendix C.

IV. RESULTS ON THE EXPONENTS REGION

Our main result provides inner bounds to the exponent
region E∗(R1, R2, ε1, ε2) achieved by the schemes presented
in the preceding Section III. The theorem further provides an
exact characterization of exponents region E∗(R1, R2, ε1, ε2)
when ε1 = ε2.

Theorem 1: If ε1 = ε2, the (ε1, ε2)-exponents region
E∗(R1, R2, ε1, ε2) is the set of all (θ1, θ2) pairs satisfying

θ1 ≤ I(U1;Y ), (48a)
θ2 ≤ I(U1;Y ) + I(U2;Z), (48b)

for some conditional pmfs PU1|X , PU2|Y so that

R1 ≥ (1− ε1)I(U1;X), (48c)
R2 ≥ (1− ε2)I(U2;Y ), (48d)

and where the mutual information quantities are calculated
using the joint pmfs PU1XY , PU1|XPXY and PU2Y Z ,
PU2|Y PY Z .

If ε1 < ε2, the (ε1, ε2)-exponents region E∗(R1, R2, ε1, ε2)
contains all (θ1, θ2) pairs that satisfy

θ1 ≤ min{I(U ′1;Y ), I(U ′′1 ;Y )}, (49a)
θ2 ≤ I(U ′1;Y ) + I(U ′2;Z), (49b)

for some conditional pmfs PU ′1|X , PU ′′1 |X , PU ′2|Y so that

R1 ≥ (1− ε2)I(U ′1;X) + (ε2 − ε1)I(U ′′1 ;X), (49c)
R2 ≥ (1− ε2)I(U ′2;Y ), (49d)

and where the mutual information quantities are calculated
using the joint pmfs PU ′1XY , PU ′1|XPXY , PU ′′1 XY ,
PU ′′1 |XPXY , and PU ′2Y Z , PU ′2|Y PY Z .

If ε1 > ε2, the (ε1, ε2)-exponents region E∗(R1, R2, ε1, ε2)
contains all (θ1, θ2) pairs that satisfy

θ1 ≤ I(U ′1;Y ), (50a)



θ2 ≤ min{I(U ′1;Y ) + I(U ′2;Z), I(U ′′1 ;Y ) + I(U ′′2 ;Z)}, (50b)

for some conditional pmfs PU ′1|X , PU ′′1 |X , PU ′2|Y , PU ′′2 |Y so
that

R1 ≥ (1− ε1)I(U ′1;X) + (ε1 − ε2)I(U ′′1 ;X), (50c)
R2 ≥ (1− ε1)I(U ′2;Y ) + (ε1 − ε2)I(U ′′2 ;Y ), (50d)

and where the mutual information quantities are calculated
using the joint pmfs PU ′1XY , PU ′1|XPXY , PU ′′1 XY ,
PU ′′1 |XPXY , PU ′2Y Z , PU ′2|Y PY Z , and PU ′′2 Y Z ,
PU ′′2 |Y PY Z .

Proof: Achievability results are based on the schemes in
Section III, see Appendices A, B, and C for the analyses. For
ε1 = ε2 the converse is proved in Appendix D.

A. Numerical Simulations

In this section, we illustrate the benefits of variable-length
coding as opposed to fixed-length coding (or the benefits of
having the relaxed expected rate constraints in (3) and (5)
instead of the more stringent maximum rate-constraints (16)).
We also show for ε2 6= ε1 the benefits of having two auxiliary
random variables U ′1 and U ′′1 in (49)–(50) instead of only a
single random variable, which is equivalent to applying the
basic two-hop scheme for two parameter choices (depending
on Xn) and not just one. And finally, for ε2 < ε1, we illustrate
the benefits of having both U ′2 and U ′′2 in (50), which stems
from applying two full versions of the basic two-hop scheme
in Subsection III-A.

Throughout this section we consider the following example.
Let X,S, T be independent Bernoulli random variables of
parameters pX = 0.4, pS = 0.8, pT = 0.8 and set Y = X⊕T
and Z = Y ⊕ S.

We first consider the case of equal permissible type-I error
exponents ε1 = ε2. By Theorem 1, in this case the optimal
exponents region E∗ is given by the rectangle determined by
θ∗1,ε1(R1) and θ∗2,ε2(R1, R2). Under maximum rate-constraints,
the optimal exponents region Emax is also a rectangle, but now
determined by θ∗1,ε1,max(R1) and θ∗2,ε2,max(R1, R2). Fig. 2 plots
these optimal error exponents for ε1 = ε2 = 0.05 and in
function of R1 = R2. It thus illustrates the gain of having
expected rate constraints instead of maximum rate-constraints.

We now consider the case ε1 = 0.05 < ε2 = 0.15, and plot
our inner bound to E∗ in Fig. 3 for rates R1 = R2 = 0.5.
We note a tradeoff between the two exponents θ1, θ2, which
was not present for ε1 = ε2. (This tradeoff occurs because
both exponents have to be optimized over the same choices of
random variables U ′1, U

′′
1 .) The figure also shows a suboptimal

version of the inner bound in Theorem 1, where we set U ′1 =
U ′′1 but still optimize over all choices of U ′1. We observe that
using two different auxiliary random variables U ′1 and U ′′1 (i.e.,
two different versions of the basic two-hop scheme) allows to
obtain a better tradeoff between the two exponents. Finally, for
comparison, Fig. 3 also shows the exponents region E∗ under
maximum rate-constraints, so as to illustrate the gain provided

0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

R1 = R2 = R

θ

θ∗2,ε
θ∗2,ε,max
θ∗1,ε
θ∗1,ε,max

Fig. 2: Optimal error exponents under expected and maximum
rate constraints for ε := ε1 = ε2 = 0.05.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0.3

0.32

0.34

0.36

0.38

θ1

θ 2

Eq. (49)
Eq. (49) with U ′1 = U ′′1
E∗max

Fig. 3: Exponents regions for ε1 = 0.05 < ε2 = 0.15 and
R1 = R2 = 0.5.

by having the weaker expected rate constraints instead of a
maximum rate constraint.

We finally consider the case ε1 = 0.15 > ε2 = 0.05. Fig. 4
shows our inner bound in Theorem 1 together with sub-optimal
versions of this inner bound where we either set U ′2 = U ′′2 or
U ′1 = U ′′1 . Similarly to the previous figure we observe that
having multiple auxiliary random variables (i.e., two versions
of the basic two-hop scheme) allows to improve the tradeoff
between the two exponents.

V. CONCLUSION

In this work, distributed hypothesis testing over a two-hop
network with two decision centers is studied under expected
rate constraints. Different coding and decision schemes are
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Fig. 4: Exponents regions under expected and maximum rate
constraints for ε1 = 0.15 > ε2 = 0.05 and R1 = R2 = 0.5.

proposed for different cases of permissible type-I error prob-
abilities. These schemes are designed to choose different set
of parameters and rates based on the transmitter’s observation,
aiming to maximize the achievable type-II error exponents at
both decision centers. Optimal error exponents are obtained
when the decision centers share equal type-I error constraints.
Otherwise, a tradeoff between the exponents at the two deci-
sion centers occur. Supported by numerical simulations, the
benefits of the proposed schemes are shown in this work,
where the gain induced by expected rate constraints instead
of maximum rate constraints is highlighted too.
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APPENDIX A
ANALYSIS OF THE CODING SCHEME IN SUBSECTION III-B

FOR ε1 = ε2

Denote by H̃Y and H̃Z the guesses produced by the
basic two-hop scheme in Subsection III-A for the chosen
parameters µ, PU1|X , PU2|Y . We can then write for the type-I
error probabilities:

α1,n = Pr[ĤY = 1|H = 0] (51)

= Pr[ĤY = 1, Xn ∈ Sn|H = 0]

+ Pr[ĤY = 1, Xn /∈ Sn|H = 0] (52)
= Pr[Xn ∈ Sn|H = 0]

+ Pr[H̃Y = 1, Xn /∈ Sn|H = 0] (53)
≤ ε1 − µ+ Pr[H̃Y = 1|H = 0], (54)

and

α2,n = Pr[ĤZ = 1|H = 0] (55)

= Pr[ĤZ = 1, Xn ∈ Sn|H = 0]

+ Pr[ĤZ = 1, Xn /∈ Sn|H = 0] (56)
= Pr[Xn ∈ Sn|H = 0]

+ Pr[H̃Z = 1, Xn /∈ Sn|H = 0] (57)
≤ ε2 − µ+ Pr[H̃Z = 1|H = 0]. (58)

Since by [10], Pr[H̃Y = 1|H = 0] and Pr[H̃Z = 1|H = 0]
both tend to 0 as n → ∞, we conclude that limn→∞ α1,n ≤
ε1, and limn→∞ α2,n ≤ ε2.

We notice that when Xn ∈ Sn, then ĤY = ĤZ = 1.
The type-II error probabilities of the scheme can therefore be
bounded as:

β1,n = Pr[ĤY = 0|H = 1] (59)

= Pr[H̃Y = 0, Xn /∈ Sn|H = 1] (60)
≤ Pr[H̃Y = 0|H = 1] (61)
≤ 2−n(I(U1;Y )+δ(µ)) (62)

and

β2,n = Pr[ĤZ = 0|H = 1] (63)

= Pr[H̃Z = 0, Xn ∈ Sn|H = 1] (64)
≤ Pr[H̃Z = 0|H = 1] (65)
≤ 2−n(I(U1;Y )+I(U2;Z)+δ(µ)) (66)
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where (62) and (66) are proved in [10], and δ(µ) → 0 as
µ ↓ 0.

The described scheme satisfies the rate constraints for all
blocklengths n that are sufficiently large so that (1 − ε1 +
µ)nµ ≥ (ε1 − µ) ⇔ (1− ε2 + µ)nµ ≥ (ε2 − µ) hold:

E(len(M1)) ≤ (ε1 − µ) + (1− ε1 + µ) · n(I(U1;X) + µ) (67)
≤ (1− ε1 + µ) · n(I(U1;X) + 2µ) (68)
= nR1 (69)

and

E(len(M2)) ≤ (ε2 − µ) + (1− ε2 + µ) · n(I(U2;Y ) + µ) (70)
≤ (1− ε2 + µ) · n(I(U2;Y ) + 2µ) (71)
= nR2. (72)

Letting first n → ∞ and then µ ↓ 0, establishes the desired
achievability result in (48).

APPENDIX B
ANALYSIS OF THE CODING SCHEME IN SUBSECTION III-C

FOR ε2 > ε1

Let H̃′Y and H̃′Z denote the hypotheses guessed by RY
and RZ for the basic two-hop scheme with the first parameter
choices µ, PU ′1|X , PU ′2|Y . Similarly, let H̃′′Y be the hypothesis
produced by RY for the basic two-hop scheme with the
parameter choice µ, PU ′′1 |X . We then obtain for the type-I error
probabilities:

α1,n = Pr[ĤY = 1, Xn ∈ Sn|H = 0]

+ Pr[ĤY = 1, Xn ∈ D′n|H = 0]

+ Pr[ĤY = 1, Xn ∈ D′′n|H = 0] (73)
= Pr[Xn ∈ Sn|H = 0]

+ Pr[H̃′Y = 1, Xn ∈ D′n|H = 0]

+ Pr[H̃′′Y = 1, Xn ∈ D′′n|H = 0] (74)
≤ ε1 − µ+ Pr[H̃′Y = 1|H = 0]

+ Pr[H̃′′Y = 1|H = 0] (75)

and

α2,n = Pr[ĤZ = 1, Xn ∈ (Sn ∪ D′′n)|H = 0]

+ Pr[ĤZ = 1, Xn ∈ D′n|H = 0] (76)
= Pr[Xn ∈ (Sn ∪ D′′n)|H = 0]

+ Pr[H̃′Z = 1, Xn ∈ D′n|H = 0] (77)
≤ ε2 − µ+ Pr[H̃′Z = 1|H = 0]. (78)

Since by [10], Pr[H̃′Y = 1|H = 0] and Pr[H̃′′Y = 1|H =
0], and Pr[H̃′Z = 1|H = 0] ↓ 0 as n → ∞, we conclude that
for the scheme in Subsection III-C limn→∞ α1,n ≤ ε1 and
limn→∞ α2,n ≤ ε2.

For the type-II error probabilities we obtain

β1,n = Pr[H̃′Y = 0, Xn ∈ D′n|H = 1]

+ Pr[H̃′′Y = 0, Xn ∈ D′′n|H = 1] (79)
≤ Pr[H̃′Y = 0|H = 1] + Pr[H̃′′Y = 0|H = 1] (80)

≤ 2−n(I(U ′1;Y )+δ(µ)) + 2−n(I(U ′′1 ;Y )+δ(µ)) (81)

and

β2,n = Pr[H̃′Z = 0, Xn ∈ D′n|H = 1] (82)

≤ Pr[H̃′Z = 0|H = 1] (83)

≤ 2−n(I(U ′1;Y )+I(U ′2;Z)+δ(µ)), (84)

where (81) and (84) are proved in [10], and δ(µ) ↓ 0 as µ ↓ 0.
The described scheme satisfies the rate constraints for all

blocklengths n that are sufficiently large so that both (1 −
ε1 + µ)nµ ≥ (2− ε1 + µ) and (1− ε2 + µ)nµ ≥ (2− ε1 + µ)
hold:

E[len(M1)] ≤ (ε1 − µ)

+(1− ε2 + µ) · (n(I(U ′1;X) + µ) + 2)

+(ε2 − ε1) · (n(I(U ′′1 ;X) + µ) + 2) (85)
≤ n(R′1 +R′′1 ) = nR1 (86)

and

E[len(M2)] ≤ (ε1 − µ) + (ε2 − ε1) · 2
+(1− ε2 + µ) · (n(I(U ′2;Y ) + µ) + 2) (87)

≤ nR2. (88)

Letting first n → ∞ and then µ ↓ 0, establishes the desired
result in (49).

APPENDIX C
ANALYSIS OF THE CODING SCHEME IN SUBSECTION III-D

FOR ε1 > ε2

Let H̃′Y and H̃′Z denote the hypotheses guessed by RY
and RZ for the basic two-hop scheme with the first parameter
choices µ, PU ′1|X , PU ′2|Y . Similarly, let H̃′′Z be the hypothesis
produced by RZ for the basic two-hop scheme with the
parameter choices µ, PU ′′1 |X , PU ′′2 |Y . We then obtain for the
type-I error probabilities:

α1,n = Pr[ĤY = 1, Xn ∈ (Sn ∪ D′′n)|H = 0]

+ Pr[ĤY = 1, Xn ∈ D′n|H = 0] (89)
= Pr[Xn ∈ (Sn ∪ D′′n)|H = 0]

+ Pr[H̃′Y = 1, Xn ∈ D′n|H = 0] (90)
≤ ε1 − µ+ Pr[H̃′Y = 1|H = 0] (91)

and

α2,n = Pr[ĤZ = 1, Xn ∈ Sn|H = 0]

+ Pr[ĤZ = 1, Xn ∈ D′n|H = 0]

+ Pr[ĤZ = 1, Xn ∈ D′′n|H = 0] (92)
= Pr[Xn ∈ Sn|H = 0]

+ Pr[H̃′Z = 1, Xn ∈ D′n|H = 0]

+ Pr[H̃′′Z = 1, Xn ∈ D′′n|H = 0] (93)
≤ ε2 − µ+ Pr[H̃′Z = 1|H = 0]

+ Pr[H̃′′Z = 1|H = 0]. (94)



Since by [10], Pr[H̃′Y = 1|H = 0], Pr[H̃′Z = 1|H =
0], and Pr[H̃′′Z = 1|H = 0] all tend to 0 as n → ∞, we con-
clude that for the scheme in Subsection III-D limn→∞ α1,n ≤
ε1 and limn→∞ α2,n ≤ ε2.

For the type-II error probabilities we obtain

β1,n = Pr[H̃′Y = 0, Xn ∈ D′n|H = 1] (95)

≤ Pr[H̃′Y = 0|H = 1] (96)

≤ 2−n(I(U ′1;Y )+δ(µ)), (97)

and
β2,n = Pr[H̃′Z = 0, Xn ∈ D′n|H = 1]

+ Pr[H̃′′Z = 0, Xn ∈ D′′n|H = 1] (98)
≤ Pr[H̃′Z = 0|H = 1] + Pr[H̃′′Z = 0|H = 1] (99)

≤ 2−n(I(U ′1;Y )+I(U ′2;Z)+δ(µ))

+2−n(I(U ′′1 ;Y )+I(U ′′2 ;Z)+δ(µ)). (100)

where (100) and (97) are proved in [10], and δ(µ) ↓ 0 as
µ ↓ 0.

The described scheme satisfies the rate constraints for all
blocklengths n that are sufficiently large so that (1 − ε2 +
µ)nµ ≥ (2− ε2 + µ) holds:

E[len(M1)] ≤ (ε2 − µ)

+(1− ε1 + µ) · (n(I(U ′1;X) + µ) + 2)

+(ε1 − ε2) · (n(I(U ′′1 ;X) + µ) + 2) (101)
≤ n(R′1 +R′′1 ) = nR1 (102)

and

E[len(M2)] ≤ (ε2 − µ)

+(1− ε1 + µ) · (n(I(U ′2;Y ) + µ) + 2)

+(ε1 − ε2) · (n(I(U ′′2 ;Y ) + µ) + 2) (103)
≤ n(R′2 +R′′2 ) = nR2. (104)

Letting first n → ∞ and then µ ↓ 0, establishes the desired
result in (50).

APPENDIX D
CONVERSE PROOF TO THEOREM 1 WHEN ε1 = ε2

Throughout this section, let hb(·) denote the binary entropy
function, and D(P‖Q) denote the Kullback-Leibler diver-
gence between two probability mass functions on the same
alphabet.

Define ε , ε1 = ε2 and fix θ1 < θ∗1,ε(R1) and θ2 <
θ∗2,ε(R1, R2). The proof consists of three parts. In the first two
parts (Subsections D-A-D-B) we establish constraints based on
the decisions at RY and at RZ , respectively, and in the third
part we combine the constraints.

A. Constraints based on RY ’s decision

Considering only the decision at RY but not at RZ , by [8]
we conclude that there exists an auxiliary random variable U ′1
jointly distributed with the pair (X,Y ) ∼ PXY so that the
following conditions hold:

θ1 ≤ I(U ′1;Y ), (105)

R1 ≥ (1− ε)I(U ′1;X), (106)
U ′1 → X → Y. (107)

B. Constraints based on RZ’s decision
In what follows we establish similar constraints but based on

the decision at RZ . The proof is basically an extension of the
proof in [8] but to a multi-hop network. Consider a sequence
of encoding and decision functions {(φ(n)

1 , φ
(n)
2 , g

(n)
2 )}n≥1

satisfying the type-I and type-II error constraints (12)–(13) for
i = 2. Then, fix a blocklength n and a small number η ≥ 0
and define

µn , n−
1
3 , (108)

Bn(η) , {(xn, yn) :

Pr[ĤZ = 0|Xn = xn, Y n = yn,H = 0] ≥ η}, (109)
Dn(η) , Bn(η) ∩ T nµn

(PXY ). (110)

By constraint (12) on the type-I error probability, we have:

1− ε ≤ Pr[ĤZ = 0|H = 0] (111)

=
∑

(xn,yn)∈Bn

Pr[ĤZ = 0|Xn = xn, Y n = yn,H = 0]︸ ︷︷ ︸
≤1

·PXnY n(xn, yn)

+
∑

(xn,yn)/∈Bn

Pr[ĤZ = 0|Xn = xn, Y n = yn,H = 0]︸ ︷︷ ︸
≤η

·PXnY n(xn, yn) (112)
≤ PXnY n(Bn(η)) + η(1− PXnY n(Bn(η))), (113)

and thus

PXnY n(Bn(η)) ≥ 1− ε− η
1− η

. (114)

Moreover, by [13, Remark to Lemma 2.12], the probability
that the pair (Xn, Y n) lies in the jointly strong typical set
T (n)
µn (PXY ) satisfies

PnXY

(
T (n)
µn

(PXY )
)
≥ 1− |X | |Y|

4µ2
nn

, (115)

and thus by (110) and (114),

PnXY (Dn) ≥ 1− ε− η
1− η

− |X | |Y|
4µ2

nn
, ∆n. (116)

We define the random variables
(
M̃1, M̃2, X̃

n, Ỹ n, Z̃n
)

as the
restriction of the random variables (M1,M2, X

n, Y n, Zn) to
(Xn, Y n) ∈ Dn(η) with their probability distribution given
by:

PM̃1M̃2X̃nỸ nZ̃n(m1,m2, x
n, yn, zn) ,

PXnY nZn(xn, yn, zn) · 1{(x
n, yn) ∈ Dn(η)}

PXnY n(Dn(η))

·1{φ1(xn) = m1} · 1{φ2(yn, φ1(xn)) = m2}, (117)

leading to the following inequalities:

PM̃1M̃2
(m1,m2) ≤ PM1M2

(m1,m2)∆−1
n , (118)

PZ̃n(zn) ≤ PnZ (zn)∆−1
n , (119)

D(PX̃nỸ n ||PnXY ) ≤ log ∆−1
n . (120)



1) Single-Letter Characterization of Rate Constraints:
Define the following random variables:

L̃i , len(M̃i), i = 1, 2. (121)

By the rate constraints (3) and (5), we get under H = 0:

nRi ≥ E[Li] (122)
≥ E[Li|(Xn, Y n) ∈ Dn(η)]PXnY n(Dn(η)) (123)
= E[L̃i]PXnY n(Dn(η)) (124)
≥ E[L̃i]∆n, (125)

where the last inequality holds by (116). Moreover, by defi-
nition, L̃i is a function of M̃i, for i = 1, 2, so we can upper
bound the entropy of M̃i as follows:

H(M̃i) = H(M̃i, L̃i) (126)

=
∑
li

Pr[L̃i = li]H(M̃i|L̃i = li) +H(L̃i) (127)

≤
∑
li

Pr[L̃i = li]li +H(L̃i) (128)

= E[L̃i] +H(L̃i) (129)

≤ nRi
∆n

+
nRi
∆n

hb

(
∆n

nRi

)
(130)

=
nRi
∆n

(
1 + hb

(
∆n

nRi

))
, (131)

where (130) holds by (125) and since the maximum possible
entropy of L̃i is obtained by a geometric distribution of mean
E[L̃i], which is further bounded by nRi

∆n
[14, Theorem 12.1.1].

On the other hand, we lower bound the entropy of M̃i as:

H(M̃i) ≥ I(M̃i; X̃
nỸ n) +D(PX̃nỸ n ||PnXY ) + log ∆n (132)

= H(X̃nỸ n) +D(PX̃nỸ n ||PnXY )

−H(X̃nỸ n|M̃i) + log ∆n (133)
≥ n[H(X̃T ỸT ) +D(PX̃T ỸT

||PXY )]

−
n∑
t=1

H(X̃tỸt|Ũi,t) + log ∆n (134)

= n[H(X̃T ỸT ) +D(PX̃T ỸT
||PXY )]

−nH(X̃T ỸT |Ũi,T , T ) + log ∆n (135)

Here, (132) holds by (120); (134) holds by the super-additivity
property in [15, Proposition 1], by the chain rule, and by
defining

Ũi,t , (M̃iX̃
t−1Ỹ t−1), i ∈ {1, 2}; (136)

and (135) holds by defining T uniform over {1, . . . , n}
independent of all other random variables. Finally, defining

Ũi , (Ũi,T , T ), i ∈ {1, 2}, (137a)

X̃ , X̃T (137b)
Ỹ , ỸT (137c)

results in:

H(M̃1) ≥ n
[
I(X̃; Ũ1) +

1

n
log ∆n

]
, (138)

H(M̃2) ≥ n
[
I(Ỹ ; Ũ2) +

1

n
log ∆n

]
, (139)

thus following (131), (138), and (139), we deduce that:

R1 ≥
I(X̃; Ũ1) + 1

n log ∆n

1 + hb

(
∆n

nR1

) ·∆n, (140)

R2 ≥
I(Ỹ ; Ũ2) + 1

n log ∆n

1 + hb

(
∆n

nR2

) ·∆n. (141)

2) Upper Bounding the Type-II Error Exponent θ2:
Define for each m2 the set

AZ,n(m2) , {zn : g2(m2, z
n) = 0}, (142)

and its Hamming neighborhood

Â`nZ,n(m2) , {z̃n : ∃ zn ∈ AZ,n(m2) s.t. dH(zn, z̃n) ≤ `n}
(143)

for some real number `n satisfying limn→∞ `n/n = 0 and
limn→∞ `n/

√
n =∞. Note that:

AZ,n =
⋃

m2∈M2

{m2} × AZ,n(m2). (144)

Since by definitions (108) and (110), for all (xn, yn) ∈ Dn(η),
and where m2 = φ2(φ1(xn), yn):

PZ̃n|X̃nỸ n(AZ,n(m2)|xn, yn) ≥ η, (145)

then by the blowing-up lemma [16]:

PZ̃n|X̃nỸ n(Â`nZ,n(m2)|xn, yn) ≥ 1− ζn, (146)

for a real number ζn > 0 such that lim
n→∞

ζn = 0. Therefore:

PM̃2Z̃n(Â`nZ,n) =
∑

(xn,yn)∈Dn

m2∈M2

PZ̃n|X̃nỸ n(Â`nZ,n(m2)|xn, yn)

·PX̃nỸ nM̃2
(xn, yn,m2) (147)

≥ (1− ζn). (148)

Now define:

QM̃2
(m2) ,

∑
yn,m1

PM̃1
(m1)PỸ n(yn) · 1{φ2(m1, y

n) = m2},

(149)
and

QM2
(m2) =

∑
xn,yn,zn,m1

PnX(xn)PnY (yn)PnZ (zn)

·1{φ1(xn) = m1, φ2(m1, y
n) = m2} (150)

=
∑

xn,yn,m1

PXnM1
(xn,m1)PnY (yn)

·1{φ2(m1, y
n) = m2} (151)

=
∑
yn,m1

PM1
(m1)PnY (yn) · 1{φ2(m1, y

n) = m2} (152)



Then
QM̃2

(m2) ≤ QM2(m2)∆−2
n , (153)

and

QM̃2
PZ̃n

(
Â`nZ,n

)
≤ QM2P

n
Z

(
Â`nZ,n

)
∆−3
n (154)

≤ QM2
PnZ (AZ,n)︸ ︷︷ ︸
β2,n

enhb(`n/n)|Z|`nk`nn ∆−3
n (155)

= β2,nF
`n
n ∆−3

n , (156)

where kn , min
z,z′:PZ(z′)>0

PZ(z)
PZ(z′) and F `nn , enhb(`n/n) · k`n ·

|Z|`n . Here, (155) holds by [13, Proof of Lemma 5.1]. Then
by standard inequalities (see [8, Lemma 1]), we can obtain the
following expression:

1

n
log

1

β2,n
≤ 1

n(1− ζn)

(
D(PM̃2Z̃n ||QM̃2

PZ̃n) + 1
)

+ δn

(157)
where δn tends to 0 as n→∞.

We further upper bound the divergence terms as follows:

D(PM̃2Z̃n ||QM̃2
PZ̃n)

= I(M̃2; Z̃n) +D(PM̃2
||QM̃2

) (158)

≤ I(M̃2; Z̃n) +D(PỸ nM̃1
||PỸ nPM̃1

) (159)

= I(M̃2; Z̃n) + I(M̃1; Ỹ n) (160)

=

n∑
t=1

I(M̃2; Z̃t|Z̃t−1) + I(M̃1; Ỹt|Ỹ t−1) (161)

≤
n∑
t=1

I(M̃2X̃
t−1Ỹ t−1Z̃t−1; Z̃t)

+I(M̃1X̃
t−1Ỹ t−1; Ỹt) (162)

=

n∑
t=1

I(M̃2X̃
t−1Ỹ t−1; Z̃t) + I(M̃1X̃

t−1Ỹ t−1; Ỹt) (163)

=

n∑
t=1

I(Ũ2,t; Z̃t) + I(Ũ1,t; Ỹt) (164)

= n[I(Ũ2,T ; Z̃T |T ) + I(Ũ1,T ; ỸT |T )] (165)

≤ n[I(Ũ2,TT ; Z̃T ) + I(Ũ1,TT ; ỸT )] (166)

= n[I(Ũ2; Z̃) + I(Ũ1; Ỹ )]. (167)

Here (159) is obtained by the data processing inequality for
Kullback-Leibler divergence; (161) by the chain rule; (163) by
the Markov chain Z̃t−1 → (Ỹ t−1, X̃t−1) → Z̃t; and (164)–
(167) by the definitions of Ũ1,t, Ũ2,t, Ũ1, Ũ2, Ỹ in (136) and
(137) and by defining Z̃ = Z̃T where T is uniform over
{1, . . . , n} independent of all other random variables.

Observe the Markov chain Ũ2,t → Ỹt → Z̃t for any t, and
thus Ũ2 → Ỹ → Z̃ holds by construction for any n.

The second desired Markov chain Ũ1 → X̃ → Ỹ holds only
in the limit as n→∞. To see this, notice that M̃1 → X̃n →
Ỹ n forms a Markov chain, and thus similar to the analysis in
[9, Section V.C]:

0 = I(M̃1; Ỹ n|X̃n) (168)

≥ H(Ỹ n|X̃n)−H(Ỹ n|X̃nM̃1)

+D(PX̃nỸ n ||PnXY ) + log ∆n (169)

≥ n[H(ỸT |X̃T ) +D(PX̃T ỸT
||PXY )] + log ∆n

−H(Ỹ n|X̃nM̃1) (170)
≥ n[H(ỸT |X̃T ) +D(PX̃T ỸT

||PXY )] + log ∆n

−
n∑
t=1

H(Ỹt|X̃tX̃
t−1Ỹ t−1M̃1) (171)

= n[H(ỸT |X̃T ) +D(PX̃T ỸT
||PXY )] + log ∆n

−
n∑
t=1

H(Ỹt|X̃tŨ1,t) (172)

≥ n[H(ỸT |X̃T )−H(ỸT |X̃T , Ũ1,T , T )] + log ∆n (173)

≥ nI(Ỹ ; Ũ1|X̃) + log ∆n, (174)

where (170) holds by the super-additivity property in [15,
Proposition 1]; (171) by the chain rule and since conditioning
reduces entropy; (172) by the definition of Ũ1,t in (136); (173)
by the non-negativity of the Kullback-Leibler divergence, and
by recalling that T is uniform over {1, . . . , n} independent
of all other random quantities, and finally (174) holds by the
definitions of Ũ1, X̃, Ỹ in (137).

To sum up, we have proved so far in (140), (141), (157),
(167), and (174), that for all n ≥ 1 there exists a joint pmf
P

(n)

X̃Ỹ Z̃Ũ1Ũ2
(abbreviated as P (n)) so that the following condi-

tions hold (where IP (n) indicates that the mutual information
should be calculated according to the pmf P (n)):

R1 ≥
(
IP (n)(Ũ1; X̃) + g1(n)

)
· g2(n, η), (175a)

R2 ≥
(
IP (n)(Ũ2; Ỹ ) + g1(n)

)
· g′2(n, η), (175b)

θ2 ≤
(
IP (n)(Ũ2; Z̃) + IP (n)(U ′1; Ỹ )

)
g3(n) + g4(n) (175c)

g5(n) ≥ IP (n)(Ỹ ; Ũ1|X̃), (175d)

for some functions g1(n), g2(n, η), g′2(n, η), g3(n), g4(n), g5(n)
with the following asymptotic behaviors:

lim
n→∞

g1(n) = lim
n→∞

g4(n) = lim
n→∞

g5(n) = 0 (176)

lim
n→∞

g3(n) = 1 (177)

lim
n→∞

g2(n, η) = lim
n→∞

g′2(n, η) =
1− ε− η

1− η
. (178)

By the Markov chains X̃ → Ỹ → Z̃ and Ũ2 → Ỹ → Z̃ we
can further conclude that

P
(n)

X̃Ỹ Z̃Ũ1Ũ2
= P

(n)

X̃Ỹ Z̃
· P (n)

Ũ1Ũ2|X̃Ỹ
, (179)

The proof in this section is concluded by letting n → ∞
and η ↓ 0, and noting that by (175d) the limiting pmf of the
sequence P (n) satisfies the Markov condition Ũ1 → X̃ →
Ỹ . More precisely, we first observe that by Carathéodory’s
theorem [12, Appendix C] for each n there must exist random
variables Ũ1 and Ũ2 satisfying (175) and (179) over alphabets
of sizes

|Ũ1| ≤ |X | · |Y|+ 2, (180)

|Ũ2| ≤ |Ũ1| · |X | · |Y|+ 1. (181)



Then we invoke the Bolzano-Weierstrass theorem and consider
a sub-sequence P (nk)

X̃Ỹ Z̃Ũ1Ũ2
that converges to a limiting pmf

P ∗XY ZU ′′1 U2
. For this limiting pmf, which we abbreviate by

P ∗, we conclude by (175a)–(175c):

R1 ≥ (1− ε)IP∗(U ′′1 ;X) (182)
R2 ≥ (1− ε)IP∗(U2;Y ) (183)
θ2 ≤ IP∗(U2;Z) + IP∗(U

′′
1 ;Y ). (184)

Notice further that since for any k the pair (X̃nk , Ỹ nk) lies in
the jointly typical set T (nk)

µnk
(PXY ), we have |PX̃Ỹ −PXY | ≤

µnk
and thus the limiting pmf P ∗ satisfies P ∗XY = PXY .

Moreover, since for each nk the random variable Z̃ is drawn
according to PZ|Y given Ỹ , irrespective of X̃ , the limiting
pmf also satisfies P ∗Z|XY = PZ|Y . We also notice that under
P ∗ the Markov chain

U2 → Y → Z, (185)

holds because Ũ2 → Ỹ → Z̃ also forms a Markov chain for
any nk. Finally, by continuity considerations and by (175d),
the following Markov chain must hold under P ∗:

U ′′1 → X → Y (186)

To summarize, we establish the existence of a pmf
P ∗XY ZU ′′1 U2

with P ∗XY Z = PXY PZ|Y , and satisfying the
Markov chains (185)–(186) and the constraints (182)–(184).

C. Combining Constraints from Decisions at RY and RZ
The previous Subsections D-A–D-B established the exis-

tence of random variables U ′1, U ′′1 , and U2 satisfying the
three Markov chains U ′1 → X → Y , U ′′1 → X → Y , and
U2 → Y → Z, and constraints

R1 ≥ (1− ε) max {I(U ′1;X); I(U ′′1 ;X)} , (187)
R2 ≥ (1− ε)I(U2;Y ), (188)
θ1 ≤ I(U ′1;Y ), (189)
θ2 ≤ I(U2;Z) + I(U ′′1 ;Y ). (190)

The proof is concluded by showing that for each choice of
U ′1, U

′′
1 , U2, constraints (187)–(190) are relaxed if one replaces

both U ′1 and U ′′1 with the same suitably chosen random vari-
able U1. In fact, we choose U1 = U ′′1 if I(U ′1;Y ) ≤ I(U ′′1 ;Y )
and we choose U1 = U ′1 otherwise. For this choice, (187)–
(190) imply

R1 ≥ (1− ε)I(U1;X), (191)
R2 ≥ (1− ε)I(U2;Y ), (192)
θ1 ≤ I(U1;Y ), (193)
θ2 ≤ I(U2;Z) + I(U1;Y ). (194)

Since the Markov chains U1 → X → Y and U2 → Y → Z
hold by definition, this concludes our converse proof for the
result in (48).
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