
Predictable Bandwidth Slicing with Open vSwitch
Jesse Chen and Behnam Dezfouli

Internet of Things Research Lab, Department of Computer Science and Engineering, Santa Clara University, USA
{jschen, bdezfouli}@scu.edu

Abstract—Software switching, a.k.a virtual switching, plays
a vital role in network virtualization and network function
virtualization, enhances configurability, and reduces deployment
and operational costs. Software switching also facilitates the
development of edge and fog computing networks by allowing the
use of commodity hardware for both data processing and packet
switching. Despite these benefits, characterizing and ensuring
deterministic performance with software switches is harder, com-
pared to physical switching appliances. In particular, achieving
deterministic performance is essential to adopt software switching
in mission-critical applications, especially those deployed in edge
and fog computing architectures. In this paper, we study the im-
pact of switch configurations on bandwidth slicing and predictable
packet latency. We demonstrate that latency and predictability
are dependent on the implementation of the bandwidth slicing
mechanism and that the packet schedulers used in OVS Kernel-
Path and OVS-DPDK each focus on different aspects of switching
performance.

Index Terms—Software Switching, Deterministic Performance,
Latency Prediction, Edge Computing, Fog Computing

I. INTRODUCTION

With the arrival of new paradigms such as edge and fog
computing, the necessity for comprehensive understanding of
network behavior becomes increasingly important as tasks often
have a multitude of requirements that depend on network
performance guarantees, such as minimum flow bandwidth
or packet latency constraints. Some requirements are easy to
fulfill. For example, it is straightforward to track the available
processing and memory resources of edge and fog nodes. How-
ever, the prediction of network parameters such as end-to-end
packet latency is dependent on a variety of factors and requires
a comprehensive understanding of network configuration and
topology [1], [2]. An essential step towards this understanding
is the characterization of packet switching behaviors.

In this paper, we focus on software switching considering its
high applicability in edge and fog computing scenarios [3]. For
example, software switches are utilized to build multi-function
nodes in edge and fog systems, where each node performs both
networking and computation tasks. Specifically, with commod-
ity hardware that is capable of computation, software switches
are used to add switching capability to a network, resulting
in lower costs for deployment, maintenance, and upgrades.
Software switches also offer greater configuration flexibility,
making them more suitable for edge and fog networks which
need to handle highly-dynamic workloads. In contrast, tradi-
tional hardware switches, even when enabled with Software
Defined Networking (SDN) protocols such as OpenFlow and
NETCONF, are limited in their ability to accomplish effective
bandwidth slicing because of queue limitations. While hardware

switches are usually limited to eight queues per port, software
switches do not impose this limitation [4]. Furthermore, the size
of software switches’ flow tables is flexible and can be extended
in ways that hardware switches’ can not. Software switches
open up the possibility of efficient bandwidth isolation for each
task’s data flows and simplify the process of developing and
applying new network policies [3], [5].

Although one of the main benefits of software switches
when compared to traditional hardware switches is the high
degree of flexibility offered, there remains areas of study that
have largely been neglected in existing analyses. Specifically,
existing studies overwhelmingly focus on the switches’ maxi-
mum throughput capabilities [6]–[8] or latency measurements
in best-case, non-realistic scenarios [1], [2], [9]–[13]. These
studies are important to understand the performance limitations
of software switches, but they provide very little to characterize
performance in real-world scenarios. In particular, these studies
fail to provide relevant analysis of packet latency in edge and
fog networking scenarios where the bandwidth is sliced to
provide queue rate guarantees.

In this work, we fill the gap in existing literature by studying
how the various aspects of bandwidth slicing such as packet
scheduling and queue rate affect latency. We study and evaluate
bandwidth slicing using OVS-Kernel Path (OVS-KP) and OVS-
DPDK and identify their strengths and weaknesses in terms of
latency and resource efficiency. In addition to characterizing the
latency patterns in bandwidth slicing scenarios, we also identify
and analyze the underlying causes of these latency patterns. We
observe that although the packet latency of OVS-DPDK is con-
siderably lower than that of OVS-KP, the latency of OVS-KP
is stable and predictable using M/M/1 queuing. This is because
OVS-KP is able to efficiently utilize the available queue buffers.
OVS-DPDK achieves its lower latency by minimizing the time
spent by the packets in the packet scheduler queue; however,
this comes at the cost of inefficient resource utilization. To
keep the queue length short, it drops all packets that are in
excess of the allocated queue rate, which results in high TCP
retransmsission rates and the need for excess ingress bandwidth
in order to maintain the target throughput. The observations of
this paper can be leveraged to employ software switching in
various scenarios, such as for building edge and fog computing
systems that need to handle the diverse latency and throughput
requirements of IoT applications.

The rest of this paper is organized as follows. We present
the related work in Section II. In Section III, we overview the
two software switches used in this work. In Section IV, we
discuss the importance and extraction of effective queue rate. In

ar
X

iv
:2

10
7.

08
33

4v
1

 [
cs

.N
I]

 1
8

Ju
l 2

02
1

Section V, we show that the latency of OVS-KP is predictable
using the M/M/1 queueing model. We discuss the latency of
software switching with a user-space data plane in Section VI.
In Section VII, we discuss the resource efficiency tradeoffs
between different variants of the Open vSwitch. In Section VIII,
we present discussions on the current and future applicability
of this work, highlight its significance, and conclude the paper.

II. RELATED WORK

Existing works on the performance evaluation of software
switches are either limited in scope and ignore latency as a
performance parameter, or present an evaluation of oversimpli-
fied use-cases that are not representative of real-world network
configurations.

Fang et al. [6] evaluate a broad spectrum of the available soft-
ware switching solutions and present a direct comparison of the
maximum throughput values of each of the evaluated switches.
Their evaluation of software switches remains surface-level
as they focus on the intricacies of inter-switch comparability,
leaving much to be desired in terms of performance analysis.
McGuinness et al. [7] focus on performance evaluations of
the BESS software switch in the context of high throughput
datacenter use-cases. Although they evaluate the throughput
accuracy of the rate limiter, its effect on latency has been ne-
glected. Furthermore, datacenters cannot be compared to edge
and fog networking scenarios, as the two types of networks have
different hardware and applications. Meyer et al. [8] present a
model for software switch performance, but limit the scope of
their model to only include throughput measurements. Overall,
these studies evaluate the performance of software switches
primarily in terms of throughput and neglect to include any
measurements of latency.

In [9], Zhang et al. perform evaluations across various state-
of-the-art software switching solutions. They analyze perfor-
mance of the OVS-DPDK, snabb, BESS, FastClick, VPP, and
netmap VALE software switches and present comparisons of
their maximum throughput and packet latency. Despite the
breadth of comparisons, their performance analysis is narrow
and only encompasses the most basic of configurations and
measurements. Emmerich et al. [1] present an in-depth perfor-
mance evaluation of Open vSwitch (OVS). However, their work
primarily focuses on throughput, and the analysis of latency is
for very simple scenarios that are insufficient to model edge
and fog networking use-cases. They evaluate latency only as
a function of flow throughput and ignore the performance
impacts of bandwidth slicing in multi-queue scenarios. He et al.
[14] evaluate a software switch bandwidth slicing mechanism;
however, their tests were performed in simple scenarios and
their results are presented without a thorough analysis of the
latency values. The same shortcoming is exhibited in [10]–[13]
in terms of latency evaluation: their models of packet latency
are for simple, synthetic testing scenarios. The latency of a
single flow has been evaluated in [10]–[12], while [13] only
evaluates the latency of a single packet. These scenarios are
rudimentary and cannot be used to accurately generate models
of bandwidth-sliced software switch behaviors.

Machine #1: Traffic Source

Flow Generator

NIC

tshark

Data Link Layer

Transport/
Network Layer

User
Space

Kernel
SpaceNIC NIC

OVS-vswitchd

DPDK Forwarding Plane

PMD PMD

User
Space

Kernel
SpaceOVS Kernel Module

(Forwarding Plane)

NIC NIC

OVS-vswitchd

OVS-KP Data Flow

OVS-DPDK Data Flow

Machine #2.a: OVS-KP

Machine #2.b: OVS-DPDK

NIC

Machine #3: Traffic Destination

NIC

Data Link Layer

Transport/
Network Layer

NIC

OVS-KP Data Flow

OVS-DPDK Data Flow

Flow Generator tshark

Fig. 1: The testbed used for the studies of this paper. The two software switches
used are OVS-KP and OVS-DPDK.

III. METHODOLOGY AND BACKGROUND

A. Testbed Setup

Figure 1 presents the testbed architecture. To measure the
latency of OVS packet switching, we ran experiments on a
testbed consisting of three machines: a traffic source, a software
switch, and a traffic destination. We used Intel 82580 1GbE and
Intel X550T 10GbE NICs. The traffic source sends UDP and
TCP traffic to the traffic destination through the OVS. For the
UDP flows with fixed bandwidth, we used iPerf, which supports
specification of UDP flow bandwidth. In the tests, we modified
the number of queues, the allocated throughput of each queue,
and the type of data flows in each queue. We will further discuss
the details of each test in their relevant sections.

Packets are captured using tshark at the egress and ingress
ports of the traffic source and traffic destination, respectively.
To ensure the synchronization of timestamp values, the traffic
source and traffic destination are two VMs running on a single
machine, and the clocks of these two VMs are synchronized
with that of the hypervisor. This configuration allows us to
accurately measure and analyze latency values.

B. Open vSwitch

Open vSwitch (OVS) [15]–[17] is an open source, production
quality software switch that is compatible with various hyper-
visors and container systems. OVS is highly programmable and
is configured using the OpenFlow and OVSDB protocols [18].
We consider the two main variants of OVS: (i) OVS Kernel-
Path (OVS-KP), which implements its data path via a kernel
module, and (ii) OVS with the Data Plane Development Kit
(OVS-DPDK), which implements its data path through Poll
Mode Drivers (PMDs) in the user-space. We use OVS 2.15.0
and DPDK 20.11.1.

We perform bandwidth slicing on the switches by using their
packet schedulers. The packet schedulers that we utilize are
configured to shape flows via minimum guaranteed rate and/or
maximum limited rate parameters. When combined with flow
rules that direct packets to the queues, data flows are shaped
to specific minimum and maximum rates.

For OVS-KP, we use the Hierarchical Token Bucket (HTB)
packet scheduler since it is widely used and available in
the Linux traffic control module. HTB is a classful queuing
discipline that supports hierarchical traffic shaping. Its rate

control mechanisms are implemented with the token bucket
filter algorithm, and its hierarchical token borrowing system
allows parent classes to share tokens with their child classes.
This token sharing system allows each child class to enforce a
guaranteed minimum rate, while also sharing excess available
bandwidth with their sibling classes.

OVS-DPDK uses a different packet scheduler based on the
Two-Rate, Three Color Marker (TRTCM) algorithm. Similar
to HTB, TRTCM also uses a token bucket for rate control and
provides traffic shaping abilities such as guaranteed minimum
and maximum queue rates.

Although HTB and TRTCM are very similar on the surface,
their rate control mechanisms are significantly different, which
results in different latency and throughput behaviors for queues
with the same allocated rate. HTB is a hierarchical implemen-
tation of the token bucket filter algorithm, meaning that when a
packet arrives at the head of the queue and there are no tokens
available, the packet waits in the queue until tokens become
available, at which time the packet is dequeued and sent to
the NIC. On the other hand, for OVS-DPDK, when a packet
arrives at the head of the queue, the TRTCM token buckets are
checked for tokens, and if there are not enough tokens for the
packet, the packet is dropped. Most significantly, this difference
in behavior results in different dequeue rates from the queues;
as we will discuss in Sections IV and VI, the dequeue rate
impacts flow latency and throughput.

IV. EXTRACTING EFFECTIVE QUEUE RATE

In a switching system, a packet experiences three types of
latency: transmission latency, processing latency, and queueing
latency. Transmission latency is directly related to NIC’s trans-
mission rate and can be easily calculated. Processing latency
is caused by various factors, including copying a packet to and
from different queues, looking up a packet’s forwarding deci-
sion in the tables, or waiting for hardware I/O operations. Since
hardware switches are solely dedicated to one function, packet
processing delay in a hardware switch is consistently low. On
the other hand, the processing delay of software switches is
usually higher and with greater statistical variation. Choice
of packet scheduler also affects processing delay. Software
switches sacrifice processing latency in exchange for greater
flexibility. Last, and the focus of this section, is queueing
latency (Lq), which is defined as the time spent by a packet
in the switch’s queue, waiting to be transmitted. This latency
depends on the queue rate, flow rate, and packet scheduler.

In every software switch, each packet must traverse three
queues: the ingress NIC queue, the egress NIC queue, and the
packet scheduler’s queue. In this system, throughput is limited
by the lowest-rate queue, which is usually the user-allocated
packet scheduler queue. As a result, a packet spends the most
time waiting in the packet scheduler queue because queueing
latency experienced by a packet increases exponentially as the
queue input rate approaches the queue service rate. We show
that this queueing latency follows an M/M/1 queue trend and
that with enough knowledge of the system, the latency can be
predicted when using OVS-KP.

0 20 40 60
Burst Size (Packets)

0.5

1.0

B
ur

st
L

at
en

cy
(s

)

×10−3

(a) Burst Latency for OVS-KP

0 20 40 60
Burst Size (Packets)

0.00

0.25

0.50

0.75

1.00

In
di

vi
du

al
P

ac
ke

t
L

at
en

cy
(s

)

×10−3

1st packet in burst 60th packet in burst

(b) Per Packet Latency for OVS-KP

0 20 40 60
Burst Size (Packets)

0.0

0.5

1.0

1.5

B
ur

st
L

at
en

cy
(s

)

×10−3

(c) Burst Latency for OVS-DPDK

0 20 40 60
Burst Size (Packets)

0.0

0.5

1.0

1.5

In
di

vi
du

al
P

ac
ke

t
L

at
en

cy
(s

)

×10−3

1st packet in burst 60th packet in burst

(d) Per Packet Latency for OVS-DPDK

Fig. 2: Packets are dequeued from HTB and TRTCM queues in different sized
groupings. HTB dequeues in groupings of 16 packets while TRTCM deqeuues
in groupings of 8 packets.

A. Observing Packet Scheduler Behavior

An important factor in predicting packet latency through
any queueing system is the queue’s dequeue behavior. In
our case, we need to understand how the packet schedulers
dequeue traffic from their rate-limited queues. Although rate-
limited queues are allocated with bits/s or bytes/s values, the
packet scheduler is not actually dequeueing in such small
increments. The dequeue behavior varies, depending on how
the packet scheduler is implemented, and even different packet
schedulers with similar queue parameters behave differently.
This often-overlooked variable causes packets to experience
different queueing latency values, even if the allocated queue
rates are identical.

In these experiments, we generate UDP flows with various
packet burst sizes, then we track the individual packet latencies
and the latency of each burst as a whole. Figure 2 presents the
results. As Figures 2a and 2c demonstrate, when we increase
the number of packets in each burst, the latency of the whole
burst increases in a stepped pattern. This indicates that both
HTB and TRTCM dequeue packets from their queues in bursts
of packets, instead of one at a time. To further support this,
the analysis of individual packet latencies in Figures 2b and
2d show that the latencies of each packet in the bursts are
grouped in segments of about 16 and 8 packets each, although
there exist small variation in grouping sizes for each dequeue
segment. Figure 2b and 2d also highlight that the grouping
pattern holds true for bursts of all sizes: no matter how big
the burst, packets are always dequeued in fixed size groups.
Using this information, we extrapolate that the effective rate of
HTB queues must be calculated in units of 16 packets, and the
effective rate of TRTCM queues must be calculated in units of
8 packets.

These observations can be leveraged to enhance communi-
cation determinism and performance in various contexts. For
example, this knowledge of burst latency behaviors provides
devices with the ability to send messages that take advantage

Message 1 (data and command)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2

Messages 1 is delivered Message 2 is delivered

Message is delivered

Delay

Delay

(a)

(c)

Message 1 (data) Message 2 (command)

Message 1 (data 1/2) Message 2 (data 2/2) Message 3 (command)

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 2

Message 3 is delivered Messages 1 and 2 are delivered

Delay

(b)

Fig. 3: A scenario where an IoT edge device needs to send data and a command
to a server. Only case (c) allows faster transmission of data to the server. Once
the server receives the data, it can start processing, and when the command is
received, the action can be performed immediately.

of the fact that the latency of a 5-packet message is equal
to that of a 15-packet message. For example, assume an IoT
edge device needs to send data and command to a server.
In the first scenario, data and command are sent as a single
message, which is segmented into 20 packets, as Figure 3a
shows. This results in the delivery of data and command at
once. In the second scenario, two messages are generated for
data and one message for command. Assume the first message
is segmented into 7 packets, the second into 8 packets, and
the third into 5 packets. Once these messages are received
by the transport layer of the device, the packets are sent in
an interleaved manner. As it can be observed in Figure 3b,
the command message is delivered first, which cannot be used
because the data messages have not been received yet. In the
third scenario we rely on the behavior of software switches
and generate two messages: one for data, which is transmitted
first, and one for command, transmitted second. As Figure
3c shows, once the data is received by the server, it can
start processing the data, and when the command arrives, the
server can perform the action immediately. Therefore, the third
solution provides the minimum latency and better utilization of
resources. A similar method can be used regarding controller-
switch communication in SDNs. To ensure timely delivery and
execution of commands, the controller can manage the ordering
of sent packets based on the command type and size.

V. DELAY PREDICTION OF OVS-KP BANDWIDTH SLICING

We confirm that the queuing latency of OVS-KP switching
follows an M/M/1 trend. We set up an experiment to measure
the relationship between the latency of packets in a TCP flow
and the queue rate. We generate and route a TCP flow through
a rate-limited queue in the switch. We do not set any flow
rate at the traffic source because the TCP flow rate naturally
increases until it detects packet loss caused by the rate-limiter
in the software switch.

We present the results in Figure 4. This figure demonstrates
that (i) queue rates are the determining factor for rate-limited
TCP packet latencies, and (ii) the pattern of observed latencies
align with the latency values that one would expect when
modeling each queue as an M/M/1 queue. The results for 1GbE

0.0 0.2 0.4 0.6 0.8 1.0
Queue Rate (bps) ×109

0.00

0.05

0.10

0.15

0.20

0.25

L
at

en
cy

(s
)

Predicted Latencies Observed Latencies

(a) 1GbE NIC

0.0 0.2 0.4 0.6 0.8 1.0
Queue Rate (bps) ×109

0.00

0.05

0.10

0.15

0.20

0.25

L
at

en
cy

(s
)

Predicted Latencies Observed Latencies

(b) 10GbE NIC

Fig. 4: The queueing latency of TCP packets when switched by OVS-KP. The
delay is dependent on the allocated queue rate, and with the knowledge of
queue ingress rate and packet scheduler implementation, the expected latency
can be predicted.

(Figure 4a) and 10GbE (Figure 4b) NICs are presented side-
by-side to show that NIC line-rate is not a significant factor in
this experiment.

It is important to note that when calculating the expected
latency, the queue rate must be represented via the amount
of data that is dequeued in one instance, i.e., the effective
queue rate. In Section IV-A, we showed that HTB dequeues 16
packets at a time. Thus, instead of calculating expected latency
using the queue’s bit-rate value, we calculate the expected
latency using queue rate in units of 16 packets. This is where
knowledge of average packet size is important, as we now com-
bine average packet size, queue bit rate, and packet scheduler
dequeue behavior to generate effective queue rate values. We
calculate the expected latency via: Lq = 1

µ(1−ρ) (1) where µ is
the effective queue rate, and ρ is the queue utilization ratio [19].
We include the latency predictions in Figure 4 for comparison
against the observed values. The relationship between queue
rate and observed latency is what is expected from an M/M/1
queueing system. In Figure 4, we validate that predictions based
off of observed throughput (ρ) and packet scheduler knowledge
(µ) are accurate. We generate values for ρ by comparing the
observed throughput at the traffic source’s egress port and the
allocated queue rates. The observed throughput is extracted
from the wireshark captures at the traffic source’s egress port.
µ is calculated by converting the units of each queue rate from
bits per second to packet groupings per second. Given that small
variations as low as 0.5% in queue utilization ratio significantly
affect latency prediction, the results confirm that this latency
prediction methodology is valid and accurate.

We showed that for bandwidth-sliced flows, queueing latency
is the most significant portion of end-to-end latency and that it
overshadows transmission latencies; transmission latency on a
1GbE link for a single packet is on the order of microseconds,
while the observed switching latencies are up to four orders
of magnitude greater. Current task allocation schemes either
ignore latency as a task request parameter, or assume that
network latencies consist only of trivially calculated transmis-
sion latencies. In contrast, our method allows the prediction
of communication latency, which can be leveraged to address
the requirements of various tasks in edge and fog computing

0.0 0.2 0.4 0.6 0.8 1.0
Queue Rate (bps) ×109

0.0

0.5

1.0

1.5

L
at

en
cy

(s
)

×10−3

(a) 1GbE NIC

0.0 0.2 0.4 0.6 0.8 1.0
Queue Rate (bps) ×109

0.00

0.02

0.04

0.06

0.08

0.10

0.12

L
at

en
cy

(s
)

×10−3

(b) 10GbE NIC

Fig. 5: For OVS-DPDK, the end-to-end packet latency is not as predictable as
that of OVS-KP due to the differences between HTB and TRTCM.

systems. As another example of leveraging this method, a SDN
controller can accurately enforce bandwidth slicing schemes
that satisfy the expected communication latency between edge
devices and switches. Also, to configure switches with latency
bounds, the controller can enforce bandwidth slicing methods
along all the controller-switch paths.

VI. OVS-DPDK BANDWIDTH SLICING

In this section, we focus on OVS-DPDK and the effect of
the TRTCM packet scheduler on packet latency, in comparison
to OVS-KP’s HTB. For a direct comparison between the two
variants of OVS, this time we use OVS-DPDK and run an
experiment similar to that of Section V. We present the results
in Figure 5. The results show that the latency behaviors are
not similar at all to that of Figure 4. OVS-DPDK queues that
are rate-limited with TRTCM cannot be modeled as an M/M/1
queueing system because the queues are not being dequeued at
the allocated queue rate. Although the rate of data sent to the
egress NIC matches the allocated rate, the rate at which packets
are removed from the queue depends on the CPU frequency and
OVS-DPDK’s tick rate. Unlike HTB, which uses the availability
of tokens to limit the rate at which packets are removed from
the queue, TRTCM uses the availability of tokens to decide
which actions to take. If there are tokens available in the bucket
when a packet is dequeued, the packet is passed on to the NIC.
If there are not enough tokens for the packet, the packet is
dropped. The token bucket is refilled at the allocated queue
rate, hence, the amount of data sent to the NIC is limited
by that value. This approach results in a very high dequeue
rate for all TRTCM queues, and the effective dequeue rate is
on the order of several Gbps. For OVS-KP, the value of ρ in
Equation (1) is close to 1 because the flow rate is approaching
the effective queue rate, whereas for OVS-DPDK, that value
is now much closer to 0 because the effective queue rate is
much higher than the flow rate. This results in packets spending
significantly less time waiting in the packet scheduler’s queues.
As we can see from a direct comparison of Figures 4a and 5a,
for TCP flows that are rate limited to 500 Mbps, the latency
is reduced from 19.22 ms with HTB to 0.27 ms with TRTCM,
a 70x reduction. Although the magnitude of latency reduction
varies depending on the allocated queue rate and NIC line rate,
this shows that a significant portion of the latency experienced
by the packets that traverse OVS-KP’s rate-limited queues is

0 200 400 600 800 1000
Queue Rate (Mbps)

(a)

0

2000

4000

6000

T
C

P
R

et
ra

ns
m

is
si

on
s

(p
kt

/s
)

0 200 400 600 800 1000
Queue Rate (Mbps)

(b)

0.0

0.5

1.0

1.5

C
w

nd
S

iz
e

(M
by

te
s)

0 200 400 600 800 1000
Queue Rate (Mbps)

(c)

0

2000

4000

6000

T
C

P
R

et
ra

ns
m

is
si

on
s

(p
kt

/s
)

0 200 400 600 800 1000
Queue Rate (Mbps)

(d)

0.0

0.5

1.0

1.5

C
w

nd
S

iz
e

(M
by

te
s)

1GbE HTB (OVS-KP)

1GbE TRTCM (OVS-DPDK)

10GbE HTB (OVS-KP)

10GbE TRTCM (OVS-DPDK)

Fig. 6: Comparing the performance of switching a TCP flow through OVS-KP
and OVS-DPDK using 1GbE ((a) and (b)) and 10GbE ((c) and (d)) NICs. The
queue rate control method of OVS-DPDK is considerably less efficient than
that of OVS-KP.

the time spent waiting in the packet scheduler’s queue. OVS-
DPDK’s rate control mechanism is able to avoid these long
queueing latencies, while still being able to accurately rate-
limit the traffic to the egress NIC.

VII. RESOURCE EFFICIENCY COMPARISONS

On the surface, OVS-KP and OVS-DPDK’s rate control
mechanisms accomplish the same goal: limit the rate of
traffic that is sent to the egress NIC. Although differences
in implementation have significant implications for latency,
another implication that is just as important is the effect of
the packet scheduler on resource utilization efficiency. One of
the main goals in edge/fog task allocation is to utilize resources
effectively and efficiently, which, for network resources, is usu-
ally accomplished through bandwidth slicing and rate control
mechanisms. We have observed that the HTB and TRTCM
packet schedulers are capable of accurately rate-limiting a
queue; however, our observations also show that OVS-DPDK’s
choice to drop all packets that are in excess of the allocated
queue rate is a tradeoff between latency and effective bandwidth
utilization.

We run experiments with the same setup as Figure 4 and 5,
and we use iperf3 to capture data for TCP retransmission
rate and TCP congestion window size. Figures 6a and 6c
present the results for TCP retransmission rate. We observe
that rate-limiting with TRTCM causes significantly more TCP
retransmissions compared to HTB. Rate-limiting to 500 Mbps
with TRTCM results in 4233 and 4652 TCP retransmissions per
second for 1GbE and 10GbE NICs, respectively. This indicates
that for TCP traffic, maintaining an egress throughput of 500
Mbps out of the switch requires an additional 50.8 Mbps and
55.8 Mbps of retransmission traffic, due to the large number of
packets that TRTCM drops. More importantly, although OVS-
DPDK is able to switch individual packets with lower latency
than OVS-KP, the high rate of packet drops/retransmissions
has an adverse effect on application message latency. The
application layer is not dependent on individual packet latency,
rather, is dependent on the latency of messages which can

be composed of multiple packets. In a situation with a 10%
retransmission rate, large application layer messages are very
likely to experience retransmissions and slowdowns due to the
inefficiencies of TRTCM.

Figures 6b and 6d show that rate-limited flows with TRTCM
have much smaller congestion window sizes than flows that are
rate-limited with HTB. Once again, this is related to TRTCM—
dropping all packets that are over the allocated queue rate is
extremely limiting for TCP congestion window size. Each time
a packet is dropped and retransmitted, the congestion window
of that TCP connection is halved. For TCP flows with high
retransmission rates like those we observed with TRTCM, the
congestion windows are severely limited and are unable to grow
due to the constant packet drops and subsequent window size
adjustments. The frequent congestion window size adjustments
also results in spikes and dips in flow throughput, which have a
detrimental effect on latency predictability. As such, application
layer messages that are sent through OVS-DPDK always have
an element of unpredictability due to high retransmission rates
while messages sent through OVS-KP do not.

Since OVS-DPDK operates completely in user-space, it
achieves its high performance by constantly consuming 100%
of at least one processor core. For high performance use-
cases, a separate core is used for each port, resulting in several
processor cores being dedicated entirely to running the DPDK
user-space data path. In low-cost and low-energy edge and
fog computing scenarios, this is not desirable, especially when
compared to OVS-KP, which consumes less than 5% of a single
processor core with HTB while switching 10Gbps traffic with
hundreds of flow rules and queues.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we studied how packet schedulers affect
switching latency and resource efficiency. We first developed
models to predict the latency of the M/M/1 queueing system
that can be found in the HTB packet scheduler. Specifically,
we analyzed the behavior of the packet scheduler, then used
these observations to predict packet latency of TCP flows. We
then discussed the design differences between OVS-KP and
OVS-DPDK packet schedulers and showed how each achieves
either low latency or resource utilization efficiency at the cost
of the other. The results presented in this work provide a
foundation from which we can begin to build deterministic
software switching systems that can be specifically used to
build low-cost processing and packet switching systems using
commodity hardware.

The design decisions that allow OVS-DPDK’s TRTCM to
achieve low latency in comparison to OVS-KP’s HTB come at
the cost of inefficient bandwidth usage, throughput instability,
and reduced latency predictability. This information is espe-
cially important to design networks with specific performance
metrics in mind. Besides, this information can be leveraged to
design packet schedulers that combine the desired properties
of HTB and TRTCM. For example, a new packet scheduler
that seeks to enforce latency bounds while also achieving flow
reliability could dequeue packets according to the queue rate

similar to HTB, and also dynamically adjust queue length so
that packets that do not meet the packet latency requirements
are dropped, similar to TRTCM. This way, the benefits of using
the queue buffers can be realized, while also keeping queueing
latency within established bounds.

REFERENCES

[1] P. Emmerich, D. Raumer, S. Gallenmüller, F. Wohlfart, and G. Carle,
“Throughput and latency of virtual switching with Open vSwitch: A
quantitative analysis,” Journal of Network and Systems Management,
vol. 26, no. 2, pp. 314–338, 2018.

[2] U. Javed, A. Iqbal, S. Saleh, S. A. Haider, and M. U. Ilyas, “A stochastic
model for transit latency in OpenFlow SDNs,” Computer Networks, vol.
113, pp. 218–229, 2017.

[3] C. Powell, C. Desiniotis, and B. Dezfouli, “The fog development kit: A
platform for the development and management of fog systems,” IEEE
Internet of Things Journal, vol. 7, no. 4, pp. 3198–3213, 2020.

[4] P. Heise, F. Geyer, and R. Obermaisser, “Deterministic OpenFlow: Per-
formance evaluation of SDN hardware for avionic networks,” in 11th
International Conference on Network and Service Management (CNSM).
IEEE, 2015, pp. 372–377.

[5] J. Sheth and B. Dezfouli, “Enhancing the energy-efficiency and timeliness
of IoT communication in WiFi networks,” IEEE Internet of Things
Journal, vol. 6, no. 5, pp. 9085–9097, 2019.

[6] V. Fang, T. Lvai, S. Han, S. Ratnasamy, B. Raghavan, and J. Sherry,
“Evaluating software switches: hard or hopeless?” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2018-136,
2018.

[7] R. McGuinness and G. Porter, “Evaluating the performance of software
NICs for 100-gb/s datacenter traffic control,” in Symposium on Architec-
tures for Networking and Communications Systems, 2018, pp. 74–88.

[8] T. Meyer, F. Wohlfart, D. Raumer, B. E. Wolfinger, and G. Carle,
“Validated model-based performance prediction of multi-core soft-
ware routers.” Praxis der Informationsverarbeitung und Kommunikation,
vol. 37, no. 2, pp. 93–107, 2014.

[9] T. Zhang, L. Linguaglossa, J. Roberts, L. Iannone, M. Gallo, and P. Gi-
accone, “A benchmarking methodology for evaluating software switch
performance for NFV,” in IEEE Conference on Network Softwarization
(NetSoft). IEEE, 2019, pp. 251–253.

[10] S. Shanmugalingam, A. Ksentini, and P. Bertin, “DPDK Open vSwitch
performance validation with mirroring feature,” in 23rd International
Conference on Telecommunications (ICT). IEEE, 2016, pp. 1–6.

[11] T. Begin, B. Baynat, G. A. Gallardo, and V. Jardin, “An accurate and
efficient modeling framework for the performance evaluation of DPDK-
based virtual switches,” IEEE Transactions on Network and Service
Management, vol. 15, no. 4, pp. 1407–1421, 2018.

[12] D. Sattar and A. Matrawy, “An empirical model of packet processing
delay of the Open vSwitch,” in IEEE 25th International Conference on
Network Protocols (ICNP), 2017, pp. 1–6.

[13] A. W. Manggala, A. Tanwidjaja et al., “Performance analysis of white
box switch on software defined networking using Open vSwitch,” in
International Conference on Wireless and Telematics (ICWT). IEEE,
2015, pp. 1–7.

[14] K. He, W. Qin, Q. Zhang, W. Wu, J. Yang, T. Pan, C. Hu, J. Zhang,
B. Stephens, A. Akella et al., “Low latency software rate limiters for
cloud networks,” in Proceedings of the First Asia-Pacific Workshop on
Networking, 2017, pp. 78–84.

[15] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer.” in Hotnets, 2009.

[16] J. Pettit, J. Gross, B. Pfaff, M. Casado, and S. Crosby, “Virtual switching
in an era of advanced edges,” 2010.

[17] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and imple-
mentation of Open vSwitch,” in 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2015, pp. 117–130.

[18] J. Chen and B. Dezfouli, “Modeling control traffic in software-defined
networks,” in 7th IEEE International Conference on Network Softwariza-
tion (NefSoft), 2021.

[19] J. Abate and W. Whitt, “Transient behavior of the M/M/l queue: starting
at the origin,” Queueing systems, vol. 2, no. 1, pp. 41–65, 1987.

	I Introduction
	II Related Work
	III Methodology and Background
	III-A Testbed Setup
	III-B Open vSwitch

	IV Extracting Effective Queue Rate
	IV-A Observing Packet Scheduler Behavior

	V Delay Prediction of OVS-KP Bandwidth Slicing
	VI OVS-DPDK Bandwidth Slicing
	VII Resource Efficiency Comparisons
	VIII Conclusion and Future Work
	References

