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Abstract—In this paper, we study short-packet communica-
tions (SPCs) in multi-hop wireless-powered Internet-of-Things
networks (WPINs), where IoT devices transmit short packets to
multiple destination nodes by harvesting energy from multiple
power beacons. To improve system block error rate (BLER) and
throughput, we propose a best relay-best user (bR-bU) selection
scheme with an accumulated energy harvesting mechanism.
Closed-form expressions for the BLER and throughput of the
proposed scheme over Rayleigh fading channels are derived
and the respective asymptotic analysis is also carried out. To
support real-time settings, we design a deep neural network
(DNN) framework to predict the system throughput under
different channel settings. Numerical results demonstrate that the
proposed bR-bU selection scheme outperforms several baseline
ones in terms of the BLER and throughput, showing to be an
efficient strategy for multi-hop SPCs. The resulting DNN can
estimate accurately the throughput with low execution time. The
effects of message size on reliability and latency are also evaluated
and discussed.

Index Terms—Block error rate, deep neural network, energy
harvesting, multi-hop IoT networks, short-packet communica-
tion, relay selection, ultra-reliable low-latency communications.

I. INTRODUCTION

Short-packet communication (SPC) plays an essential role
in Internet-of-Things (IoT) and the fifth generation (5G) wire-
less networks that satisfies reliability and latency requirements
[1]. SPCs were widely employed in high-speed trains, intel-
ligent transportation, and factory automation, enabling ultra-
reliable low-latency communication (URLLC) services, for
example, a reliability of 1 —10~° and latency of 1 ms for
delivering a 32-byte packet [2]. To extend the lifetime of IoT
devices, SPCs together with wireless energy transfer (WET)
have been realized in IoT networks, thus introducing SPC-
based green communications with stable energy supplies [3]—
[5]. In [3], SPCs with WET were investigated for URLLC
while the retransmission protocol was proposed for finite-
length energy/information transfer systems in [4]. Resource
allocation for IoT networks with WET was studied in [5] to
improve the transmission reliability.

Recently, cooperative multi-hop relaying has received con-
siderable attention with the aim of extending the radio cov-
erage and improving the network performance [6], [7]. How-

ever, in the context of SPC, the analysis has been restricted
to dual-hop or single-hop transmissions, without any relay
selection schemes [2], [3], [8]. Moreover, the impact of
finite blocklength coding on multi-hop wireless-powered IoT
networks, which brings several technical challenges related
to the information-theoretic perspective, has not been well
investigated in the literature.

In another front, deep neural network (DNN) has recently
gained recognition as a viable solution to deal with various
practical problems, such as queue management, resource allo-
cation, and security problem in IoT systems and contemporary
wireless networks [9]. Due to the accuracy in approximating
high non-linear functions at considerably low-complexity, it
has activated various interesting applications including predic-
tion of secrecy outage probability, relay selection, and routing
optimizations [9], [10]. DNN-based relay selection helps to
expedite real-time settings in [oT networks since DNN models
can precisely estimate desired performance metrics from high
dimensional raw data even with dynamic environments and
complex radio conditions. In this paper, we first study SPCs
in multi-hop wireless-powered IoT networks (WPINs), where
the best relay-best user (bR-bU) selection scheme is studied
aiming to enhance the system performance, accompanied by
a new deep learning evaluation approach. In a nutshell, we
summarize the main contributions of this paper as follows:

o We propose the bR-bU selection scheme to improve the
block error rate (BLER) and throughput in multi-hop
WPINs, where the accumulate-then-transmit mechanism
is employed for WET to enhance energy utilization.

o We derive new closed-form expressions for the BLER of
bR-bU scheme, based on which the asymptotic BLER and
throughput analysis are also carried out to further provide
more insights into designs of the considered system setup.

o To support real-time settings, we design a DNN frame-
work to predict the throughput of bR-bU scheme with
high accuracy and low-latency inference process.

o Numerical results are provided to show that the bR-bU
scheme outperforms several baseline ones in terms of
BLER and throughput. It is also revealed a natural conflict
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Fig. 2. Time block structure for accumulate-then-transmit WET and WIT.

between reliability and latency targets for fixed packet
sizes.

Mathematical Notations and Functions: Boldface represents
vector and |.|| symbolizes the Frobenius norm. E{-} and
()" are the expectation operator and transpose conjugate,
respectively. T'(.) and ~(.,.) represent the Gamma function
[11, Eq. 8.310.1] and the lower mcomplete Gamma function
[11, Eq. (8.350.1)], respectively. GC ,1-|-] denotes the Meijers
G-function [11, Eq. 9.301], and Kq,( ) is the v-order modified
Bessel function of second kind [11, Eq. (8.432)].

II. SYSTEM MODEL
A. System Description and Operation

It is considered a multi-hop WPIN, where a source (S)
with Ns antennas transmits data packets to multiple single-
antenna destination (D) nodes via intermediate IoT devices
located in (K — 1) clusters with K > 2, as shown in Fig. 1.
It is assumed that each IoT device acts as a relay and uses
decode-and-forward protocol to transmit short packets over
multi-hop network. The relay, Ry, is the n-th relay node,
with n = 1,..., Ng, in the k-th cluster being a member of a
set of relays R = {Rgn|k =1,..., K}, where Rg,, = D,,.
Since IoT devices have limited power supplies, they perform
harvest energy harvesting from a set of power beacons P =
{PBi[l =1,...,L}. In this system, S can be considered as an
access point and uses its own energy while single-antenna IoT
devices are operated on half-duplex mode. We assume that
all channels experience quasi-static independent identically
distributed Rayleigh fading and perfect knowledge of channel
state information (CSI) is available at each receiver terminal.

Consider a channel from X to Y, where X € {PB;,R;.,}
and Y € {Rpy1;,D,}. Let uxy be the channel coefficient
of the X — Y link. The channel gain |uxy|?> follows
an exponential distribution, whose cumulative distribution

function (CDF), F,,,2(x), and probability density func-
tion (PDF), f\uxv|2( z), are Flyy2(z) =1 —exp(—5-) and
Flue|2(T) = 1= —exp(—x_), respectively, where Axy is the
mean of |uxY|é The large-scale pathloss can be modeled as
Axy = L(dxy/do)” 77" [7], where dxy presents the distance
from X to Y, opr, is the pathloss exponent, dy is the reference
distance, and £ denotes the measured pathloss at dy.

We consider short-packet transmission in multi-hop WPINs
with two consecutive phases including WET and wireless
information transfer (WIT), respectively [3], [4]. We employ w
channel uses for WET and WIT processes and each channel
use occurs in period of T'; hence, the total time for multi-
hop transmission will be wT'. Moreover, we denote by « the
channel use for WET process such that WET consumes a
period of a7 and (w — «)T will be spent for WIT process,
as sketched in Fig. 2. The time-division multiple access is
adopted for WIT, where the period (w—«)T is equally divided
into K hops, with 8, = (w—«)/K, k=1,..., K, being the
channel uses of each hop transmission. To enhance the WET
capability at each relay, the accumulate-then-transmit WET
protocol is employed, where the last relays have more chances
to continuously harvest and accumulate energy before turning
to data transmission. The last time period 3,1 at relay Ry ;
is always reserved for its data transmission. Without loss of
generality, the total time period of harvesting and accumulating
energy at Ry ; can be expressed as ol + an;ll BmT. Thus,

the harvested energy at Ry ; from L PBs can be expressed as
k—1

i3
Ey,; = ZU(G + Z 5m> TP|gk?

. ()
=1 m=1

where gy, ;; is the channel coefficient of the link PB; — Ry, ;,
€ (0,1) presents the energy conversion efficiency, and P

denotes the transmit power of each power beacon. In the period

of fBi, the transmit power of relay at hop k is expressed as

E i
Poi= 2" ZXkP\gku ; 2)

where xj, £ n(a+ Zm 1 Bm)/ﬁk
In the first-hop transmission, the maximal-ratio transmission
beamforming [12] is employed at the source to transmit short-
packets to the relay R; ; located in cluster 1. The instantaneous
signal-to-noise ratio (SNR) at R; ; can be expressed as

Y16 =7, /i’ w]?, 3)
where w € C™s and h;; € Cs represent the beamforming
and channel coefficient vectors between S and R; ;, respec-
tively, 7, £ Ps/o?, with Ps and o2 being transmit power
at S and the noise variance, respectively. Based on [6], the
beamforming vector is designed based on the channel between
S and Ry ;, which is formulated as w = hy ;/||hy ;]|

B. Best Relay-Best User Scheme

The bR-bU scheme selects the best relay as well as user
providing the highest channel gain from the transmitter for
packet transmission and reception, respectively. In the first
hop, the instantaneous SNR at R1 .= can be presented as

M= max. ’71|h1 ’LW| _max_ 7, |hy . “4)
=1,. i=1,...,Ny



For the remaining hops, we assume that Ry, ;« is the best relay
at cluster k; thus, the relay at the cluster k£ + 1 is selected by

the following criterion:
L

_ max P i | “ P i= 5
max. 1XW; |9k i [P Peie 5125 (5)
where 7 £ P/o2. The instantaneous SNR at hop & + 1 can

be expressed as

Rit1,5+ = arg

max

P XMZPLGHH (6)

The outstanding performance of the proposed bR-bU for SPCs
over benchmark schemes will be demonstrated in Section V.

Tk = 3

III. PERFORMANCE ANALYSIS

Considering SPC at hop k, where a packet of m information
bits (message size) at Ry_1; is transmitted to Ry ; over (i
channel uses, with 5 > 100 [4], received SNR equals to
Yk, and a transmission rate given by r, = m/S;. Thus, the
average BLER at hop k can be calculated as [3]

Clw) =7k
ex(r) = E Q( ; (N
{ V(v)/ Br
where Q) denotes  the  Gaussian  Q-function,
C(r) 2 logy(1 + z) is the Shannon capacity, and
V(z) = (1 - ﬁ (log, €)? is the channel dispersion.

Directly evaluating an exact closed-form expression for
er in (7) is very difficult since it involves a complicated
Gaussian Q-function. To tackle this problem, we apply a tight
approximation approach to derive the end-to-end (e2e) BLER,
which will be presented in the next subsection.

A. BLER Analysis

From (4) and (6), the BLER of bR-bU scheme can be
calculated by the following theorem.

Theorem 1. The closed-form expression for the BLER of bR-
bU scheme can be derived as

K
562,3%17[1751]1_[ [1—ex], (8)
k=2
where €1 and €y, are written respectively, as
t(Ns—1) btilAD 1
e =1+6p Z > (- < )”tqH )
t=1 ¢q=0

x[1(1+ ¢, to1 (T Ap,1) )

Ny,
o i1 (NE  Apgdek
=1 §k\/7%;;§;( 1) ( ¢ ) (L) (x7y)

- V(l + q7tul(71)\D,1)_1)}»

G2l tu (x1Y) ! 1
L3\ Aprdex | L+1,1,0
a1 [tk (xky) ! 1
a G1’3< Aprder | L+1,1,0 (10)

where vy, ug, 0k, and . in (10) can be presented, respec-

tively, as v = Ck — 1/(25k\/ﬁk); U = Ck + 1/(2(5k\/ﬁk),
6 = [2m(2%™ — 1)]7Y/2, and ¢, = 2™ — 1, while these pa-
rameters in (9) can be obtained by giving the index k = 1.

Proof: Please, see Appendix A. [ ]

As shown in (9) and (10), the BLER of bR-bU scheme is

expressed under special Meijer’s G-functions, which may be

difficult to draw some insights from a non-expert in the field.

This motivates us to perform an asymptotic analysis, which
results in simpler expressions.

B. Asymptotic BLER at High SNR

Theorem 2. The asymptotic expression for the BLER of bR-
bU scheme when 7 — oo can be derived as

e%e & Py (G) + Y Fay (o), (1D
k=2

where F., (.) and F., (.) are given:in (19) and (21), respec-
tively.

Proof: Please, see Appendix B. [ ]
C. Throughput Analysis

We consider the delay-limited transmission mode, where
the throughput is calculated by using the e2e BLER. For a
fixed data rate Ry, bits per channel use (BPCU), and the
effective communication time % over total transmission
time w7, the effective e2e throughput can be expressed as

_ Rip(w—a)(1
wK

- 8826)

(12)

To support real-time settings, we design a DNN model for
throughput prediction in the next section.

IV. DEEP LEARNING DESIGN FOR THE THROUGHPUT
PREDICTION

A. Description of DNN

Fig. 3 illustrates the architecture of the designed DNN
model to predict the throughput of bR-bU scheme, which
consists of multiple hidden layers between an input and an
output layers. The related system variables with their ranges,
which comprise of the number of hops with K € [1,6], the
number of antennas at S with Ns € [1,5], the number of
PBs with L € [1,4], the number of relays in each cluster
with Nj € [1,5], the positions of PBs with zpg € [6,9] and
ypg € [6,9], the average SNR with 7 € [1, 30], the channel
uses for WET with o € [100,200], and the target data rate
with Ry, € [1, 3], are used as the input variables of DNN. The
throughput is generated based on (12) which is the output of
DNN. Based on these setups, the whole dataset having 120000
samples is divided randomly into the training and test sets
with the ratio of 80-20. We have numerically observed that
this number of samples is sufficient to obtain high accurate
predictions in most cases.

B. The Learning Model

In each hidden layer, the rectified linear unit (ReLU)
activation function is used to perform a threshold operation
to every input element [10]. Compared with the Sigmoid
or Tanh activations, the ReLU activation provides significant
benefits such as computational simplicity, easier to optimize
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Fig. 3. The proposed DNN model for throughput prediction.

due to its near-linear behavior, and avoiding the problem of
vanishing gradients [13]. In this DNN model, the output layer
has no activation function because the regression model can
directly output a value without using any transformations. We
present the activation process at the r-th neuron of p-th layer

connecting to that of (p — 1)-th layer as follows:
prl

al = ReLU( Z wfqaf;_l + bf),
=1

where w?, is the weight connected to the g-th neuron in
the (p — 1)-th layer, b2 is the scalar bias at p-th layer, and
Qp—1 is the number of neurons in the (p — 1)-th layer.
For the regression problem, the loss function indicating the
error between predicted and expected values, which can be

expressed as
1 & 2
‘C(A) = K Z_l (7_(m) - T(m)) )

where A is the number oyffl_training samples, 7(,,) and T(,,)
are the expected and predicted values, respectively. We apply
the adaptive moment estimation optimization algorithm for the
backpropagation procedure to update the weights and biases,
which aims at minimizing the loss function of the entire
training set.

(13)

(14)

C. Real-Time Prediction

After completing the offline training, the resulting DNN
model can be presented under a low-latency inference mapping
function as F(.). In general, when the DNN is well trained,
it can provide real-time and highly accurate predictions.
We use the obtained DNN model to predict the throughput
value whenever new information is available at the input.
In particular, we arrange each input sample into a vector
X 2 [K, Ns, L, Ny, zpB, ypB, 7, @, R¢p,] and it is placed at the
input of the DNN, a predicted throughput will appear at the
output, which is presented as

7 = F(x). (15)
Through a low-latency inference process in (15), the system
throughput can be predicted by the DNN model with a short
time. By adaptively adding more hidden layers or more neu-
rons into the designed DNN, the training error can be reduced
without occurring overfitting. If the predicted throughput is
not close to the actual one, the DNN will need to be re-
trained with new appropriate settings (new learning rate, the
number of hidden layers, and hidden neurons) until achieving
the smallest error in (14).

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical examples are presented to evaluate
the achievable performance of the proposed relay selection
schemes. Monte-Carlo simulations are used to verify our
analysis results. A bi-dimensional plane is considered, where
the simulation variables are set as follows: dsp = 30 m,
dy=1m, L = —30 dB, opr, = 3, n = 0.8, w = 1000,
m = 1024 bits, « = 100, Ns = 3, L = 2, P = P,
K =5, N, =3, Ry, = 1, and 0% = 1. The position of S,
Rk,i» D, and PB are (0,0), (k/K,0), (30,0), and (7.0,7.0),
respectively. We implement the DNN with 4 hidden layers and
170 hidden neurons in Python 3.7.4 with Keras 2.3.1 using
TensorFlow 2.0.0, where is end-to-end trained in 70 epochs
with the initial learning rate as 10~3(dropped 90 % after 10
epochs). The RMSE is calculated over the whole test set and

it can be presented as RMSE = \/L’(ﬁ), where A denotes
the number of samples in the test set. To demonstrate the
excellent performance of the bR-bU scheme, we consider three
benchmark schemes as follows:

e “Random Relay-Random User (rR-rU)”: The rR-rU
scheme randomly selects the relay as well as user for
packet transmission and reception, respectively.

« “Best Relay-Random User (bR-rU)”: The bR-rU scheme
selects the best relay providing the highest SNR from
the transmitter for packet transmission while randomly
choosing a user for packet reception.

o “Random Relay-Best User (rR-bU)”: This scheme ran-
domly selects a relay for packet transmission while
picking the best user having the highest SNR from the
transmitter for packet reception.

1009 —oxg 10°
7
~
=
E —+—1R-rU (Sim.)
108 bR-rU (Sim.) 10°
—w—rR-bU (Sim.) a=100,
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bR-bU (Ana.) o bR-bU (Sim.)
— — —=bR-bU (Asym.) bR-bU (Ana.)
0 10 20 30 2 4 6 8 10
7 (dB) K

(a) (b)
Fig. 4. Average BLER versus 7 and the number of hops with different c.

As shown in Fig. 4(a), the bR-bU scheme provides better
BLER than baseline schemes such as rR-rU, bR-rU, and rR-
bU. Multiple relays and users jointly involving in the relay
selection process enable the bR-bU scheme to achieve high
diversity and reliable transmissions while deploying single-
relay or single-user selection in baseline schemes results in
poor BLER performance. The effect of the number of hops
on the BLER is shown in Fig. 4(b), where the difference of «
values gives different number of optimal hops. However, when



K is large, the BLER gets worse, showing that the effect of K
is more important than that of a. The analytical results match
perfectly with the simulation ones while the asymptotic results
are tight upper bounds, confirming results in Theorems 1 and
2, respectively.
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Fig. 5. The latency and reliability of short and long messages.

In Fig. 5, the short-messages for SPCs provide lower latency
and higher reliability than the long-message ones. The latency
and reliability can be defined, respectively, as % and
(1 — €e2e) X 100%, with T = 3us [3], [14]. The 64-byte
messages have lower latency and higher reliability than 512
and 1024-byte ones. To guarantee the reliability, these long
messages can be framed into packets with more than 4000
channel uses by using channel coding schemes [1], their
latencies are still high and can not meet the requirement of
URLLC applications, e.g., in excess of 10 ms to deliver a
1024-byte packet, as shown in Fig. 5(b). Therefore, long-
messages can not meet the constraint of latency, whereas
the SPCs with short-messages can attain either latency or
reliability requirement.
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Fig. 6. RMSE of the DNN model and throughput versus 7.

In Fig. 6(a), we plot the RMSE with different hidden
layers to show some insights into the DNN design. As can
be observed, the more hidden layers embedded in the DNN,
the lower the RMSE, and the higher accuracy the predicted

Throughput (BPCU)

Fig. 7. Throughput versus o and K with 7 = 30 (dB).

throughput is. It is clear that multiple hidden layers em-
ployed for the DNN can generalize dataset, leading to high
neural network capacity, whilst the single-layer is incapable
of learning the complicated patterns of dataset, resulting in
the high RMSE. Fig. 6(b) shows that the throughput of all
schemes is improved as 7 increases since the relays have
more opportunities to harvest a sufficient amount of energy
from PBs, resulting in the throughput enhancement. Moreover,
the bR-bU scheme provides the best performance while the
rR-rU scheme is the lowest performer. There is an excel-
lent agreement among Monte-Carlo simulations, theoretical
analyses, and DNN prediction results, verifying our designed
approaches.

Fig. 7 illustrates the effect of the number of hops, K, and
channel uses for WET, «, on the throughput of bR-bU scheme.
When K increases, the BLER for packet transmission is large
due to the pathloss effect; thus, the throughout is reduced
as in (12). When « increases, more channel uses for data
transmission are required by the network. Moreover, DNN
prediction results coincide with the throughput of bR-bU ones
in most cases, verifying our effective design of the DNN
model.

TABLE I
THE COMPARISON OF EXECUTION TIME AMONG SIMULATION (Sim.),
THEORETICAL ANALYSES BASED ON THEOREM 1 (Theo.), AND DNN
PREDICTION (DNN), WITH 7 = 20 dB.

Scenarios {L, N, K} | Sim. Theo. DNN RMSE
{2,3,4} 10.872s | 01.800s | 0.0279s | 1.5751 x 10— %
{3,4,5} 17.276s | 02.377s | 0.0299s 2.4 x 1073
{4,5,6} 24.124s | 03.014s | 0.0319s | 4.3168 x 10— 4%

Finally, the execution time of the throughput evaluation of
bR-bU scheme is shown in Table I, in which each sample
in the first column (Sim.) is averaged with 5 x 10° trials
using of Monte-Carlo simulations. These results show that the
simulation requires the longest time while the DNN model
is found to have the fastest execution time, which enables a
novel DNN-based real-time setting in practical WPINs.



VI. CONCLUSIONS

In this paper, we proposed a bR-bU scheme to improve
the BLER and throughput performance of WPINs with SPCs.
The asymptotic BLER was also evaluated in a tractable form
which was shown to be a tight upper bound for the BLER
at high SNR regime. The DNN model was designed for the
bR-bU scheme to predict its throughput. Numerical results
demonstrated the BLER and throughput improvements of bR-
bU scheme over several baseline ones. Moreover, the DNN
model accurately predicted the throughput with low execution
time. These results advocated the proposed DNN method for
real-time solution in future WPINs with SPCs.

APPENDIX A
PROOF OF THEOREM 1
First, the BLER at hop k can be rewritten from (7) as

B

In order to calculate the integral (16), we apply a linear

(16)

t f f t 'Yk) Tk ~ = ,
approximation for Q-function as @) N (V&)
where =(;) can be expressed as [3], [4]

) Yk S Uk,
E(’yk)z 0.5—(5]“/5}9(’)/}9— Ck), Ve < Ve < ug, 17

0, Ve > Uk
With the above approximation, we continue to apply the partial
integration method, which ylelds

€k = Ok ﬁk;/ F,, (x)dz.
We can now proceed with the derivation for the CDFs of T
and 7. Considering (4) with ||h; ;|| being a Gamma random
variable (RV), and consequently ~; is the maximum of Ny

Gamma RVs. Thus, the CDF of v; is given by [6, Eq. (25)]
N t(Ns—

(18)

e3P ()
19)

where coefficient bt is given in [6, Eq. (17)]. Plugging (19)
into (18) with the 1ndex k=1, 1t follows that

Nyt(Ns— . 5 1 xﬁfl
e1=1 —l—Z Z ( )b /(ADJ)exp (— /\DJ)dx.
(20)

t=1 ¢=0
After solving the integral in (20), €1 can be obtained as shown
in (9). Next, the CDF of v, can be given as [7, Eq. (13)]

N —1)t-1 xT %
Fy(2) =1 = 2 2(r(lg) <]\t[k) (XkADZAEﬂ)

t=

tr
X Kpl2y| ————— ).
L( XMD,/«)\E,W)
Then, substituting (21) into (18), then applying [11, Eq.

(9.34.3)] to represent K,(.) function in terms of Meijer’s G-

function, thus yielding

N, _ Uk N

zk: 217 L6\/By [Ny, /G2’0 tr(xpy) !
—l)lftF(L) t 0,2 )\D,k)\E,k

2y

ep=1—

L0 )dx.

(22)

P2 ]

Finally, the integral (22) can be solved by using the results in
[15], where £, can be obtained as shown in (10).

APPENDIX B
PROOF OF THEOREM 2

By utilizing the first order Riemann integral approximation,
ie., [V f(z)dz=(y—=)f(Z52) for (18), we obtain the average
BLER at hop k as

er = Py (Ge)- (23)
Furthermore, the asymptotic expression for the BLER of bR-
bU scheme can be attained by invoking the following expres-
sion: [Tr_, (1 — 1) ~ 1 — S5, &}, which is valid for small
zj. Finally, from (8) and (23), the asymptotic expression for
the BLER of bR-bU scheme can be asymptotically expressed
as (11), which concludes the proof of Theorem 2.
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