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Abstract—Due to the huge surge in the traffic of IoT devices 

and applications, mobile networks require a new paradigm shift 

to handle such demand roll out. With the 5G economics, those net-

works should provide virtualized multi-vendor and intelligent sys-

tems that can scale and efficiently optimize the investment of the 

underlying infrastructure. Therefore, the market stakeholders 

have proposed the Open Radio Access Network (O-RAN) as one 

of the solutions to improve the network performance, agility, and 

time-to-market of new applications. O-RAN harnesses the power 

of artificial intelligence, cloud computing, and new network tech-

nologies (NFV and SDN) to allow operators to manage their infra-

structure in a cost-efficient manner. Therefore, it is necessary to 

address the O-RAN performance and availability challenges au-

tonomously while maintaining the quality of service. In this work, 

we propose an optimized deployment strategy for the virtualized 

O-RAN units in the O-Cloud to minimize the network’s outage 

while complying with the performance and operational require-

ments. The model’s evaluation provides an optimal deployment 

strategy that maximizes the network’s overall availability and ad-

heres to the O-RAN-specific requirements. 

Keywords—O-RAN, 5G Systems, NFV, Outage, Mobile Net-

works, Optimization, Self-Healing.  

I. INTRODUCTION 

The need for mobile networks will increase as we move 
towards a more connected world. The number of connected 
devices is set to surpass three times the global human population 
by 2022 [1]. To deal with such large demands, Network Service 
Providers (NSPs) must offer a diverse set of services to cope 
with the expanding varieties of connected devices and their 
applications such as Internet of Things (IoT), Vehicle-to-
Everything (V2X) communications, and extreme real-time 
communications. With 5G networks, NSPs can mitigate many 
diversification, latency, and scale challenges through the use of 
network slicing, Software Defined Networking (SDN), and 
Network Function Virtualization (NFV) technologies [2]. With 
the current age of next-generation mobile networks, three 
categories of next-gen services can be achieved, namely, En-
hanced Mobile Broadband - eMBB (up to 10 Gbit/s), Ultra-Re-
liable and Low-Latency Communications - uRLLC (up to ~ 1 
ms), and Massive Machine Type Communications (mMTC). 
With the emergence of 5G networks, users expect high Quality 
of Experience (QoE) with seamless services that are available 
anywhere anytime. However, millions of users can be disrupted 

due to network outages [3]. It is true that softwarization 
(including the virtualized cloudification) of the RAN units 
promises many performance-aware advantages, but its 
resiliency and availability are still key issues that should be 
addressed. 5G has low latency requirements; thus, manual 
outage management is not enough anymore. Therefore, absence 
of the proper outage management and compensation approaches 
does not only affect the repair process, but it defeats the 5G sys-
tem purpose. Additionally, network growth and complexity put 
additional stress on the network operators' expenses, which are 
already very significant. Studies show that the node failure 
probability can reach 60-99% with the increase in the network 
density and radio nodes in 5G networks [4]. That said, these 
challenges can be greatly mitigated within the mobile network 
using SDN, NFV, and mobile edge computing (MEC) technol-
ogies [5]. These technologies can be easily integrated with the 
O-RAN due to its agility and openness [6]. In this case, the O-

 
 

Fig. 1. The O-RAN architecture showing the implementation of 

intelligence modules across all layers, the O-Cloud platform, and 

within the dotted line, the O-RAN VNFs 



RAN units can be hosted on the cloud to support dynamic ser-
vice function chaining (SFC), network slicing, and dynamic 
scaling. Fig. 1 shows the O-RAN architecture. The standards 
and approaches of the O-RAN that can be used to enable cloud-
ification and self-organization functionalities are still being re-
searched and studied.  

We aim to contribute to these developments by providing 

optimized self-healing functionalities for deploying O-RAN 

units. However, deploying these units is challenging as their lo-

cation can greatly affect the network's availability, latency, cost, 

and other performance metrics. This work is the first step to-

wards a full-scale optimized self-healing engine for O-RAN. In 

this paper, we present an optimization model to deploy the O-

RAN units and their components (redundant and dependent) 

within the regional and edge clouds while minimizing the outage 

per unit and per SFC. In addition, we aim to provide fast recov-

ery in case of failure in the units or their hosts. We summarize 

our main contributions as follows. 

• Identify the abstract details of the O-RAN units and map 
them to the NFV infrastructure. 

• Address O-RAN units’ self-healing from an outage 
management approach to maintain availability baseline.  

• Propose a resiliency-aware deployment strategy for the 
O-RAN units that integrates the performance (la-
tency/computational) and availability constraints. 

• Capture various availability aspects for the deployment 
approach, including redundancy models for the units, 
dependency relation between different units, and out-
age-related metrics of the nodes (failure rates and recov-
ery times for servers and O-RAN units). 

• Design an optimization model as the first building block 
of an intelligent approach for O-RAN self-healing.  

 

The remainder of this paper is organized as follows; Section 

II covers the related work, Section III discusses the problem 

overview and modelling. Section IV covers the evaluation and 

use case, Section V presents the results, Section VI concludes 

the work, and Section VII presents our acknowledgment. 

II. RELATED WORK 

Sharma et al. [8] design a provider network to achieve high-

availability SFCs using disparate network components and low-

availability Virtualized Network Functions (VNFs), however, 

they discard the dependency between different VNFs. Fan et al. 

[9] propose an online greedy algorithm to minimize physical 

resource consumption while meeting the client's SFC availabil-

ity constraints and considering off-site redundant VNF compo-

nents. Araujo et al. [10] focus on the decision of assigning 

backup SFC to fulfill its availability constraints while improv-

ing the resource efficiency across all VNFs. Jammal et al. [11] 

propose an optimization model for a regional cloud to enhance 

the availability of its applications while considering the multi-

tier components’ relationships. However, it discards low la-

tency applications and edge-aware services and can only be ap-

plicable to applications of one regional cloud. These papers 

highlight the importance of availability in terms of cost, relia-

bility, and quality of the network’s services. Considering these 

factors and to the best of our knowledge, there has not been a 

proposed benchmark solution that addresses availability for the 

O-RAN cloudification use-case. In this paper, we treat availa-

bility as the main objective to achieve when hosting all the VNF 

components (O-RAN units) in the cloud while considering the 

specific O-RAN constraints such as latency between the VNF 

components, regional and edge placement constraints, and re-

dundancy constraints. We provide an exact method of a binary 

integer programming (BIP) optimization model as a benchmark 

for optimizing self-healing in the O-RAN use case. 

III. PROBLEM OVERVIEW AND MODELLING 

With O-RAN, different vendors can be used to avoid single 

point of failure and vendor lock-in. However, such an ad-

vantage can add other limitations on the network. Adopting the 

concept of multiple vendors does not guarantee more reliable 

or secure solution than a proprietary one. When the O-RAN 

units are implemented on different software and hardware, new 

unexpected failures or vulnerabilities might emerge. With this 

complicated system and to maintain the 5G and O-RAN in-

teroperability promises, it is important to propose a proactive 

outage-aware approach for managing those O-RAN units.  

The O-RAN architecture consists of a Non-Real-time RAN 

Intelligent Controller (non-RT RIC) that provides machine 

learning model-training, data acquisition, service management, 

and policy generation; a near-RT RIC that hosts the micro-

service-based applications controlling the RAN infrastructures; 

an O-RAN Central Unit (O-CU) that controls the radio protocol 

stacks, an O-RAN Distributed Unit (O-DU) that manage 

the physical layer functionalities, and lastly a Radio Unit (O-

RU) that provides RF processing. In this architecture, the RAN 

is virtualized and hosted on open hardware with intelligence 

and machine learning capabilities. The O-DU, O-CU, and the 

near-RT RIC are considered VNFs that can be hosted on com-

mercial off-the-shelf (COTS) servers [6]. Those O-RAN VNFs 

interact with each other forming a SFC where near RT-RIC 

 
 

Fig. 2. O-RAN deployment scenario B showing the O-RAN SFC 

from the near-RT RIC in the regional cloud towards the UEs   



communicates with O-CU (dependency relation 1) and O-CU 

communicates with O-DU (dependency relation 2). Those 

SFCs should be optimally placed on regional or edge clouds 

while maintaining the O-RAN operational requirements.  

When an O-RAN is deployed using one of the scenarios de-

fined by the O-RAN Alliance in [7], the logical network func-

tions (near-RT RIC, O-CU, O-DU) are hosted as VNFs on the 

O-Cloud. As no system is perfect, software- or hardware-re-

lated faults and failures can occur and jeopardize the entire net-

work operation by affecting service to the end-user. In Self Or-

ganizing Networks (SONs), healing from such events must be 

handled autonomously and rapidly since the outage of VNFs 

can disrupt services and have a catastrophic effect on mission-

critical-applications. This section discusses the availability 

modeling and the proposed approach to mitigate O-RAN-

related outages. 

A. Availability modeling   

The O-RAN alliance outlines all the deployment scenarios 

for the O-RAN VNFs that can be hosted on three locations: re-

gional cloud, edge cloud, and cell site. However, the task of 

placing these VNFs is challenging and critical to the network's 

performance, health, recovery, and failure tolerance due to the 

various physical conditions at different cloud locations. For in-

stance, regional clouds can have huge datacenters with high-

performance servers while edge cloud servers have limited re-

sources and performance. Choosing a deployment on highly re-

liable servers can greatly reduce the network’s resiliency, en-

hance its self-healing abilities and its overall availability 

With this in mind, we propose a BIP optimization model for 

a downtime-aware deployment strategy for the O-RAN VNFs. 

The optimization model considers the operational and perfor-

mance constraints of the O-RAN with the goal of not only min-

imizing the per-VNF downtime, but also the SFC downtime in 

case of a failure or fault in the VNF or its hosting server. This 

placement strategy deploys the requested VNFs and their re-

dundant instances on servers with high Mean Time to Failure 

(MTTF) and low Mean Time to Repair (MTTR) values to en-

sure the probability of a failure is minimized. It is necessary to 

note that each node (VNF or host) has its own MTTF, MTTR, 

and Recovery Time (RT). The availability calculations of O-

RAN deployment depend on these three operational measures. 

They are defined as follows: 

• MTTF: This metric defines the lifespan of a node be-

fore it stops operating. The MTTF is inversely propor-

tional to the failure rate (λ). 

• MTTR: This metric represents the average time needed 

to repair a node upon its failure.  

• Recovery Time: This metric represents the failover 

time of a node's workload to its redundant ones if any.  

 

 The downtime reflects the time when a VNF fails and be-

comes unavailable to the network traffic until it is repaired or 

recovered where the traffic is re-routed to its redundant one. 

That said, the optimization model considers the placement of all 

redundant units in the network to ensure that when a failure oc-

curs, those units are hosted in servers that allow the network to 

operate without violating any operational and performance con-

straints such as latency and dependency requirements.  The 

availability of each node ( node ) is calculated as follows. 

 node
node

node node

MTTF

MTTF MTTR
 =

+
 (1) 

 

We design our proposed solution using the scenario B de-

ployment use case defined by the O-RAN Alliance because it is 

the primary focus for the assessment of O-RAN cloudification 

and its support to latency-aware/sensitive applications [7]. Fig. 

2 depicts such a scenario where the near-RT RIC type VNFs 

should be hosted on the regional cloud and the O-CU and O-

DU type VNFs should reside on the edge cloud. 

B. Mathematical formulation  

We propose a BIP model to solve the above-mentioned 

challenges and serve as a benchmark for downtime-aware VNF 

deployments in the O-RAN. This section covers the notation, 

objective function, and the constraints of the model.  

Table I. BIP Parameters and Variables 

Parameter/variable Description 

{1, ..., }s=  Set of all servers 

{1, ..., }v=  Set of O-RAN units 

{1, ..., }v k=  Set of redundant units 

{1, ..., }v q=  Set of dependant units 

{1, ..., }Regional rs=  Set of servers located in the regional cloud 

{1, ..., }Edge es=  
Set of servers located in the edge cloud 

Dep Dependent unit 

Rd Redundant unit 

i  Failure rate of node i (unit or server) 

ij  Latency between two VNF units i and j 

'

Server

ss  Latency between two servers s and s’ 

Threshold

ij  Allowed latency between two VNF units i 

and j 

Rd

ij  Latency between a unit i and its redundant j 

is  Placement decision variable of unit i on 

server s 

R

i  Resources requiremnt for unit i where R can 
be CPU (C) or Memory (M) 

sR

s  Available resources of server s where Rs 

can be CPU (C) or Memory (M) 

P

i  Binary value indicating if unit i should be 

placed on the edge or regional cloud 

R

it  MTTR of node i 

 



 

1) Notations and decision variables 

This section defines the decision variables presented in 

equation (2) and parameters of the BIP model. Table I. lists all 

the variables and parameters of the BIP model with their de-

scriptions. 

 
1

0
is

if i is hosted on s

Otherwise



= 


 (2) 

{0,1} ,is i s       

0 ,ij i j     

2) Objective Function 

Our objective is to maximize availability thus minimizing 

the downtime of the deployed O-RAN VNFs. The availability 

of a single VNF component is calculated as shown in equation 

(1). The network is considered available when all its compo-

nents (VNFs and servers) are available; thus, it is a series con-

figuration. Said that, the network availability depends on the 

VNFs’ and servers' failure rates (failure length and incidents), 

and the repair time [12]. Therefore, when selecting the host for 

a corresponding VNF, the model uses equations (3) (4) to filter 

out servers that maximize the new MTTF of the deployed VNF 

(equation 3) and minimize its new MTTR (equation 4). In this 

case, the failure rate and repair time of the VNF when it is 

hosted, are affected by its own MTTF/MTTR and those of its 

host as shown in the following equations. 

 
1Hosted

VNF

VNF Server

MTTF
 

=
+

 (3) 

 

 Hosted

VNF VNF ServerMTTR MTTR MTTR= +  (4) 

 

Combining equations (3) and (4) into the availability calcu-

lation, we formulate the objective function (5) for the VNFs set 

 and their corresponding servers set  as follows. This ob-

jective function aims at maximizing the availability of the 

whole network and its units.   

 

| | | |

1

max
1

( )

i s
is

R Ri s
i s

i s

t t

 


 

  
  +
  
  + +  +  

  (5) 

3. VNF Latency Constraints 

To minimize the downtime across the deployed VNFs, the 

proposed model ensures that the VNFs and their generated 

SFCs operate properly to maintain QoS and meet the Service 

Level Agreements (SLAs). The latency between the VNFs 

components must not exceed its operation threshold in the O-

RAN architecture for O-Cloud deployments [7]. The optimiza-

tion model ensures that any two communicating O-RAN units 

(whether redundant or dependent units) are hosted on servers 

that satisfy their delay requirements. For instance, given sce-

nario B from the O-RAN-defined deployment scenarios, the 

maximum one-way delay (OWD) between the near-RT RIC 

type VNF and O-CU type VNF is 1ms [7]. In this case, the near-

RT RIC should be placed in the regional cloud, and all O-

CU/DU should be placed in the edge cloud while maintaining 

its delay constraint. The following equations reflect the latency 

constraints between the O-RAN units. Constraints (6) and (8) 

ensure that the latency between two O-RAN intercommuni-

cating units i, j (dependent or redundant units) are hosted on 

server(s) s, s’ that satisfy their latency requirements/threshold. 

Constraints (7) and (9) ensure that the latency between the re-

dundant O-RAN units and its intercommunicating ones i, j (de-

pendent or redundant units) are hosted on server(s) s, s’ that 

satisfy their latency requirements/threshold. These constraints 

ensure that upon failure of the active unit, its redundant can 

handle the workload and communicate with other units without 

affecting the network performance and SLA. They also ensure 

that different O-RAN units can communicate properly without 

any service degradation.  

 ' '( 1) 0server rd

ss is js ij    + − −   (6) 

, , , 'i j s s     

 ' '( 1) 0server rd

ss is js ij    + − −   (7) 

, , , 'vi j s s       

 ,Threshold

ij ij i j     (8) 

 0 ,Rd

ij ij i j −     (9) 

4. Computational Resources Constraints 

The following constraints ensure that a server s has enough 

resources in terms of CPU cores (C) and memory (M) when 

hosting one or more VNFs i. 

 

| |

scc

is i s

i

s       (10) 

 

| |

sMM

is i s

i

s       (11) 

5. Regional and Edge Cloud Constraints 

Two server sets are considered for the deployment of the 

VNFs in scenario B. Set one is located in the regional cloud, 

and the proposed model provides optimized placements of the 

near-RT RIC VNFs on those servers. On the other hand, set two 

is located in the edge cloud to host the O-CU and O-DU in-

stances. Constraints (12) and (13) ensure that near-RT RIC type 

VNFs can only be hosted in the regional cloud while O-CU or 

O-DU type VNFs can be only deployed in the edge.  

 

0

( ) 1
Regional

r

r

Regional

is i

s

i 
=

 =    (12) 

 

0

( ) 1
Edge

e

e

Edge

is i

s

i 
=

 =    (13) 

6. Co-location & Anti-location Constraints 

Anti-location constraint (14) is designed to ensure that the 

principal VNF i and its redundant k should be placed on two 



different servers. Such a constraint maximizes the continuity of 

the units' operation. This constraint is also used for a unit i and 

its dependants k if the latter can operate in the absence of its 

sponsor. If the dependant unit cannot operate in the absence of 

its sponsor upon a failure, co-location constraint (15) is ena-

bled. In this constraint, both the dependant and its sponsor can 

share the same node to maintain the operation's continuity and 

minimize the VNFs’ downtime.   

 1is ks +   (14) 

, ,v vi k s        

 2is ks +   (15) 

, ,vi k s       

IV. EVALUATION AND USE-CASE 

To test and validate the proposed optimization model, we 

have designed a naïve first-fit-first (NF3) greedy algorithm that 

represents the existing deployment approaches, which tackle 

the challenges of O-RAN VNF placement to maintain its per-

formance. However, to demonstrate the advantages of our BIP 

model in terms of availability aspects, NF3 focuses on compu-

tational and operational latency constraints to ensure that the 

proposed deployment is valid. NF3 overlooks optimizing the 

placement of the redundant components on servers with high 

MTTF and low MTTR values, which does not allow the self-

healing policy to optimally recover to those instances. A de-

tailed explanation of the NF3 algorithm is presented in the fol-

lowing section.  

A. Naïve First-Fit-First (NF3) Algorithm 

The NF3 algorithm accepts three inputs: the regional and 

edge cloud infrastructures, as well as the O-RAN VNF compo-

nents and their redundancies. The algorithm starts by splitting 

the requested VNFs into three sets depending on their type 

(near-RT RIC, O-CU. O-DU). After the split, the algorithm 

searches the regional cloud server set to host the requested near-

RT RIC type VNFs. The algorithm places the VNFs on the 

server with enough resources. Once the near-RT RIC type 

VNFs are placed, the algorithm searches the edge cloud server 

set to host the O-CU VNFs. Once a server with enough re-

sources is found, the placement decision is executed based on 

the eval() function. The latter determines if the candidate server 

meets the latency constraints between the O-CU and the de-

ployed near-RT RIC VNFs. The same procedure follows for the 

O-DU VNFs. However, the latency constraint at this stage is 

evaluated with the placed O-CU VNFs. Once the deployments 

for the VNFs are generated, the NF3 calculate their correspond-

ing downtime and availability. It is important to highlight that 

in contrast to our proposed optimization model, NF3 overlooks 

availability constraints when selecting the candidate servers. 

Due to the BIP model’s time complexity, we test our pro-

posed solution on a small-scale dataset of 50 servers distributed 

on the regional and edge clouds and a total of 21 VNFs (princi-

pal and redundant). The NF3 places all requested VNFs (V) by 

searching all candidate servers (S) for the server that meets the 

resource (CPU, memory) and location (regional, edge) con-

straints for each VNF. Since our proposed approach considers 

3 types of VNFs (near-RT RIC, O-CU, O-DU), the server in-

frastructure is searched three times for each VNF type. This re-

sults in a complexity of O(V S) for the greedy NF3 algorithm. 

B. Simulation Environment and Evaluation Metrics 

Each candidate server has its computational parameters for 

in terms of CPU and memory, MTTF, MTTR, RT, and link de-

lays to all servers within the cloud infrastructure. MTTF fol-

lows an exponential distribution with a mean of 3500 hours 

while MTTR and RT follow a normal distribution with means 

2 and 0.5 hours, and a standard deviation of 1.5 and 0.016 re-

spectively [13] [14] [15]. Candidate servers are divided into re-

gional cloud servers for hosting near-RT RIC VNFs and edge 

cloud servers for hosting O-CU and O-DU VNFs. Every VNF 

has its computational requirements in the form of CPU and 

memory, its availability measures (MTTF, MTTR, RT).  MTTF 

follows an exponential distribution with a mean of 2100 hours 

while MTTR and RT follow a normal distribution with means 

of 0.05 and 0.008 hours and standard deviation of 0.03 and 

0.005 hours respectively [13] [14] [15]. In addition, the VNF 

set includes the redundancies for each VNF and the dependen-

cies for every VNF (O-DU has a direct one to one dependency 

with the O-CU that has a direct many to one dependency with 

the near-RT RIC). The BIP model and the NF3 algorithm gen-

erate the deployment of each VNF and calculate its downtime 

and availability per year (per 8765 hours) accordingly. The 

downtime of the deployed VNF is affected by the failure rate 

and recovery time of itself and its host, and it is calculated in 

equations (16)(17)(18). 

 This scheduling problem, formulated using a linear pro-

gramming model, is proven to be NP-hard [16].  Therefore, the 

approach is evaluated for small networks. We run our BIP 

model using IBM CPLEX on an Intel 9th Gen I7-9750H 2.6 

GHz CPU computing server with 16GB RAM. The NF3 algo-

rithm is written using Python 3.8 and is executed on the same 

server. 

 
node node nodedowntime RT=   (16) 

 

 VNF server
VNF

VNF server

RT RT
downtime

MTTF MTTF

 
= + 
 

 (17) 

 

 
8765

8765

VNF
VNF

downtime


−
=  (18) 

 
Fig. 3.  The yearly per-VNF downtime comparison between the 

proposed BIP model and the NF3 greedy algorithm 

 

 



V. RESULTS 

The proposed BIP optimization model is compared with the 

NF3 algorithm to check for the optimal placement strategy for 

the O-RAN while ensuring the minimum downtime across the 

network. The proposed BIP model can deploy the requested 

VNFs (principal and redundant) on servers in both the regional 

and edge clouds while adhering to all constraints. We measure 

the yearly availability of each VNF to demonstrate that not only 

is the overall network availability maximized, but the per-VNF 

availability is improved as well. The BIP model guarantees an 

average of %99.998 availability across all network VNFs while 

the NF3 can only achieve %99.935 average per VNF availabil-

ity across the network. The NF3 approach selects the servers 

based on the performance requirements (latency and resources) 

while overlooking the availability constraints in terms of high 

operational metrics. It also discards the impact of the intercom-

munication relationship between units (redundancy or depend-

ency) on their locations. The impact of these constraints over 

one year is clearly highlighted in the downtime. Fig. 3 shows 

the downtime reduction that the BIP achieves over NF3. The 

BIP model generates an average of 0.125 hours of downtime 

per year across all VNFs, while the NF3 results in 5.620 hours 

of downtime per year. The downtime improvement (in %) of 

the BIP model over the NF3 algorithm is shown in Fig 4. The 

BIP model achieves an average of 97.015% improvement in the 

experienced downtime over NF3 across all VNFs.  

Although the proposed BIP model is proved to enhance the 

network's self-healing capabilities for O-RAN, its complexity 

hinders its applicability to large scale networks. That said, we 

aim to develop a heuristic solution and extend this work to large 

scale deployment scenarios for the O-RAN in the cloud.  

VI. CONCLUSION  

The O-RAN architecture is introduced by the O-RAN Alli-

ance to revolutionize the RAN by providing openness and in-

telligence to mobile networks. As the O-RAN is designed with 

intelligence, it is considered as a self-organizing network where 

self-healing is a key feature in intelligently handling and man-

aging failures and faults in the network. To optimize its self-

healing, we proposed a BIP model to optimize the placement of 

the requested VNFs and their redundant ones with the goal of 

maximizing the availability. The latter was achieved by em-

ploying a placement to minimize the per-VNF and the SFCs' 

downtime. The BIP model significantly outperforms the de-

signed NF3 algorithm with an average of 97.015% yearly 

downtime improvement. Thus, such a model is considered the 

first downtime-aware building block toward providing a relia-

ble solution for self-healing in O-RAN. In future work, the 

complexity of the proposed approach will be mitigated using 

machine learning models for the purpose of outage manage-

ment/compensation for a self-healing O-RAN architecture.  
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