
Deep Reinforcement Learning for URLLC data
management on top of scheduled eMBB traffic

A Preprint

Fabio Saggese1, Luca Pasqualini2, Marco Moretti1, and Andrea Abrardo2

1Department of Information Engineering, University of Pisa, Pisa, 56122 Italy
2Department of Information Engineering and Mathematics, University of Siena, Siena, 53100 Italy

fabio.saggese@phd.unipi.it, pasqualini@diism.unisi.it, marco.moretti@unipi.it,
abrardo@dii.unisi.it

March 3, 2021

Abstract

With the advent of 5G and the research into beyond 5G (B5G) networks, a novel and
very relevant research issue is how to manage the coexistence of different types of traffic,
each with very stringent but completely different requirements. In this paper we propose a
deep reinforcement learning (DRL) algorithm to slice the available physical layer resources
between ultra-reliable low-latency communications (URLLC) and enhanced Mobile Broad-
Band (eMBB) traffic. Specifically, in our setting the time-frequency resource grid is fully
occupied by eMBB traffic and we train the DRL agent to employ proximal policy optimiza-
tion (PPO), a state-of-the-art DRL algorithm, to dynamically allocate the incoming URLLC
traffic by puncturing eMBB codewords. Assuming that each eMBB codeword can tolerate
a certain limited amount of puncturing beyond which is in outage, we show that the policy
devised by the DRL agent never violates the latency requirement of URLLC traffic and, at
the same time, manages to keep the number of eMBB codewords in outage at minimum
levels, when compared to other state-of-the-art schemes.

Keywords Slicing, Deep Reinforcement Learning, PPO, eMBB, URLLC.

1 Introduction

Resource slicing of different kinds of traffic is a key enabler for 5G and B5G networks, allowing the coexistence
on a common infrastructure of different services with different requirements such as eMBB and URLLC [1].
The two kind of traffic have different quality-of-service (QoS): eMBB users require high throughputs, while
URLLC has strict low-latency and reliability constraints [2]. In particular, URLLC traffic is characterized
by short packets that need to be transmitted and decoded in less than 1 ms [3], so that conventional channel-
aware scheduling is generally not possible.
Addressing the problem of URLLC-eMBB scheduling, [2] compares the performance of different techiques in
the uplink of a 5G system and lays the ground for the subsequent literature using either puncturing, orthog-
onal multiple access (OMA) and non-orthogonal multiple access (NOMA). Immediate scheduling of URLLC
packets in combination with hybrid automatic repeat request (HARQ) is another approach investigated in
[4]. In [5] eMBB codewords are punctured to accomodate URLLC traffic and the throughput loss for eMBB
packets is evaluated under different models. In [6], the authors describe the process of resource allocation of
eMBB-URLLC traffic employing an optimization problem taking into account the probability of presentation
of an URLLC packet. In [7] the authors propose a resource allocation scheme for URLLC-eMBB traffic based
on successive convex approximation and semidefinite relaxation of the general optimization problem.

ar
X

iv
:2

10
3.

01
80

1v
1

 [
ee

ss
.S

P]
 2

 M
ar

 2
02

1

A preprint - March 3, 2021

Because of its ability of finding very good to optimal policies for systems that dynamically change through
time [8], reinforcement learning is a natural choice to address the random dynamics of URLLC traffic.
Accordingly, in [9], and [10] the authors propose two RL algorithms based on Q-learning to multiplex eMBB
and URLLC traffic employing OMA and NOMA, respectively. In [11] DRL is employed to multiplex eMBB
and URLLC traffic using a deterministic policy gradient algorithm .
Most of the recent literature [2, 5, 9, 10, 11] assumes that the URLLC packets are transmitted as soon as
they arrive. However, within the URLLC latency a certain amount of delay can be tolerated so to give the
scheduler some degree of freedom to improve the performance of the system. Moreover, in order to ensure
slice isolation, the control planes of two different slices should be kept to a minimum degree of interaction [5].
To minimize the impact on eMBB traffic, in this paper we address the slicing problem by allowing some
slack for URLLC scheduling, letting the DRL agent choose when to transmit, within the latency constraint.
To do so, the URLLC scheduler only needs to be informed about the robustness of each eMBB codeword
to puncturing. Our proposed codeword model somehow resembles the threshold model described in [5], but
it retains two important differences. First, we consider a more realistic non-homogeneous situation where
different puncturing policies can be adopted at different times. The second difference is that we consider
a threshold per codeword rather than per user. In the numerical results we will show that our proposed
scheduler is able to slice the resources to obtain good performance even if some eMBB codewords have no
protection from puncturing.

2 System Model

We consider a single cell scenario in which one base station (BS) serves a set of downlink user equipments
(UE). The set of UEs belonging to the URLLC and eMBB slices are referred to as E and U , respectively.
We consider a single coherence interval as time horizon, where the channel can be considered constant. The
time axis is divided into Σ equally spaced time slots of fixed duration. To accomodate URLLC traffic, with
its stringent latency requirements, slots are further divided into M minislots1. As for the frequency domain,
the system bandwidth is divided into F orthogonal frequency resources (FR)2.
We consider two different schedulers, one for each type of traffic, which operate separately and independently
of each other. The eMBB scheduler is responsible for assigning time and frequency resources to eMBB users:
each eMBB codeword can occupy any fraction of the total available number of minislots and FRs. As
customary, eMBB scheduling is operated at the slot boundaries. At the same time, the URLLC agent
operates on a per minislot basis with the possibility of puncturing some of the resources already assigned
to eMBB users, if needed. In the following, a detailed description of how we model eMBB traffic, URLLC
traffic, and their coexistence is presented.

slots

mini slots

eMBB #1
eMBB #2

1 Σ

1 2 M 1 2 M

fr
eq
u
en
cy

1

2

F

3 3

a a b b

b b b bc c c c

c c d d

d d d d

Figure 1: Toy example of the resource allocation and codeword placement for the eMBB users, F = 3,
Σ = 2, M = 4. Resources are allocated at slot boundaries, while codewords are a, b ∈ W1, c, d ∈ W2 and
|a| = |b| = |c| = |d| = 6.

2.1 The eMBB scheduler

In this paper we do not explicitly address the eMBB scheduling problem, but, rather, we assume that a proper
radio resource allocations has been performed somehow and we can focus on the coexistence of URLLC traffic

1In 3GPP, the formal term for a “slot” is eMBB Transmit Time Interval (TTI), and a “minislot” is a URLLC
TTI [5].

2With “frequency resources” we refer to the abstract concept of bandwidth available in an OFDM system and we
may refer to resource blocks or subcarriers, indifferently.

2

A preprint - March 3, 2021

on top of eMBB. Nevertheless, we need to describe the main principles of the eMBB scheduling policy, which
is to maximize a rate-dependent utility function, not considering any latency. Hence, radio resources are
allocated to the set of active users on a slot basis following the OMA paradigm. Moreover, since there is
enough time to exchange channel quality information (CQI) before each scheduling decision, it is reasonable to
assume perfect knowledge of channel state information (CSI) at the BS. Therefore, eMBB resource allocation
can be performed following conventional methods such as the water-filling algorithm [12].
The scheduler has to further take into account that the eMBB packets might share the radio resources with
URLLC traffic and in such event they should carry enough redundancy to be punctured without losing the
entire packet. We denote asW the codebook at the BS. The BS will then select a subsetWe ⊂ W containing
all the codewords of user e. A single codeword intended for user e is denoted as w ∈ We. The length in
symbols |w| of a codeword is always a multiple of the minislot length, i.e., each codeword spans an integer
number of minislots. Finally, we denote with wt,f the codeword transmitted on the radio resource f during
minislot t and with Wt =

⋃F
ν=1 wt,ν the set of all codewords transmitted during the minislot t. Figure 1

shows a toy example of a possible resource allocation and codeword placement for two eMBB users.

2.2 The URLLC DRL agent

Generally speaking, the QoS requirements of an URLLC user u ∈ U in a wireless network are specified as
follows: a packet of size Nu bits must be successfully delivered to the receiver within an end-to-end delay
of no more than Tmax

u seconds with a probability of at least 1 − εu [4]. Moreover, a URLLC packet may
randomly arrive at the BS at any moment. In this work we will concentrate on the edge delay, i.e. the delay
computed as the difference between the time the scheduler receives the packet and the time the packet is
transmitted. This choice is justified by the fact that the backhaul delay is generally negligible [13], while
UL queuing delay and transmission delay can be taken into account by reducing the value of the tolerable
latency Tmax

u . Without loss of generality, we define the tolerable latency Tmax
u in terms of the maximum

number lmax
u of minislots that can be waited before exceeding the latency constraint.

To simplify the description of the problem, our work will focus on URLLC packets of fixed length corre-
sponding to a single minislot. However, the considered framework can be easily extended to the case where
a packet occupies more than one minislot. The packets are generated following a Bernoulli process, i.e., for
each minislot there is a probability pu that a new URLLC packet arrives. Then the packets are stored in
a first-in first-out (FIFO) queue Q of infinite length. The DRL URLLC agent is responsible for taking the
decision whether the oldest packet in the queue should be transmitted or not in the current minislot.
Owing to the stringent latency constraint, the CSI of URLLC users cannot be estimated. Hence, power
adaptation during transmission is not possible and ARQ re-transmission mechanisms can be hardly accept-
able. Accordingly, reliability can be expressed in terms of outage probability for a fixed pre-defined transmit
power. As in previous works in literature [5], we assume that the URLLC transmit power is large enough so
that the outage probability remains under an acceptable threshold.

2.3 URLLC and eMBB coexistence

Coexistence of eMBB and URLLC is achieved by superposition coding or puncturing [1]-[5]. In this paper we
consider a puncturing strategy, where the BS decides to use a certain resource for URLLC traffic regardless
of any eMBB user already occupying it. To avoid any interference between the two types of traffic, the
eMBB codeword is punctured, i.e., the transmit power of the eMBB user on the specific resource is set to
zero. To tolerate puncturing, we assume that each eMBB codeword employs an inner erasure code with
rate 1 − Cw/|w| [2], that allows to correct up to Cw erased minislots. The eMBB scheduler is in charge
of determining the class Cw for each codeword. The class assignment is performed on a codeword basis,
i.e., the BS can assign codewords with different Cw to the same user. The assignment of higher Cw to
different codewords encompasses the possibility of employing a more robust transmission mechanisms to
prevent outage even in the presence of puncturing, as discussed in Section 2.1. Note that the algorithm
implemented by the eMBB scheduler may be unknown by the URLLC traffic agent, as long as the latter is
informed of the codewords allocation and class by the former.

3 Reinforcement Learning

Reinforcement Learning (RL) is usually employed to solve a Markov Decision Process (MDP) defined over
a real world task. A MDP is defined via a dynamic environment, a state space S, an action space A, and a

3

A preprint - March 3, 2021

reward function R(a, s) with a ∈ A, s ∈ S [8]. In a MDP, the decision maker, also referred to as agent, gets
a reward from the environment upon taking an action. The action also causes the environment to change
its internal state. The environment is fully-observable when the agent observation is always equal to the
environment state. At each time step t, the agent receives a state St ∈ S from the environment, and then
selects an action At ∈ A. The environment answers with a numerical reward Rt+1 ∈ R ⊂ R and a next state
St+1. This interaction gives a trajectory of random variables:

S0, A0, R1, S1, A1, R2, . . .

When the agent experiences a trajectory starting at time t, it accumulates a discounted return Gt:

Gt := Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1,

where the discount factor γ ∈ [0, 1) determines the length of the time horizon, so that γ → 1 means an
infinite horizon. The return Gt at time t is a random variable, whose probability distribution depends on
the policy π(a|s), i.e., a deterministic or stochastic strategy that chooses the action a to execute for each
possible observation of the environment’s state s. The objective of RL is to find a policy that maximizes the
expected discounted reward. In this paper, we follow a deep reinforcement learning (DRL) approach and use
a parametric function approximator for the policy π(a|s), specifically a neural network.

3.1 System Model as a MDP

The application of RL to our task requires to formulate the URLLC scheduling problem as a fully-observable
MDP. Despite the task at hand being inherently not episodic, for convenience of operation we truncate it
in multiple episodes of length T minislots, corresponding to the whole coherence interval of the channel. A
minislot t ∈ {1, . . . , T} represents a time step in the episode. At the beginning of each episode, resource
allocation and codeword placement for eMMB users is performed and then at each time step, a new URLLC
packet is generated with probability pu.
The DRL action consists in deciding whether the first URLLC packet in the queue should be transmitted
in the current minislot or not and on which FR. The possible actions at time step t are collected in the set
At = {0, 1, . . . , F}, where 0 means no transmission, while otherwise the action indicates the FR index for
transmitting the URLLC packet. If the URLLC queue is empty, the only possible action is 0.

The state at each time step t is then represented by the set St = {S(u)
t ,S(e)

t }, where S
(u)
t and S(e)

t collect
the URLLC and eMBB information at step t, respectively. In particular, the 2-dimensional state S(u)

t is

S(u)
t = {Qt,∆t} (1)

where Qt represents the length of the URLLC queue at step t, while ∆t = lmax
u − lold

t represents the difference
between the tolerable latency and the latency of the oldest packet in the queue at step t. The F -dimensional
state S(e)

t collects for each of the F frequency channels the variable st(f), which tracks if the codeword
transmitted on channel f is in outage (st(f) = −1) or not (st(f) ≥ 0). A non-negative st(f) stores the
residual number of times that the codeword can be punctured without being in outage. Let ρt(w) denote the
number of times the codeword w has been punctured from the beginning of the episode, st(f) is computed
as

st(f) = max
{
Cwt,f

− ρt(wt,f),−1
}
, (2)

remembering that wt,f is the codeword placed on resource f and minislot t. Once a codeword is in outage,
its state variable is set to -1 and does not change anymore regardless of the times is further punctured.

3.2 Reward Computation

In a RL problem choosing the reward is an empirical process: a good reward function should capture the
essence of the task at hand. In this case the objective is to minimize the number of eMBB codewords in
outage while keeping the latency of URLLC packets below the given threshold. With this goal in mind, we
introduce the eMMB penalty function et(w)

et(w) =
{
−1, Cw − ρt−1(w) ≥ 0 ∩ Cw − ρt(w) < 0,
0, otherwise, (3)

4

A preprint - March 3, 2021

which takes value −1 only if the chosen action causes the outage of the codeword w. Furthermore, since
∆t < 0 signals the violation of the latency constraint, we introduce the following URLLC penalty function

Lt =
{

0, ∆t ≥ 0,
− 3T
F+1 , ∆t < 0. (4)

The heuristic value − 3T
F+1 is empirically chosen so that the violation of the latency constraint for an URLLC

packet results in a larger negative contribution than the outage penalty for eMBB traffic. Accordingly, the
reward at time t can be expressed by

Rt =
∑
w∈Wt

et(w) + Lt, (5)

Eventually, when ∆t < 0 the episode is considered finished.

3.3 Neural Network (NN) Architecture

Among the possible RL techniques, we consider a DRL Policy Gradient (PG) algorithm called Proximal
Policy Optimization (PPO) [14]. PPO aims at taking the biggest possible improvement step on a policy
without ending too far from the starting point one, thus avoiding the risk of performance collapse. PPO is
an actor-critic algorithm [14], where two different neural networks are required. To this respect, we consider
two completely separated subnetworks, one for the value function (estimated value of the state) and one
for the policy function (the strategy). Both policy and value function subnetworks have three dense layers
with 128, 64, and 32 neurons, respectively. All of them operate a rectified linear activation function (ReLU).
Furthermore, the policy subnetwork has a dense fourth layer with F + 1 neurons to choose the actions, while
the value subnetwork has a dense fourth layer with 1 neuron and no activation to estimate the value. Finally,
all layers are initialized using Xavier initialization. For additional details refer to the GitHub repository [15].

3.4 Framework

The RL framework adopted in this study is USienaRL3. This framework allows for environment, agent
and interface definition using a preset of configurable models. While agents and environments are direct
implementations of what is described in the RL theory, interfaces are specific to this implementation. Under
this framework, an interface is a system used to convert environment states to agent observations, and to
encode agent actions into the environment. This allows to define agents operating on different spaces while
keeping the same environment. By default an interface is defined as pass-through, i.e. a fully observable state
where agents action have direct effect on the environment. We always use pass-through interfaces through
this work. Moreover, within this framework, the comparison schemes described in Section 4 are also defined
as agents operating without a neural model, using only a set of predefined rules acting w.r.t. the states of
the environment.

4 Results

We consider a simplified scenario, where the slot duration and the coherence time of the channel are set
to 1 and 10 ms, respectively. Each slot is further divided in M = 14 minislots. The number of frequency
resources is F = 12. The length of an episode corresponds to the coherence time of the channel so that
the number of time slots for each episode is Σ = 10, for a total of T = 140 minislots. We consider a single
URLLC user, i.e. |U| = 1, and the number of eMBB users is |E| = 10. We further set the maximum delay
constraint to lmax

u = M/2 = 7 = 0.5 ms. We consider only codewords of class Cw ∈ {0, 1}, i.e., codewords
that can be punctured zero or one times before being in outage.
Regarding PPO, we use an instance of PPO-Clip as described by OpenAI at [16], with differentiated value
and policy heads. We use a clip ratio equal to 0.2, and an early stopping strategy if the mean KL-divergence
of the new policy from the old one grows beyond a given threshold. More specifically, we set as threshold the
value 1.5 · 10−2. To reduce the variance, we use the generalized advantage estimation approach as proposed
in [17], with γGAE = 1 and λGAE = 0.97.
To have a fair performance comparison, we consider the three alternative URLLC scheduling algorithms:

3Available on PyPi and also on GitHub: https://github.com/InsaneMonster/USienaRL.

5

https://github.com/InsaneMonster/USienaRL

A preprint - March 3, 2021

• Random. The decision whether to transmit or not the URLLC packet is randomly taken with equal
probability. In case of transmission, the frequency is selected randomly with uniform probability
distribution.

• Aggressive. The URLLC packet is transmitted immediately on a randomly chosen frequency.
• Threshold Proportional (TP). The URLLC packet is transmitted immediately on the frequency

resource occupied by the codeword with the highest puncturing threshold, given by (2). TP has
almost optimal performance when the URLLC is forced to transmit immediately upon arrival, i.e.,
lmax
u = 1, and in case of low average URLLC load [5].

• TP-lazy. As long as ∆t > 0, the packet is transmitted only if
∑
w∈Wt

Cw − ρt(w) ≥
∑
w∈Wt+1

Cw −
ρt(w), i.e. if the present state is somehow better (or equal) than the next one. If ∆t = 0, the
transmission is forced in the present minislot. In any case, the choice of the frequency is made
according to the TP scheme. This heuristic combines the advantage of the TP transmission policy
with the possibility of waiting before puncturing eMBB resources.

During the learning phase of the PPO agent, the parameters related to eMMB resource allocation and
URLLC traffic generation are randomized on an episode basis. While this is not mandatory to train a
functioning agent, it is crucial to help the agent to generalize the task at hand. In other words, the agent is
requested to learn a generalized strategy that is not specific either for a particular eMMB allocation policy
or a particular URLLC traffic load. Hence, the class of each codeword and the probability of generating
a URLLC packet pu is randomly chosen. Regarding the codeword placement, the resource allocation of
each eMBB user is performed randomly in the resource grid; then, imposing |W| = 120, the codeword
are generated with random length of |w| minislots, in order to occupy the whole resource grid. For sake of
simplicity, we assume that each codeword transport the same quantity of information regardless of its length.
This assumption will be relaxed in future works. Regarding the classes of the different codewords, we limit
our simulation analysis to considering Cw ∈ {0, 1}, i.e., no puncturing or puncturing of a single minislot is
allowed. As for the case of resource allocation, also the class assignment is random. In particular, at the
beginning of each episode, the environment select randomly one of the following five possible distributions:

D ∈ {[0, 1], [0.2, 0.8], [0.5, 0.5], [0.8, 0.2], [1, 0]} (6)

where the first and the second element of each vector are the percentage of the codeword of class 0 and class
1, respectively. More specifically, if D = [0.5, 0.5], then 50% of the placed codewords have Cw = 0 and the
other 50% have Cw = 1, and so forth. Furthermore, the URLLC traffic load pu is also randomized in each
episode. In particular, we consider:

pu ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
where the value is chosen according to a uniform probability distribution. Since the MDP formulation
considered in this paper is not inherently episodic, for the computation of the discounted return we set
γ = 0.99.
To simulate a continuous task, we initialize each episode with a random number of URLLC packets in the
queue. The number of packets generated in this way is always smaller than lmax

u to avoid that the episode
starts with ∆t < 0.
After that the NN has been trained, we can show the results obtained by running the RL-based agent in
inference mode and provide comparisons with the considered heuristic alternatives.
In all simulations, all schemes always satisfy the URLLC latency constraints: aggressive, TP, and TP-lazy
by design, PPO because of the choice of a proper reward function that greatly penalizes the loss of a URLLC
packet.
In the following we show the results obtained by running a simulation after training the RL-based agent, i.e. in
inference mode, and we provide comparisons with the considered heuristic alternatives. More specifically, the
results are collected over 5 simulation runs of 1000 episodes each. In each simulation run we consider a differ-
ent value of the activation probability pu ranging in the set {0.1, 0.2, 0.3, 0.4, 0.5}. At each episode, the code-
word placement probability vectorD is randomly selected in the set {[0, 1], [0.2, 0.8], [0.5, 0.5], [0.8, 0.2], [1, 0]}.
First, we present the results obtained with T = 140, as in the training phase, in order to show that the PPO
agent is able to learn an optimal policy. Then, we will show that the PPO agent trained with the episodic
behaviour can be applied even for continuous tasks.

Figure 2 shows the total episode reward
∑T
t=1 Rt as a function of pu, for T = 140. It is worth noting that

the PPO agent, trained with random values of pu, outperforms all the other schemes for every value of pu,

6

A preprint - March 3, 2021

thus assessing the generalization capability of the network. In Table 1, we further show the average number
of packets remaining in the URLLC queue at the end of an episode for different pu. The results for TP and
aggressive are omitted since in both cases URLLC packets are promptly transmitted upon arrival. The PPO
agent learns a policy that attempts to keep the URLLC queue almost empty since the opposite could lead
to a violation of latency constraint. Conversely, in the TP-lazy case, where no control is operated onto the
queue length, a non-negligible amount of traffic remains unserved at the end of an episode.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

pu

−35

−30

−25

−20

−15

−10

−5

0
A

ve
ra

ge
to

ta
l

re
w

ar
d

random

aggressive

TP-lazy

TP

PPO

Figure 2: Total reward versus activation probability pu.

pu 0.1 0.2 0.3 0.4 0.5
TP-lazy 0.597 1.222 1.790 2.416 3.015
PPO 0.030 0.068 0.081 0.136 0.210

Table 1: Average number of URLLC packets not served before the end of the episode.

The subdivision of the task into episodes of a fixed length may somehow distort the correct evaluation of
the algorithms’ performance. To simulate a longer time horizon is of critical importance because the agent
should be able to correctly work without the artificial partitioning of the task into episodes. To address this
issue, we scaled up the length of each episode by one order of magnitude, without retraining the agent.
Figure 3 shows the performance of the RL agent as a function of pu with the length of each episode increased
by one order of magnitude. Specifically, the results are obtained for T = 1400, increasing also |W| = 1200
for coherence; everything else is left the same. We can see that the RL agent is still able to outperforms
all the heuristics for each value of pu, thus proving the learned policy to be independent from the artificial
subdivision of the task in episodes.
Figure 4 shows the percentage of eMMB codewords in outage at the end of each episode for the different
schemes, for T = 1400, while the class of each codeword is again randomly chosen. It is clear that the PPO
approach is able to outperform all the other schemes except the random one, for all the considered pu. It is
worth noting that the random scheme may achieve better performance for high only because most episodes
are stopped due to the latency violation, which occurs often, as shown in Table 2. The other schemes never
violate the latency constraint, and thus they are not presented in the Table.

pu 0.1 0.2 0.3 0.4 0.5
Pr(∆u < 0) 0.166 0.379 0.674 0.883 0.982

Table 2: Probability of latency constraint violation of random scheme.

7

A preprint - March 3, 2021

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

pu

−350

−300

−250

−200

−150

−100

−50

0

A
ve

ra
ge

to
ta

l
re

w
ar

d

random

aggressive

TP-lazy

TP

PPO

Figure 3: Average total reward versus pu with T = 1400.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

pu

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

P
er

ce
n
ta

ge
of

eM
B

B
co

d
ew

or
d

in
ou

ta
ge

random

aggressive

TP-lazy

TP

PPO

Figure 4: Percentage of eMBB codeword in outage versus activation probability pu, T = 1400.

Fig. 5 shows the percentage of eMBB codewords in outage for different compositions of eMBB codewords
classes D = [Pr{C0},Pr{C1}] and pu = 0.5. The PPO agent outperforms by a wide margin all other schemes,
showing the versatility of the RL approach. Among the other things, these results show that PPO has good
performance even when D = [1, 0] and there are only codewords without an inner erasure code.

5 Conclusions

We proposed a deep reinforcement learning approach based on PPO, which is able to dynamically manage the
coexistence of the URLLC traffic on top of the eMBB traffic. The trained RL agent overall outperforms all
the other schemes on multiple performance metrics, being capable of noteworthy generalization over different
tasks. Our approach is highly scalable with respect to the length of each simulation, without retraining the
agent. This is of critical importance since the real world task we modeled is inherently not episodic and the
artificial subdivision in episodes is only required to train an agent in an RL fashion.

8

A preprint - March 3, 2021

[0, 1] [0.2, 0.8] [0.5, 0.5] [0.8, 0.2] [1, 0]

D

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
er

ce
n
ta

ge
of

eM
B

B
co

d
ew

or
d

in
ou

ta
ge

aggressive

TP-lazy

TP

PPO

Figure 5: Percentage of eMBB codewords in outage versus the different percentage of classes of codeword
for pu = 0.5.

We believe this work to be a promising step into the direction of solving the task of eMBB-URLLC resource
slicing. Our future works will mainly focus on:

• taking into account the reliability of URLLC user;
• adopting a Poissonian distribution to simulate the arrival of URLLC packets;
• addressing the transmission over multiple frequency resources;
• enabling non-orthogonal multiple access communication by means of superposition coding at the

transmitter and successive interference cancellation at receivers.

9

A preprint - March 3, 2021

References

[1] S. E. Elayoubi et al. “5G RAN Slicing for Verticals: Enablers and Challenges”. In: IEEE Communica-
tions Magazine 57.1 (2019), pp. 28–34.

[2] Petar Popovski et al. “5GWireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-
Theoretic View”. English. In: IEEE Access 6 (2018), pp. 55765–55779. issn: 2169-3536.

[3] C. She, C. Yang, and T. Q. S. Quek. “Radio Resource Management for Ultra-Reliable and Low-Latency
Communications”. In: IEEE Communications Magazine 55.6 (2017), pp. 72–78.

[4] A. Anand and G. de Veciana. “Resource Allocation and HARQ Optimization for URLLC Traffic in 5G
Wireless Networks”. In: IEEE Journal on Selected Areas in Communications 36.11 (2018), pp. 2411–
2421.

[5] A. Anand, G. de Veciana, and S. Shakkottai. “Joint Scheduling of URLLC and eMBB Traffic in 5G
Wireless Networks”. In: IEEE/ACM Transactions on Networking 28.2 (2020), pp. 477–490.

[6] M. Alsenwi et al. “eMBB-URLLC Resource Slicing: A Risk-Sensitive Approach”. In: IEEE Communi-
cations Letters 23.4 (2019), pp. 740–743.

[7] J. Tang, B. Shim, and T. Q. S. Quek. “Service Multiplexing and Revenue Maximization in Sliced
C-RAN Incorporated With URLLC and Multicast eMBB”. In: IEEE Journal on Selected Areas in
Communications 37.4 (2019), pp. 881–895.

[8] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. Adaptive Computation and
Machine Learning series. MIT Press, 2018. isbn: 9780262039246. url: https://books.google.it/
books?id=6DKPtQEACAAJ.

[9] M. Elsayed and M. Erol-Kantarci. “AI-Enabled Radio Resource Allocation in 5G for URLLC and
eMBB Users”. In: 2019 IEEE 2nd 5G World Forum (5GWF). 2019, pp. 590–595.

[10] Y. Li et al. “Optimization of URLLC and eMBB Multiplexing via Deep Reinforcement Learning”.
In: 2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Work-
shops). 2019, pp. 245–250.

[11] Y. Huang et al. “A Deep-Reinforcement-Learning-Based Approach to Dynamic eMBB/URLLC Mul-
tiplexing in 5G NR”. In: IEEE Internet of Things Journal 7.7 (2020), pp. 6439–6456.

[12] P. He et al. “Water-Filling: A Geometric Approach and its Application to Solve Generalized Ra-
dio Resource Allocation Problems”. In: IEEE Transactions on Wireless Communications 12.7 (2013),
pp. 3637–3647.

[13] G. M. S. Rahman et al. “Radio Resource Allocation for Achieving Ultra-Low Latency in Fog Radio
Access Networks”. In: IEEE Access 6 (2018), pp. 17442–17454.

[14] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347
(2017).

[15] Luca Pasqualini and Fabio Saggese. Deep Reinforcement Learning for URLLC data management on
top of scheduled eMBB traffic. GitHub repository, 2021. https : / / github . com / InsaneMonster /
telerl2021.

[16] OpenAI. Proximal Policy Optimization. OpenAI web site, 2018. https://spinningup.openai.com/
en/latest/algorithms/ppo.html.

[17] John Schulman et al. “High-dimensional continuous control using generalized advantage estimation”.
In: arXiv preprint arXiv:1506.02438 (2015).

10

https://books.google.it/books?id=6DKPtQEACAAJ
https://books.google.it/books?id=6DKPtQEACAAJ
https://github.com/InsaneMonster/telerl2021
https://github.com/InsaneMonster/telerl2021
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html

	1 Introduction
	2 System Model
	2.1 The eMBB scheduler
	2.2 The URLLC DRL agent
	2.3 URLLC and eMBB coexistence

	3 Reinforcement Learning
	3.1 System Model as a MDP
	3.2 Reward Computation
	3.3 Neural Network (NN) Architecture
	3.4 Framework

	4 Results
	5 Conclusions

