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Abstract—Scalability and sustainability are the corner stones to
unleash the potential of beyond fifth-generation (B5G) ultra-dense
networks that are expected to handle massive and heterogeneous
services. This implies that the transport of the underlying
raw monitoring data should be minimized across the network,
and urges to bring the analysis functions closer to the data
collection points. While federated learning (FL) is an efficient
tool to implement such a decentralized strategy, real networks
are generally characterized by time- and space-varying users
distributions, traffic profiles, and channel conditions. This makes
the data collected across different points non independent and
identically distributed (non-IID), which is challenging for FL
tasks. To cope with this issue, we first introduce a new a priori
metric that we call dataset entropy, whose role is to capture
the distribution, the quantity of information, the unbalanced
structure and the “non-IIDness” of a dataset independently of
the models. This entropy is calculated using a clustering scheme
based on a similarity matrix defined over both the features and
the supervised output spaces, and is targeting classification as
well as regression tasks. The FL aggregation server then uses the
reported dataset entropies to devise i) an entropy-based federated
averaging scheme, and ii) a stochastic participant selection policy
to significantly stabilize the training, minimize the convergence
time, and reduce the corresponding computation cost. Numerical
results are provided to illustrate all these advantages.

I. INTRODUCTION

With the proliferation of beyond 5G (B5G) use cases,
wireless networks need to manage a massive number
of simultaneous and heterogeneous services, which makes
the classical centralized monitoring, analysis, and control
impractical, as they usually represent a single point of failure
and suffer from large overhead and delay. Alternatively,
decentralized service processing guarantees scalability, low
data exchange and, therefore, more security. In this regard,
distributed artificial intelligence (AI) approaches, and in
particular FL schemes, can play a pivotal role in unleashing the
full potential of scattered monitoring data across the network
and leveraging the computing power brought by both the edge
cloud and the fog devices, while reducing the computational
costs and enabling fast local analysis and decision. Nonetheless,
FL capability is often limited by the convergence delay
that spans dozens of rounds due to several conceptual and
operational issues that are reviewed in the sequel.

A. Related Work

In [3], the authors have introduced the federated averaging
(FedAvg) algorithm that synchronously aggregates the

parameters, and is thus susceptible to the straggler effect,
i.e., each training round only progresses as fast as the
slowest edge device since the FL server waits for all devices
to complete local training before the global aggregation
can take place. Alternatively, the asynchronous model
in [4] has been proposed to improve the scalability and
efficiency of FL. For asynchronous FL, the server updates
the global model whenever it receives a local update which
grants more robustness against participants joining halfway
during a training round, as well as when the federation
involves participating devices with heterogeneous processing
capabilities. However, the model convergence is found to
be significantly delayed when data is non independent and
identically distributed (non-IID) and unbalanced [5]. To cope
with this issue, it has been proposed to distribute the available
data publicly to participants. However, such a dataset may
not always exist, or the participants may refuse to download
them for security reasons. Thus, an alternative solution is to
construct an approximately IID dataset using inputs from a
limited number of privacy insensitive participants [6]. In the
Hybrid-FL protocol, the server asks random participants if
they allow their data to be uploaded. During the participant
selection phase, apart from selecting participants based on
computing capabilities, participants are selected such that
their uploaded data can form an approximately IID dataset
in the server, i.e., the amount of collected data in each
class has close values. Thereafter, the server trains a model
on the collected IID dataset, and merges this model with
the global model trained by the participants. Nevertheless,
requests for data sharing are not in line with the original
intent of FL. As an improvement, the authors in [7] have
proposed the FedAsync algorithm in which newly received
local updates are adaptively weighted according to staleness,
that is defined as the difference between the current epoch
and the iteration to which the received update belongs to. For
example, a stale update from a straggler is outdated since it
should have been received in previous training rounds. As
such, it is given a smaller weight. In addition, the authors
prove the convergence guarantee for a restricted family of
non-convex problems. However, the current hyperparameters
of the FedAsync algorithm still have to be tuned to ensure
convergence in different settings. Hence, the algorithm is
still unable to generalize to suit the dynamic computation
constraints of heterogeneous devices. Given this uncertainty
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surrounding the reliability of asynchronous FL, synchronous
FL remains the most commonly used approach [8]. In this
context, it has been confirmed that the correlation between
the model parameters of different clients is increasing as the
training progresses, which implies that aggregating parameters
directly by averaging may not be a reasonable approach in
general [9]. Finally, a fair resource federated learning approach
has been studied recently in [10], which introduces a weighted
averaging that gives higher weights to devices with the worst
performance (i.e., the largest loss) to let them dominate the
objective, and thereby impose more uniformity to the training
accuracy.

B. Contributions

In this paper, our contribution is two-fold.

e We first introduce the concept of the entropy of a
dataset in both classification and regression tasks, where
we jointly consider the features and supervised outputs
to characterize the distribution of its samples and the
underlying quantity of information based on a custom
spectral clustering strategy. This generalized entropy
captures the diversity of a dataset as well as its unbalanced
structure and non-IIDness.

« By leveraging the introduced entropy as an a priori
information, we devise two novel FL strategies, namely,
i) Entropy-weighted federated aggregation which involves
all the CUs in the FL training task while prioritizing
the most balanced and uncorrelated datasets (i.e., those
maximizing the entropy) and ii) Entropy-driven stochastic
policy for selecting only a subset of CUs to take part in
the FL task. This consists on sampling, at each FL round,
the active CUs according to an entropy-based probability
distribution, which dramatically reduces the convergence
stability and time, as well as the underlying resource
consumption by avoiding concurrent training by all CUs
at each round.

Local Dataset Dx

Network architecture

II. NETWORK DESCRIPTION AND DATA COLLECTION
A. Edge-RAN

As depicted in Fig. 1, the considered network corresponds to
a beyond 5G edge-RAN under the central unit (CU)/distributed
unit (DU) functional split, where each transmission/reception
point (TRP) is co-located with its DU, while all CUs are
hosted in an edge cloud where they run as virtual network
functions (VNFs). Each CU k(k = 1,..., K) performs RAN
key performance 1nd1cat0rs (KPIs) data collection to build its
local dataset Dy, = {xk Y (D =y of size Dy, where x,(j)
stands for the input features vector while y,(j) represents the
corresponding output. Given that this dataset is generally non-
exhaustive to train accurate analytical models, the CU takes part
in a federated learning task wherein an operational subsystem
(OSS) server—located at the core cloud—plays the role of a
model aggregator.

B. Data Collection

Table I shows the features and the supervised output
of the local datasets, which have been collected from a
live LTE-Advanced (LTE-A) RAN with a granularity of
1 hour. The considered TRPs cover areas with different traffic
profiles—both in space and time—that tightly depend on
the heterogeneous users distribution and behavior in each
context (e.g., residential zones, business zones, entertainment
events, ...). On the other hand, the radio KPIs are correlated
with the time-varying channel conditions. These realistic
datasets are therefore non-IID, which is more challenging for
FL algorithms as studied in [11].

III. PROPOSED ENTROPY-BASED FEDERATED LEARNING

To tackle the FL convergence in practical non-IID setups,
we seek an objective and compressed metric capturing both the
distribution of a dataset and its quantity of information, while
not depending on the local models. In this regard, we introduce
the notion of dataset entropy that is a sufficient statistic to
characterize the unbalanced structure of a dataset, as well as
its independence from other datasets. Specifically, the entropy



TABLE I
DATASET FEATURES AND OUTPUT

Feature
Cell Throughput
User Throughput

Description
Cell Downlink Average Throughput
User Downlink Average Throughput

BLER Average Block Error Rate

# Users Downlink Average Active Users
MIMO Rank Average MIMO Rank

DL PRB Downlink PRB Usage Percentage

TA Average Timing Advance

Ccor Average Channel Quality Index
QPSK Percentage of QPSK modulation usage
Output Description

Traffic Traffic Volume (Output)

is maximized under a uniform distribution with low probability
mass function (PMF). By relying on the a priori entropies of all
CUs, the aggregation server can implement novel CUs selection
and models combining schemes to accelerate and stabilize the
FL convergence.

A. Dataset Entropy

Since we are targeting a generalized definition of the entropy,
the labels of a classification dataset are not reliable to reflect the
distribution of data since it does not apply to regression tasks
where the supervised output is continuous, and it omits the
effect of the input features. In particular, samples with different
feature values but presenting approximately similar outputs are
not providing the same information and might not necessarily
fit in the same group of data. Therefore, in order to accurately
discern the samples, we consider a joint approach where both
the features and the supervised output are used. To that end,
each CU uses a clustering algorithm that operates on the so-
called similarity matrix S, whose entries measure the logical
correlations between the dataset samples vectors including both
the features and the supervised output, i.e.,

&) =[x ] (1)

This matrix is built using a radial basis function (RBF) kernel
with parameter . As such, the (%, j)-th matrix element is given

by
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where d stands for the pairwise logical distance between
samples’ vectors ¢ and j. Since basic clustering algorithms
usually require the target number of clusters as an input, we
resort to the well-established self-tuning spectral clustering
(STSC) technique that uses the eigenvalues and eigenvectors
of the similarity matrix. This enables to automatically cluster a
dataset into an appropriate number of clusters that minimizes
a custom cost function defined in terms of the coefficients
of a rotated and normalized version of matrix S; [12]. Let
us assume that for CU £k, the clustering yields ny clusters

Ck.1; ..., Cl n, with probabilities Pr (Cx 1) ,...,Pr(Cg,n,) over
dataset Dy. The corresponding entropy is then defined as

€k = — Z Pr (Cy,p) log{Pr (Cxp)} - 3)

p=1

By letting the CUs report their dataset entropies {e}5_; to
the aggregation server before starting the training, it becomes
possible to devise advanced entropy-driven FL strategies that
prioritize the CUs with high entropy datasets.

B. Entropy-Driven FL Combining

In this strategy, the aggregation server directly uses the
entropies to perform a weighted averaging of all CUs local
models at each round ¢, i.e.,

K
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which allows the CUs with high entropies to dominate and
orient the FL training, although this requires the participation
of all CUs.

wi, )

C. Entropy-Driven Stochastic FL Policy

To optimize the federated learning computation time as well
as the underlying resource consumption, we aim at selecting
only a number of active CUs in each FL round. In this respect,
we introduce an entropy-driven stochastic CU selection policy
wherein the aggregation server first generates a probability
distribution over all the CUs using their received entropies.
This is achieved by a direct softmax activation layer, i.e.,

exp{exr}

25:1 exp{ep} .

Next, at each FL round ¢, as illustrated in Fig. 2, the server
selects a subset of m < K CUs to participate in the
training by sampling the non-uniform CUs set with probabilities
{m1,..., "k}, ie,

T —

®)

cul),... .U ~{m,... 1k | CUL...,CUK}, (6)
which ensures that, by the convergence round, the CUs would
have stochastically taken part in the FL task according to the
initial probability distribution, while avoiding the concurrent
training by all CUs at each round. In this case, the model
averaging at round ¢ is performed as

Dy ot
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Where D is the total samples over all CUs datasets. This
entropy-driven stochastic policy is summarized in Algorithm 1,
where L(-,-) stands for the mean square error (MSE) loss
function, and b is the bias, while the rest of FL setting
parameters is provided in Table II.
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Fig. 2. Entropy-Driven Stochastic Federated Learning Policy.

Algorithm 1: Entropy-Driven Stochastic Federated

Learning Policy.

Input: K, m, n, T, L. # See Table II
parallel for k =1,..., K do

# Calculate RBF-based Similarity Matrix entries

a(x 5

st = exp el =) L )> 1<, < Dy

# Clustering

CU £k clusters Dy, based on the eigenvetors of matrix Sy
return ng, Pr (Ck,l) geey Pr (Ck,nk)

# Calculate Dataset Entropy

e = — Z;il Pr (C,p) log Pr (C )

CU £k reports € to the aggregation server

end parallel for

# Federated Learning

# Server Generates Probability Distribution
fork=1,...,K do

owlen) g1,

e K
S exp{er}’

Tk = LR}

end
Server initializes W(®) with random Gaussian weights
fort=0,...,7—1do
# Server Samples the m CUs
cu!,...,cU¥) ~{m,..., 7k | CUy,...,CUk}
Server broadcasts W(©) to the m selected CUs
parallel for k € {ki,...,kn} do
# Local epochs
for(=0,...,L—1do

| Wiy =Wgi1 —nVL(W,b)
end
return W](Ct) =W 1
Each local CU k sends W,(:) to the aggregation server.
end parallel for
# Server Aggregation "

D t

return W (t+1) = Zke{kl """ T } W,
Broadcasts W*+1) to all K CUs.

end

TABLE II
FL SETTINGS

Parameter Description Value
T Number of rounds 20
L Number of epochs 50
K Number of CUs 6
m Number of selected CUs 3
Dy, Local dataset size 100
n Learning rate 0.001
o Kernel parameter 1.0

IV. NUMERICAL RESULTS
A. Settings and Baselines

The structure of the global model weights matrix W has been
defined by the server to satisfy the findings of [13], where the
authors have estimated the required number ) of neurons per
layer based on the number H of hidden layers, the dataset sizes
Dy, and the number of features F' as

F + /maxp—1.. k Dy
_ yerey 8
Q= Y , ®)

which is confirmed via Fig. 3-4, where the best setting of the
DNN model neurons turns out to be Q = 4 for H = 3. As
a benckmark, the performance of our proposed approaches is
compared with LossFedAvg [11] and FedAvg [3]. FL settings
are listed on Table. II, where FL system consists of K = 6
DUs running local DNN with a learning rate = 0.001 for
T = 20 rounds.

B. Numerical Results Analysis

Figures 5a and 5b illustrate the gains achieved by the
entropy-weighted approach compared to the baseline FedAvg
and LossFedAvg. The comparison is done for both balanced
and unbalanced non IID datasets. As showcased in Table III,
the entropy metric varies in balanced datasets, since the
clustering technique takes into account the correlation between
features as well as the supervised output. In the unbalanced
scenario, the entropy difference between CUs is even clearer
and demonstrates also that datasets with smaller size can
sometimes yield more clusters compared to larger datasets,
which further corroborates the role of the introduced entropy
metric in characterizing a dataset efficiently.

A slightly lower losses are met with the entropy-weighted
approach rather than the entropy stochastic policy, but both
methods have the same convergence trend. In Fig. 5a and
Fig. 5b both entropy-based FL converge faster than FedAvg
and LossFedAvg. Knowing how critical is the bandwidth
occupation for FL exchanges, and how the CUs local model
training is power consuming, especially in B5G mobile
systems, our introduced entropy stochastic policy shows good
results. This aspect becomes more critical if the FL result is
an input for fast decision-making algorithms such as network
slicing orchestration or resources scheduling.

Better than FedAvg and LossFedAvg, the entropy stochastic
policy convergence trend is oscillating around entropy-weighted



TABLE III
RESULTS: DATASETS CLUSTERING

Balanced Unbalanced
CU number Nb samples  Nb clusters  Entropy Nb samples  Nb clusters  Entropy
1 100 2 0.692 100 2 0.692
2 100 2 0.592 70 3 1.026
3 100 2 0.676 90 2 0.515
4 100 3 0.998 80 4 1.238
5 100 3 1.051 50 3 1.068
6 100 2 0.676 60 2 0.690
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Fig. 4. Different number of neurons per layer configurations comparison.
dependent on the computation capabilities of both the OSS
server and the CUs, but it shows that the stochastic policy FL
as in Fig. 5a and Fig. 5b. Another important achievement with  minimizes the computation burden by selecting only a subset of
the entropy stochastic policy is the reduction of the required  CUs to take part in the training according to their prior entropy

time for a given number of rounds and exchanges between the  measure. More results can be generated for different values of
OSS server and the CUs towards convergence, as shown in g and m.

Fig. 6, wherein the convergence time difference between the

entropy-weighted approach and the entropy stochastic policy V. CONCLUSION

is exponentially growing with the number of FL rounds. Note In this paper, we have introduced a novel a priori metric
that the corresponding wall-clock time performance is tightly termed dataset entropy to characterize the distribution, the
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Fig. 6. Convergence time of entropy-weighted vs. entropy stochastic policy.

quantity of information, the unbalanced structure and the
“non-IIDness” of a dataset independently of the models. This
entropy is calculated via a generalized clustering strategy that
relies on a custom similarity matrix defined over both the
features and the supervised output spaces, and supporting both
classification and regression tasks. The entropy metric has been
then adopted to develop 1) an entropy-based federated averaging
scheme, and ii) a stochastic CU selection policy to significantly
stabilize the training, minimize the convergence time, and
reduce the corresponding computation cost. Numerical results
have been provided to corroborate these findings. In particular,
the convergence time difference between Entropy-Weighted and
Entropy Stochastic Policy schemes is exponentially growing
with the number of FL rounds.
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