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Abstract—Millimeter wave (mmWave) communication is one 
of the key technologies in 5G and beyond systems to address the 
tremendous growth in mobile data traffic owing to the abundant 
spectrum resources. Ultra-dense network deployment is a promis- 
ing solution to combat the limited coverage, high propagation  
loss and attenuation of mmWave signals. This study investigates 
the beam management, with focus on beam configuration of 
mmWave base stations, in the  ultra-dense  mmWave  network.  
To fulfill adaptive and intelligent beam management while 
protecting user privacy, we employ a double deep Q-network 
under a federated learning to tackle the beam management 
problem which is formulated to maximize the long-term system 
throughput. Simulation results demonstrate the performance gain 
of our proposed scheme. 
Index	 Terms—Ultra-dense networks, millimeter wave 

(mmWave), federated learning, beam management. 
 

I.  INTRODUCTION 

Millimeter wave (mmWave) communication has been con- 
sidered as a promising means to meet the projected require- 
ments by dint of the abundant spectrum resources. However, 
compared with the traditional microwave communication net- 
works, mmWave communication networks face two critical 
challenges. One is the limited coverage because of the serious 
propagation path loss. To tackle this issue, ultra-dense network 
(UDN) [1] is essential and promising, where various small  
cell base stations (SBSs) with different coverage are densely 
deployed, and thus the distance between users and SBSs 
becomes closer. The other is the susceptible to blockage due  
to the inherent directivity. An efficient strategy for enabling 
reliable transmissions and enhanced data rates is to employ 
the multi-connectivity technique [2], which enables a user to 
connect to several SBSs simultaneously. 

For an ultra-dense mmWave system, the number of op- 
erating beams should be extremely large caused by the  
densely deployed mmWave SBSs (mSBSs). This leads to a 
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more complex and critical beam management problem than 
that in conventional non-dense mmWave systems. In current 
mmWave systems, the term beam management is usually 
known as fine alignment of the transmitter and receiver beams 
to perform a variety of control tasks including initial access  
for idle users and beam tracking for connected users [3]. Some 
recent papers [3]–[6] have been published to provide overview 
of beam management for mmWave in 5G New Radio (NR) 
standard. Beam management procedures for handling mobility 
can be categorized into beam sweeping, beam measurement 
and reporting, beam determination, beam maintenance, and 
beam failure recovery [6]. To date, most of the efforts in beam 
management tackle the problem by resorting to beam training, 
sparse channel estimation, and location aided beamforming 
[7]–[9]. As mobile environments are increasingly complex, 
heterogeneous and evolving, machine learning (ML) tech- 
niques have attracted significant attention to optimize beam 
management in mmWave communication systems, especially 
in mobile applications or dynamic environments [10]–[14]. For 
example, the authors in [10] proposed a reinforcement learning 
based handoff policy to reduce the number of handoffs while 
maintaining user QoS requirements in mmWave HetNets. A 
deep learning based coordinated beamforming algorithm is 
proposed in [12] to reduce the training overhead. In [13], the 
authors proposed a deep neural network (DNN)-based beam 
management and interference coordination algorithm to reduce 
the interference and improve the sum-rate of dense mmWave 
network. 

Although the existing ML-based mechanisms bring a num- 
ber of benefits in beam management, they also expose some 
potential risks, most typically, in security and privacy protec- 
tion. It is because that traditional centralized ML techniques 
normally require data collection and processing by a central 
controller, but the  training  data  may  be  privacy  sensitive  
in nature. This problem is becoming a bottleneck of large- 
scale implementation of traditional centralized ML schemes in 
daily life. Moreover, the overhead caused by centralized data 
aggregation and processing is often large in quantity. These 
reasons have led to a growing interest in a new ML model,  
namely federated learning (FL) [15]. In FL, participating 
learners collaboratively train a shared model by exploiting 
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their local computation capability and training data, and thus 
only local model updates instead of raw data need to be 
transferred to a centralized parameter server. Thereby, FL has 
distinct privacy advantages and provides low latency, reduced 
power consumption. These natures of FL motivate this work, 
which is the first time to exploit FL to design an mmWave 
beam management scheme in the open literature. 

In this work, in order to improve beam utilization and reduce 
inter beam interference, we manage beams in a systematic 
manner instead of beam-by-beam basis. The systematic beam 
management mainly refers to the dynamic control of beam 
directions at the mSBS side (i.e., mSBS beam configuration) 
based on periodically sensing instantaneous user distributions. 
Due to the preservation of private user data (e.g., user location- 
s), a decentralized learning approach under a FL framework is 
employed in the adaptive beam management, named BMFL. 
The key contributions can be summarized as follows. 

BMFL is underpinned by FL to intelligently tackle the com- plicated beam management problem aiming at  maximizing 

Meanwhile, we assume that beam management is performed 
in a synchronous time-slotted fashion [16] and the beams are 
static during each time slot. Within each slot, there are three 
main operations. (i) At the beginning of a slot, mSBSs calcu- 
late the accumulated network performance over previous slots, 
and then manage beams by adopting FL-based algorithm. (ii) 
Users choose suitable mSBSs to associate with. (iii) Transmit 
data at the selected beam/mSBS. In UDmmN, in addition to 
the MBS, user u (u ) may receive  data  from  several 
mSBSs surrounding it and can associate with up to Bmax of  
them.  Let  xu,b(t)  =    0, 1    denote  the  binary  association 
indicator variable for user u (u ) and mSBS b (b  ), 
where xu,b(t) = 1 if user u is associated with mSBS b at time 
t, otherwise xu,b(t) = 0. Denoting by    u(t) (   u(t)        ) the 
set of mSBSs associating with user u at time t, the number 
of  these  mSBSs  is  Bu(t)  =  |Bu(t)| =        xu,b(t)  ≤ Bmax. 

The signal-to-interference-plus-noise ratio(SINR) of user u 
receiving from mSBS b can be expressed as 

the long-term system throughput. pu,b · GT 
 

R u,b 

/
PL (du,b) 

 
We address the issue of data privacy in BMFL by using FL to avoid any exchange of user private information (such as SINRu,b = pN + 

∑
 pu,k ·GT R u,k 

, (1) 
location, trajectory, behavior). k∈B,k̸

=b 
PL(du,k) 

• To improve the learning convergence speed, we propose to where pu,b is the allocated transmit power of mSBS b to user 
employ data cleaning technique in our FL algorithm, by T 

u,b and GR are the transmit and receive antenna gain 
using only informative and valuable data for training. 
The remainder of this paper is organized as follows. Sys- 

tem model and systematic beam management problem are 
described in Section II. In Section III, algorithm of BMFL     
is presented. Performance of BMFL is evaluated in Section 
IV. Finally, Section V concludes the paper. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

A. System Model 
We consider a two-tier heterogeneous network, in which 

ultra-dense mSBSs are deployed randomly under the coverage 
of one macro BS (MBS) operating on conventional microwave 
band. Throughout the paper, we call this type of network as 

respectively, du,b is the transmission distance between user u 
and mSBS b and PL (du,b) is the corresponding propagation 
path loss, pN is the noise power, and the right part of the 
denominator represents the total power of interfering signals. 

B. Problem Formulation 
For the case that the user is associated with multiple small 

BSs, the achievable rate of user u at time t should be the sum 
of data rate received from all the associated BSs. Thus, the 
data rate can be expressed as 
ru(t) = 
{∑

b∈Bu(t) Wmmlog2 (1 + SINRu,b(t)) ,  if Bu(t) ≠  ∅, 
 

 ultra-dense mmWave network (UDmmN). In order to commu- 
nicate and exchange control information, the MBS and mSBSs 
are inter-connected via traditional backhaul X2 interfaces.  We 

Wmbs 
Nmbs(t) 

 
 where W 

log2 (1 + SINRu,mbs(t)) , if Bu(t) = ∅, 
(2) 

is  the  total  available  bandwidth  of  the MBS, 
assume that all mSBSs share the total mmWave bandwidth 
Wmm .  The  mSBSs  are  denoted  by      =    1, ..., B  and  the 
users moving randomly within the UDmmN are denoted by 

=   1, ..., U , where B =       and U =      . 
Due to  the  hardware  limitation,  we  assume  that  mSBS  

b (b ) can form up to Mb narrow transmit beams 
simultaneously by adopting beamforming technique. Mean- 
while, we divide the small cell b (b ) into Sb transmit  
sectors (or beam  directions)  with  respect  to  the  condition  
0 < Mb Sb. We assume that the beams covering different 
sectors are mutually orthogonal in space, and each beam can 
serve multiple users within its coverage, for example, in a 
time division multiplexing manner. In order to improve beam 
utilization, beam management leveraging double deep Q- 
network (DDQN) under a FL framework is used in our work. 

mbs 
Nmbs(t) is the number of users served by the MBS at time t, 
and SINRu,b(t) (SINRu,mbs(t)) is the obtained SINR of user u 
from mSBS b (the MBS) at time t. Here we assume that 
both the bandwidth and transmit power are evenly allocated to 
the serving users in each beam. Hence, the system throughput 
at time t is 

R(t) =        ru(t). (3) 
u∈U 

Denote the optimization variable Πb(t) as the set of sectors 
covered by mSBS b at time t, and the beam management 
policy for the whole system at time t is denoted by Π(t) = 
Π1(t), Π2(t), ..., Π|B|(t)  .  Taking  a  suitable  policy  can  let 
more sectors be covered by mSBSs, and thus improve the 
system throughput. To this end, we formulate the beam man- 
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agement problem as follows with the objective of maximizing 
the long-term system throughput. 

State: Current operating beam sectors, serving users of 
mSBSs and the available bandwidth of the MBS are used 

 
P1 : max 

 
lim E 

[
 1 ∑ R (t)

]

 
 

(4) 
to describe the system state. Specifically, t is the set of all 
network states for all BSs at time t. For a specific mSBS 

 
Π(t)  T→∞ T t b,  the  state  is  sb   =   {Ub, Πb(t), W b    , St

K} ∈ St,  where 
s.t. 0 ≤ |Πb(t)| ≤ Mb, ∀t ∈ T , (4-1) 

SINRu,b(t) ≥ χ, 
b  represents the set of serving users and Πb(t) represents 

the  corresponding  beam  sectors  occupied  by  these  users, 
 

 
b mbs 

represents the available bandwidth of MBS for users ∀(u, b) ∈ {(u, b)|xu,b(t) = 1} , t ∈ T , (4-2) in Ub. Moreover, St
K = {Πk (t)}k=1,2,...,|B|,k   b represents the 

ru(t) ≥ r̂u, ∀u ∈ U, t ∈ T , (4-3) 
max 
u 

b∈B 

available sectors of all mSBSs except for mSBS b at time t. 
Action: Let t be the set of actions for all mSBSs at time 

t. Note that an mSBS is an agent which trains local model 
independently. For a specific mSBS b, let ab = {Π (t)} ∈ A xu,b(t) = {0, 1} , ∀u ∈ U, b ∈ B, t ∈ T (4-5) t b t be the action, which means that mSBS 

where E [·] is the expectation of the variable, T with cardinality 
 

with covered beams in Πb(t) at time t. 
b serves users in Ub 

T is the set of time slot for adjusting beam management policy, 
χ is the SINR threshold that users can correctly receive and 
decode  the  information,  and  r̂u  is  the  minimum  requirement 
on data rate of user u. In problem P1, Constraint (4-1) ensures 
that the maximum number of beams for mSBS b is Mb. 
Constraints (4-2) and (4-3) guarantee that the SINR of the   
link between users and the serving mSBSs should be greater 
than the threshold χ and the achieved transmission rate of 
user  u needs  to  exceed  the  minimum  requirement  r̂u.  (4-4) 
and (4-5) are the constraints on user association, where the 
number of associated mSBSs for user u cannot exceed the 
access capability Bmax. 

Examining problem P1 we realize that  the  problem  is 
hard to solve by using traditional optimization method. The 
rational behind is that the long-term optimization objective 
with unknown user movement behavior is formulated. Thus, 
the network environment (including user locations, channel 
quality, network resources, etc.) of future time slot cannot be 
obtained or even mathematically modeled at the beginning.  
An efficient and promising way to solve P1 is to resort to ML 
algorithms. As mentioned above that the raw data in term of 
user locations is quite private and should be carefully protected 
rather than being exchanged among multiple mSBSs like that 
in most reinforcement learning algorithms, FL, is next adopted 
to derive the optimal beam management policy of P1. 

III. FL-BASED BEAM MANAGEMENT IN UDMMN 

In this section, we propose a novel beam management 
mechanism for mSBS beam configuration based on FL in 
UDmmN, called BMFL, with the aim to maximize the long- 
term throughput while enforcing the protection of user location 
privacy. 

 
A. Markov Decision Process Model for UDmmN 

We formulate the beam management problem as a markov 
decision process (MDP) model, where a specific mSBS b (b 

) makes a decision (action) on beam directions at each time 
slot to maximize long-term throughput and the network state 
may be changed by these sequential actions. We define the 
state, action and reward as follows. 

Reward: In order to maximize the long-term system 
throughput, we define the reward as t = R (t), where R (t) 
is the optimization objective of P1. 

In the MDP for beam management, a large number of 
mSBSs and users result in a large state space and action space. 
Specifically, the state space for beam management is a discrete 
space  with  Mb dimensions and action space is a 
discrete  space  with  Mb  Bu(t)  dimensions.  Moreover, 
as the state and action of a specific mSBS will affect that      
of others, it is unrealistic to obtain the transition probability. 
Combined the above issues as well as the protection of user 
location privacy, we exploit FL based on deep reinforcement 
learning (DRL). 

B. FL-based Beam Management in UDmmN 

As shown in Fig. 1, the proposed beam management scheme 
BMFL consists of two steps, i.e., data cleaning and model 
training (including local model updating, local model training, 
global model aggregating). 

Data Cleaning: Indeed, a specific mSBS can obtain all loca- 
tion information of its serving users. However, it is unrealistic 
for mSBSs to choose all the users in their coverage range to 
participate in local training as: 1) The computing resources 
occupied for training on a specific mSBS may be inadequate. 
2) The location of some certain users needs to be protected. 
Therefore, to solve the issue mentioned-above while increasing 
sample diversity as much as possible, mSBS will clean data 
according to: 1) The coverage of mSBS. The users that are not 
located in the coverage range will not be chosen to participate 
in local training. 2) The frequency of participating training. If 
some users have not participated in local model training for a 
long time, mSBS will choose them as the participants in the 
training for next global model updating and thus to increasing 
the sample diversity. Therefore, the users will be chosen to 
train local model on the mSBS once both condition (5) and 
(6) are met. 

du,b ≤ ρb, (5) 
   nu  

η, (6) 
total 

where ρb and η are the coverage radius threshold of mSBS b 
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Model 
Training 

DRL algorithm, DDQN, to train the local beam management 
model on individual mSBSs. DDQN can tackle the issue of 
large state/action space by introducing the experience pool and 
decoupling the selection from the evaluation to reduce the 
correlation among data. DDQN evaluates the greedy policy 
according to the Q-network with weight θ and estimates state- 
action value Q according to the target network Q̂ with weight 
θ̂. The update in DDQN is the same as that in deep Q-Network, 
but the target is replaced by 
yb = Rt+1 + γQ(sb , arg max Q(sb 

 
 

, ab; θb); θ̂b), (8) 

t 
where 

t+1 b t+1 t t t 
t 

π = arg max Q(sb , ab; θb), (9) 
b t+1 t t 
t 

is an ϵ-greedy policy used to manage beam sectors, θb and θ̂b 
Data 

Cleaning are the weight vectors of Q 
t t 

-network and Q̂-network for mSBS 
b respectively, and γ [0, 1] is the discount factor representing 
the discounted impact of future reward. 

For a specific mSBS b, if it is in state sb with action ab at 
t t 

Fig. 1: Beam management based on FL (BMFL) in UDmmN. time slot t, we will get the corresponding state-action value, 
which is given by 

Q(sb, ab) = E[
∑ 

γkRt|sb, ab]. (10) 

 
 tively. For a specific user u, nu represents the frequency of 

participating training, where nu is the number of participating 
training rounds of user u and Ntotal is the total training rounds 
of the relevant mSBS so far. Here we assume b

∗ ( b
∗ b) 

represents the set of the users that participate in local model 
training on mSBS b. 

Model Training: Once finishing the data cleaning, mSBS 
begins to train local model including local model updating,  
local model training, and global model aggregating, which are 
shown as follows. 

1) Local model updating: We assume that each communica- 
tion round consists of τ time slots. We denote the local beam 
management model on mSBS b at time t and the global model 
at communication round r by θb and gr respectively. During 
each time slot, each mSBS performs local training once. At the 
begin of communication round r, mSBSs will receive global 
model gr from the MBS to update θb according to 

The objective of DDQN is to minimize the gap between Q 
and Q̂, i.e., loss function. Therefore, DDQN running on each 
mSBS can be trained by minimizing the loss function, which 
is given by 

L(θb) = E[(yb − Q(sb, ab; θb))2]. (11) 

Moreover, when DDQN is used to approximate the value 
function using the neural network, gradient descent method    
is employed to update the parameter value θb. Therefore, the 
update scheme in DDQN is given by 

θb     = θb + α yb− Q sb, ab; θb    ∇Q sb, ab; θb    , (12) 

where α is the step size. 
After training local data for τ time slots, mSBSs will send 

training parameters θb (b ) to the MBS to update the global 
model. 

3) Global model aggregating: Once receiving all local 
|B| models (i.e., θb for ∀b ∈ B) at the end of communication 

 
b 
t+1 

 λ  
= gr − K 

∇L(θt ), 1 ≤ t ≤ T, (7) round 
t    

r, the MBS updates the global model by 
b b=1 ∑ 

K θb 

data of mSBS b, and L(θb) is the loss function which will be 
  

where  K = 
∑ 

K is the total amount of training data. 
 

Local model training 
2) Local model training: For a specific mSBS, once all 

training data is cleaned and the local model is updated, the 
mSBS begins to train local beam management model based  
on the location information of participants within its coverage 
range. As mentioned, a large number of mSBSs and users 
result in large state space and action space. Therefore, during 
each communication round, we employ the discrete-action 

After updating the global model gr, the MBS will broadcast 
the global mode gr to all mSBSs to update their local models. 

The BMFL algorithm for beam management is presented as 
Algorithm 1. 

IV. SIMULATION AND DISCUSSIONS 

In this section, we conduct numerical simulations to first e- 
valuate the convergence of the proposed BMFL algorithm, and 

a 

given in . 
b∈B 

MBS 

mSBS 2 mSBS 3 

 
Y Y 

  N   
 
 

Y 

  N  

   

N 

 
 
 

Y 

d p ?   N  
 d p ?  

User u User u 

mSBS 1 
 
 

 
training 

Y 
  N  
 
     N 

 
 
 

Y 

 

User u 

e 3 t g r 

Lo
ca

l M
od

el
 e

t 2  

G
lo

ba
l M

od
el

 g
r  

e t 1 
g r 

a 

θ 

and the frequency threshold of participating training respec- 

λ is the learning rate, Kb is the total amount of training gr = 
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19: Initialize θ , ∀b ∈ B; 
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0 Kb t 100m 100m 
where  multiple  mSBSs  and  users  are  randomly distributed, 

0 0 

U ∀ ∈ B 

(y − Q(s , a ; θ )) ; 
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A lgorithm  1  BMFL Algorithm for Beam Management  
Input: , , b∗ = ∅, sb, ab, η, ρb, γ, C, Kb, λ, τ 
output: Beam sectors πb. 

1:  Initialize experience relay pool Db, b ; 
2: Initialize the global weights g0; 
3:  for communication round r = 1, 2, ... do 
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500 

4: ◃ Data Cleaning 
5: for b = 1, 2, ..., |B| do 
6: for u = 1, 2, ..., |U| do 
7: if du,b ≤ ρb and nu ≤ η then 
8: b

∗ = b
∗, u ; 

9: u = u + 1; 
10: else 
11: b

∗ = b
∗ ; 

12: u = u + 1; 
13: end if 
14: end for 
15: end for 
16: Collect data from    b∗ for mSBS b,   b ; 
17: ◃ Update Local Model 
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Fig. 2: Convergence of the BMFL in UDmmN. 
 
 

uniform manner. In this algorithm, we only need to optimize 
18: if r == 1 then 

b 
0 

20: else    

 
 

|B| 

the direction of one beam for each mSBS, and the direction of 
the other beams can thus be determined as the rule of uniform 
deployment. 

21: θb = gr−1 − λ ∑ ∇L(θb), ∀b ∈ B. We  consider  a  square  area  with the size , 
23: ◃ Train Local model 
24: Let θ̂b  = θb , initialize target action-value function Q̂(·) 

 
and an MBS is located at the center. For the coverage of each 
mSBS, we uniformly divide it into 8 sectors (i.e., each sector is 

according to θ̂b ; 
25: for t = 1 to τ do  |B| 

with the coverage of 45◦). Each mSBS generates three beams 
covering different sectors. We set the transmit frequency as 28 26: Receive the initial state s1, s2, ..., st    ; b 

t t GHz with available bandwidth 2 GHz, and the transmit power 
27: Select at = argmaxaQ( ) using ϵ-greedy policy; 
28: Execute action ab; of mSBS is set to 37 dBm. For the MBS, the settings are 

b 
t given as that the transmit frequency is 2.1 GHz, the available 

29: Obtain Rt and sb ; 
30: Store (sb, ab, Rb, sb ) into Db, ∀b ∈ B; bandwidth is 100 MHz, and the transmit power is 50 dBm. 

Each user can be associated with up to 3 mSBSs. The SNR 
t t t t+1 ( b b b    b ) 31: Randomly select a sample 

Db, 1 ≤ j ≤ t, ∀b ∈ B; 
sj , aj , Rj , sj+1 from threshold is set to -20dB. In the first experiment, we evaluate the convergence of the 

32: Calculate yb according to equation (8); 
33: Perform a gradient descent step on 

b b b b 2 
t t t t 

34: Update the parameter θb according to equation (12); 
35: Every C steps, reset Q̂ = Q; 
36: end for 
37: ◃ Update global model 

proposed BMFL algorithm under three typical learning rates 
0.03, 0.1 and 0.3 as shown in Fig. 2. From this figure, we find 
that all the three curves reach the convergence after around 
200 iterations. Specifically, the BMFL algorithm reaches the 
convergence after around 80 iterations when learning rate is 
0.1 while around 130 iterations of learning rate 0.03 and nearly 

 38: g = 
∑|B| Kbθb 

.
 

 
 

200 iterations for learning rate 0.3. These convergence results 
r 

39: end for 
b=1 τ 

K clearly demonstrate the effectiveness and rationality of BMFL. 
Next, we compare network throughput of BMFL with the 

40: Obtain beam sectors πb. 
 

 

then compare the performance in term of network throughput 
with the following two beam management algorithms. 

1) Brute-Force Search (BFS): Find the optimal beam cover- 
age by searching all the possible beam sectors. This algorithm 
can reach the optimal solution of beam management with 
extremely high computational complexity. 

2) Evenly Deployed Beam (EDB): Deploy the beams in a 

varying density of user under three different mSBS densities, 
shown in Fig. 3. As expected, we find that the network 
throughput has little difference for all the three mSBS densities 
when the user density is lower than 900 per km2. Moreover, 
with the increase of user density the achieved network through- 
put is the highest under the mSBS density of 900 per km2 
which is because of the abundant beam resource. 

Finally, we compare the network throughput of BMFL with 
BFS and EDB, which are defined at the beginning of this 
section. Fig. 4 shows the network throughput of the three beam 
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management algorithms under the varying user density from 
500 per km2 to 3000 per km2. We fix the mSBS density as  
600 per km2 in this simulation. As expected that the BFS 
beam management algorithm achieves the highest throughput 
as all the potential solutions have been searched and tested.  
Importantly, we find that BMFL achieves the second highest 
network throughput with relatively small difference of that in 
BFS but much higher than that of EDB. These results further 
demonstrate the performance gain of the proposed BMFL 
algorithm. 

mmWave communication systems becomes a real challenge. 
To address the complex and dynamic control issues, in this 
paper we have proposed a federated DRL-based adaptive beam 
management mechanism, (i.e., BMFL). We formulated the 
mSBS beam configuration problem as a MDP model and 
introduced DDQN into FL to cope with large state-action 
space issues while enhancing the protection of user privacy. 
Simulation results have shown that the BMFL provides a 
better tradeoff between computational complexity and network 
throughput. 
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Fig. 3: Comparisons of network throughput of BMFL under 
different mSBS densities. 
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Fig. 4: Comparisons of network throughput for the three beam 
management algorithms. 

 
 

V. CONCLUSIONS 

Due to the directional transmission and dense network 
deployment, complexity of beam management problem in 
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