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Abstract—The emerging Industrial Internet of Things (IIoT)
is driving an ever increasing demand for providing low latency
services to massive devices over wireless channels. As a result,
how to assure the quality-of-service (QoS) for a large amount of
mobile users is becoming a challenging issue in the envisioned
sixth-generation (6G) network. In such networks, the delay-
optimal wireless access will require a joint channel and queue
aware scheduling, whose complexity increases exponentially with
the number of users. In this paper, we adopt the mean field
approximation to conceive a buffer-aware multi-user diversity or
opportunistic access protocol, which serves all backlogged packets
of a user if its channel gain is beyond a threshold. A theoretical
analysis and numerical results will demonstrate that not only
the cross-layer scheduling policy is of low complexity but is also
asymptotically optimal for a huge number of devices.

I. INTRODUCTION

With the development of the fifth-generation (5G) and future
sixth-generation (6G) [1] wireless networks, the Industrial
Internet of Things (IIoT) has emerged as an important class
of applications. The emerging IIoT applications stimulated an
ever-increasing demand to provide low latency services for
massive devices [2]. However, the scarce spectrum resources
and limited transmission power is a major challenge and is
hindering the support of required quality of service (QoS) for
massive users. How to efficiently utilize the limited resources
to support QoS for massive users is becoming critical and has
been gaining much attention in recent years.

In order to reduce the communication latency, a line of
works focused on the design of efficient stochastic optimiza-
tion based resources allocation schemes. In [3], a dynamic
server allocation scheme for parallel queues with random
varying connectivity was investigated. It was shown that the
allocation policy which serves the longest queue first performs
well in stabilizing the system. In [4], an optimal delay-power
tradeoff was revealed in the case of asymptotically small
delays with fading channels. In [5], a unified framework for
queue-based transmission scheduling was proposed. The opti-
mal scheduling policy was proved to have a threshold-based
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structure. Work [5] has been extended to different scenarios
by works [6]–[8]. In [6] and [7], the optimal queue-aware
scheduling policies under the multi-state fading channels and
the Markov arriving process were investigated, respectively.
In [8], a queue status based non-orthogonal multiple access
was investigated to reduce the latency in multiple user access
scenarios. This line of works focused on the queue status
based resource allocation optimization to match the traffic
dynamics of users, thereby achieving better performance than
other allocation schemes. However, the complexity of this line
of works increases exponentially with the number of users,
leading to an intrinsic difficulty in analyzing and optimizing
the queue status based resource allocation scheme. Motivated
by this, this paper aims to apply a mean-field approximation
method to analyze the queue status based resource allocation
schemes with massive users.

In this paper, we consider a downlink wireless commu-
nication scenario, which includes a base station (BS) and a
massive number of users where the BS transmits each user’s
data packets through a common broadcast channel. To serve
massive users with low implementation complexity, the BS
applies the time division multiple access (TDMA) protocol.
In the order to minimize the average total queueing latency,
we derive an optimal channel resources allocation policy by
analyzing established stochastic optimization problems. Under
the optimal allocation policy, the BS serves the user with
the best channel state first. Moreover, the optimal policy is
based on the channel status and queue status of all the users.
As a result, it is not a trivial work to exactly evaluate the
optimal policy. To address this challenge, we propose a mean-
field approximation method to approximately evaluate the
performance of the optimal policy. When the user number
becomes massive, all users’ influences on a certain user’s
queue dynamic characteristics become certain. As a result,
we can decompose the influences among each user. After
decomposing the complex massive user system, we establish
an equivalent one-dimensional single user queue model for
each user to analyze the queueing latency. Numerical results
will demonstrate that the proposed mean-field approximation
method can well estimate the optimal policy’s delay perfor-
mance.
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Fig. 1: The proposed system model.

II. SYSTEM MODEL

As depicted in Fig. 1, we consider a multi-user downlink
wireless communication scenario, which is comprised of a BS
and N(� 1) users. The transmission power at the BS is set
to a constant P to help reduce implementation complexity. At
the BS, each user is allocated with a separate buffer to store
the packets of independent identically distributed (i.i.d.) arrival
processes. To serve the packets backlogged in the buffers, all
users share a common broadcast channel to transmit their data
packets. Moreover, a central scheduler is adopted to allocate
the common channel resources based on the buffer states and
channel states of each user.

A. The Physical Layer

In this subsection, we present the physical layer of the
downlink wireless system. In this downlink wireless system,
time is denoted by τ . We divide time into slots. Each timeslot
has a duration of T seconds. The tth timeslot denotes the
time interval [tT, (t + 1)T ]. Moreover, the bandwidth of the
channel is denoted by W . We consider a block fading channel
model, which has been used to model the slowly varying flat-
fading channel. Assume each user’s channel quality follows
an i.i.d fading process with an i.i.d additive white Gaussian
noise (AWGN). The channel gain of each user in each timeslot
over a bandwidth W does not change much. Let hn[t] and σ2

denote the magnitude of channel gain of user n in timeslot t
and the noise power at each user’s receiver, respectively.

To serve all the users through a common broadcast channel,
a general superposition coding scheme can achieve good
performance but with intolerably high complexity in analysis
and implementation when N � 1. To avoid tackling the high
complexity of the superposition coding scheme, we apply a
suboptimal time division multiple access (TDMA) protocol.
Especially, it was shown in [9] that the TDMA achievable
capacity region converges to the capacity region achieved
by the superposition coding scheme as the power decreases.
Under the TDMA protocol, the BS shall allocate all the
transmission power P and bandwidth W to one user at a
time instant τ . Let 1n(τ) ∈ {0, 1} denote a channel allocation
policy as a time instant τ . Especially, 1n(τ) = 1 indicates that
user n is allowed to access the common channel at the time
instant τ . If 1n(τ) = 0, the user n is not served at time instant
τ . In particular, we have

∑N
n=1 1n(τ) ≤ 1. Let Rn(τ) denote

the information rate of user n at time instant τ . According to
the channel capacity [10], we have

Rn(τ) ≤ log(1 + h2n[t]1n(τ)ρ), (1)

where ρ = P
σ2 denotes the signal-to-noise ratio.

B. Discrete-time Queue Model

We consider a discrete-time continuous-length queue model,
which can be obtained by sampling the fluid model with sam-
pling rate 1/T . Next, we present the variation of user n’s queue
length in a timeslot. Assume that the arrival process of each
user is i.i.d.. At the start of timeslot t, an[t] ∈ [A]1 packets
arrive at user n’s buffer. Let the probability Pr{an[t] = a} be
denoted by θa, where a ∈ [A] and

∑A
a=0 θa = 1. Without loss

of generality, suppose that all packets are the same in size and
each packet contains L bits. As a result, the average number
of bits arriving at each user’s buffer in a timeslot is given by

λ = L
A∑
a=0

aθa. (2)

Let qn[t] denote the number of bits remained in user n’s
buffer by the end of the timeslot t. The number of bits in user
n’s buffer that are transmitted in timeslot t is denoted by sn[t].
Since the number of bits in a user’s buffer cannot be negative,
sn[t] shall satisfy that sn[t] ≤ qn[t− 1] + an[t]L. By the end
of timeslot t, the number of bits remained in user n’s buffer,
i.e. qn[t], is updated as

qn[t] = qn[t− 1] + an[t]L− sn[t]. (3)

Let S[t] =
∑N
n=1 sn[t] denote the total number of bits

transmitted in timeslot t. According to the Nyquist’s theorem,
the value of S[t] is given by

S[t] = W

∫ (t+1)T

tT

∑
n∈N (τ)

log

(
1 + h2n[t]1n(τ)ρ

)
dτ. (4)

III. DELAY-OPTIMAL SCHEDULING WITH MASSIVE USERS

In this section, we aim to derive an optimal scheduling
policy to minimize the average total queueing latency in the
aforementioned downlink wireless system.

In each timeslot t, the BS dynamically adjust the power
allocated to each user based on each user’s queue state and
channel state. A power allocation policy in timeslot t can be
given by {1n(τ), n ∈ {1, 2, ..., N}, τ ∈ [tT, (t + 1)T}.Based
on the power allocation policy, each user’s queue length
updates as Eq. (3). According to little’s law, we can formulate
a following optimization problem to minimize the average total
queueing delay, which is given by

min
1

λ

N∑
i=1

E{qn[t]}, (5a)

s.t.
∑

n∈N (τ)

1n(τ) ≤ 1,∀τ ≥ 0, (5b)

1In this paper, we denote by [A] the set {0, 1, ..., A}.



where E{·} denotes the expectation operator.
However, it is a non-trivial work to solve the optimization

problem (5). The intrinsic high complexity of optimization
problem (5) is due to we aim to minimize the average queueing
delay in a infinite time horizon by determining the power
allocated at each time instant τ . To overcome the difficulty
in solving the optimization problem (5), we aim to convert
Problem (5) into an equivalent optimization problem, which
is given in the following theorem.
Theorem 1: The optimization problem (5) is is asymptotically
equivalent to the following optimization problem as N →∞.

max S[t] =W

∫ (t+1)T

tT

∑
n∈N (τ)

log

(
1 + h2n[t]1n(τ)ρ

)
dτ, (6a)

s.t.
∑

n∈N (τ)

1n(τ) ≤ 1,∀τ ∈ [tT, (t+ 1)]. (6b)

Proof: Due to space limitations, we mainly present
the main idea of the proof. We first present an equivalent
expression of the objective function Eq. (5a). Let Q[t] =∑N
n=1(qn[t− 1] + an[t]L) denote the total number of bit that

can be transmitted in timeslot t. According to Eq. (3), Eq. (5a)
is equivalent to

1

λ

N∑
n=1

E{qn[t]} =
1

λ

N∑
n=1

E{qn[t− 1]}

=
1

λ
E{Q[t]−

N∑
n=1

an[t]L} =
1

λ
E{Q[t]} −N.

(7)

As a result, we shall minimize E{Q[t]}. For a policy that does
not maximize S[t] in some timeslots, we prove that their exists
a new policy can achieve lower or equal Q[t] for all t. The
main idea of the proof is completed.

Let the optimal channel allocation scheme at time τ be
denoted by {1∗n(τ)}, which is given in the following theorem.
Theorem 2: One of the optimal channel allocation scheme at
time τ is given by

1∗n(τ) =

{
1, n = arg max

n∈N (τ)
hn[t],

0, otherwise.
(8)

Proof: We denote by

R̄(T1) =
1

T1

∫ tT+T1

tT

|N (τ)|∑
n=1

log2

(
1 + h2n[t]1n(τ)ρ

)
dτ (9)

the average information rate over time interval [tT, tT + T1].
It is obvious that we shall maximize R̄(T ) to minimize (6a).
It can be verified that the solution {1∗n(τ)} given by Theorem
2 can minimize R̄(T1) for all T1 ∈ [0, T ]. The proof is
completed.

According to Theorem 2, the BS shall serve each user from
the user with the best channel state to the user with the worst
channel state in each timeslot. The corresponding optimal
scheduling policy is referred to as a good-channel-first-serve
(GCFS) policy.

Next, we derive sn[t] under the GCFS policy. Let
{n1, n2, ..., nM} denote the set of users whose buffer is
not empty in timeslot t just after the arrival process, i.e.,
qnm [t− 1] +anm [t]L > 0 for 1 ≤ m ≤M . The number M is
the number of users who need service in timeslot t. Without
loss of generality, suppose that hn1 [t] ≥ ... ≥ hnM [t]. Let

vnm [t] =
qnm [t− 1] + anm [t]L

log(1 + h2nm [t]ρ)
(10)

denote the number of channel symbols used to clear user nm’s
buffer. Under the GCFS policy, sn[t] is then given by the
following corollary.
Corollary 1: There exits a threshold ι given by

ι = arg max
mt

mt∑
m=1

vnm [t] ≤WT, 1 ≤ mt ≤M. (11)

For users in set {n1, ..., nι}, snm [t] = qnm [t− 1] + anm [t]L.
For user nι+1,

snι+1 [t] =
(
WT −

ι∑
m=0

vnm [t]
)

log
(

1 + h2nι+1
[t]ρ
)
. (12)

Finally, for users in set {nι+2, ..., nM}, snm [t] = 0.
Proof: The proof is omitted due to space limitations.

According to Corollary 1, the first ι users in set
{n1, ..., nM} will surely get their data buffer cleared by the
end of timeslot t.

IV. MEAN-FIELD APPROXIMATION BASED
DELAY ANALYSIS

In this section, we aim to analyze the delay performance
of the GCFS policy. Under the GCFS policy, a discrete-time
continuous-state N -dimensional Markov chain {qn[t], 1 ≤
n ≤ N, t ≥ 0} is induced. Due to the curse of dimensionality,
it is hard to analyze the performance of the GCFS policy
by deriving the stationary distribution of the Markov chain
when N � 1. To evaluate the delay performance of the
GCFS policy, we apply a mean-field approximation method
introduced in [11].

A. Mean-Field Approximation and Threshold-based policy

In this section, we aim to analyze the delay performance
of the GCFS policy via a mean-field approximation method.
Let g(q1, q2, ..., qN ) denote the stationary probability density
function (PDF) of the Markov chain {qn[t], 1 ≤ n ≤ N, t ≥
0}. According to the mean field approximation, we have

g(q1, q2, ..., qN ) ≈ ΠN
n=1gn(qn), (13)

when N → ∞. This is due to that all users’ impacts on a
single user become certain when N → ∞. In other words,
the dependence among users vanishes in this downlink system
as N → ∞. Besides, since all users’ arrival process and
channel quality are i.i.d., the PDFs g1(q1), ..., gN (qN ) shall
be identical. As a result, variables qn[t], 1 ≤ n ≤ N are i.i.d.



when the induced Markov chain is stationary. According to
the law of large numbers, we have

lim
N→∞

1

N

N∑
n=1

qn[t] = E{qn[t]} = q. (14)

Similarly, we have limN→∞
1
N

∑N
n=1 an[t]L = λ. That is to

say that the average queue length and the average number of
arriving bits in a timeslot are two constant when N →∞. The
average number bits served in a timeslot, i.e., 1

N

∑N
n=0 sn[t]

shall also be constant that equals to λ. As a result, we have

lim
N→∞

1

N

N∑
n=0

sn[t] = λ. (15)

Under the GCFS policy, there exist a threshold hth on the
channel gain that a user will get served when his channel
gain is greater than hth. Let f(h) be the PDF of the channel
gain hn[t]. The cumulative distribution function of hn[t] is
denoted by F (x), where F (x) =

∫ x
0
f(h)dh. Set G(x) =

1−F (x). According to hth, each user has the same probability
p = G(hth) to get served. As a result, there are about Np
users get served. Let n1, ..., nNp denote the Np users where
hn1

[t] ≥ ... ≥ hnNp [t]. According to Corollary 1, the first
Np − 1 users will get their buffer cleared and the last user’s
bits are partially served. As a result, the total number of bits
served in a timeslot is given by

N∑
n=0

sn[t] = sNp[t] +

Np−1∑
m=1

(qnm [t− 1] + anm [t]L), (16)

According to Eqs. (14) and (15), we have

lim
N→∞

1

N

(
sNp[t] +

Np−1∑
m=1

(qnm [t− 1] + anm [t]L)
)

= lim
N→∞

1

N

Np−1∑
m=1

(qnm [t− 1] + anm [t]L) = p(q + λ) = λ.

(17)

Eq. (17) indicates that p and hth is a constant. As a result, a
threshold-based policy which serves all backlogged packets of
users whose channel gains are beyond hth can approximately
achieves the minimum queueing latency, which has a lower
complexity when compared with the GCFS policy. Besides,
by Eq. (17), the average queue delay of each user is given by

D =
q

λ
=

1

p
− 1. (18)

Next, we aim to establish a self-consistent equation to derive
the unknown threshold hth and constant p. Based on the
channel threshold hth, the most average number of bits that
can be transmitted in each timeslot can be computed as

Φ(hth) =

WT

∫ ∞
hth

f(h)log(1 + h2ρ)dh

G(hth)
. (19)

Let hu = sup{h|G(h) > 0}. The feasible region of hth is
given by [0, hu). The property of function Φ(hth) is presented
in the following lemma.

Algorithm 1 The Algorithm to obtain the unknown channel
quality threshold hth.

Input: N,λ, ρ, f(h), G(x), hu, ε
Output: hth
1: if Φ(0) ≥ Nλ then
2: return 0
3: end if
4: if Φsup ≤ Nλ then
5: return hu
6: end if
7: hl ← 0, hr ← hu, hth ← 1

2 (hl + hr)
8: while |Φ(hth)−Nλ| > ε do
9: if Φ(hth) > Nλ then

10: hr = hth
11: else
12: hl = hth
13: end if
14: hth ← 1

2 (hl + hr)
15: end while

Lemma 1: Φ(hth) is non-decreasing in hth.
Proof: We derive the derivative of the function Φ(hth),

which is given by

Φ′(hth) =

WTf(hth)

∫ ∞
hth

f(h)
(
log(1+h2ρ)− log(1+h2thρ)

)
dh

G2(hth)
.

(20)
Since ∫ ∞

hth

f(h)
(
log(1+h2ρ)− log(1+h2thρ)

)
dh ≥ 0, (21)

we have Φ′(hth) ≥ 0. As a result, Φ(hth) is a non-decreasing
function of the threshold hth.

According to Lemma 1, the supremum of Φ(hth) is given
by

Φsup = lim
hth→hu

Φ(hth) = WT log(1 + h2uρ). (22)

The minimum of Φ(hth) is Φ(0). In order to keep this queueing
system stable, the average number of bits transmitted in each
timeslot shall equal the average number of bits arriving in each
timeslot. As a result, we have

Φ(hth) = Nλ. (23)

Eq. (23) is the self-consistent equation we want to establish.
By solving Eq. (23), we can obtain the unknown threshold hth
and the unknown constant p. In particular, when Φsup < Nλ,
this queueing system is unstable. More transmission power
shall be applied in this case to enhance the service capability of
the system. When Φ(0) > Nλ, we can reduce the transmission
power to make full use of the spectrum resources. Since Φ(hth)
is a non-decreasing function, we can apply Algorithm 1 to
derive the threshold hth.

B. Equivalent Single User Queue via Decomposition
In this subsection, we aim to approximate the stationary

distribution of the each user’s queue length based on the mean
filed approximation results in the last subsection.
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Eq. (13) indicates that the dependence among users vanishes
as N → ∞. As a result, we can decompose the complex
massive user downlink system into multiple equivalent single
user systems. Eq. (17) indicates we can ignore the user
whose bits are partially served. As a result, in each single
user system, all packets in a user’s buffer are approximately
either all transmitted with probability p or all remained in
the buffer with probability 1 − p in each timeslot. Let q̃[t]
denote the number of packets that remain in the buffer of user
n by the end of timeslot t. According to the arrival process
an[t], we can construct a discrete-time discrete-state Markov
chain {q̃[t], t ≥ 0} to model the queue length dynamics of
each single user system, which is illustrated in Fig. 2. Let
Pi,j = Pr{q̃[t + 1] = j|q̃[t] = i} be the one-step transition
probability of this new Markov chain, which is given in the
following lemma.
Lemma 2: The one-step transition probability of the new
Markov chain is given by

Pi,j =



θ0 + θ̄0p, i = j = 0,

θ0p̄, i = j > 0,

θap̄, i− j = a, 0 < a ≤ A,
p, i > 0, j = 0,

0, otherwise,

(24)

where θ̄0 = 1− θ0 and p̄ = 1− p.
Proof: The proof is omitted due to space limitations.

Let πi denote the steady-state probability of state q̃[t] = i
of the discrete-time discrete-state Markov chain {q̃[t], t ≥ 0}.
According to Lemma 2, we have

∞∑
j=i+A

πjp =

A−1∑
j=0

A∑
k=A−j

πi+jθkp̄, i ≥ 0. (25)

It should be noted that Eq. (25) is the local balance equation
of the new discrete-time discrete-state Markov chain. Let χi =∑∞
j=i πj . As a result, we have

πi = χi − χi+1. (26)

By submitting Eq. (26) into Eq. (25), we have

χi+AcA −
A−1∑
j=0

χi+jcj = 0, i ≥ 0, (27)

where cA = p + θ̄0p̄, and cj = θA−j p̄ for j ∈ [A − 1].
Eq. (27) is a linear difference equation. To solve Eq. (27),
A boundary conditions are needed, which are given in the
following lemma.

Lemma 3: The A boundary conditions of the linear difference
Eq. (27) are given by

χ0 = 1,

χi =

χ0

A∑
k=i

θkp̄+

i−1∑
j=1

χjθi−j p̄

p+ θ̄0p̄
, 1 ≤ i ≤ A− 1.

(28)

Proof: The proof is omitted due to space limitations.
Next, we aim to solve the linear difference Eq. (27) with A

boundary conditions by the unilateral z-transforms. Let π̃(z)
and χ̃(z) denote the unilateral z-transforms of sequences {πi}
and {χi}, respectively. The unilateral z-transform of Eq. (27)
is given in the following theorem.
Theorem 3: The unilateral z-transform of the linear difference
Eq. (27) is given by

χ̃(z) =

A−1∑
j=0

χj

( A−1∑
k=j+1

ckz
A−k − cAzj

)
A−1∑
j=0

cjz
A−j − cA

. (29)

Proof: The proof is omitted due to space limitations.
Similar to Theorem 3, we can derive the unilateral z-

transform of Eq. (26). By deriving the unilateral z-transform
of Eq. (26), we can obtain

π̃(z) =
(z − 1)χ̃(z) + 1

z
. (30)

We omit the derivation of Eq. (30) due to space limitations.
Let Z−1(·) denote the inverse unilateral z-transform operator.
The steady-state probability of the discrete-state Markov chain
is then given by

πi = Z−1(π̃(z)). (31)

In particular, when A = 1, the steady-state probabilities {πi}
are given in the following corollary.
Corollary 2: When A = 1, the steady-state probabilities {πi}
are given by

π0 =
p

pθ0 + θ1
,

πi = π0(1− π0)i, i ≤ 1.
(32)

Proof: The proof is omitted due to space limitations.

V. NUMERICAL RESULT

In this section, numerical results are presented to demon-
strate the theoretical analysis. In the simulations, the number
of users and the maximum number of packets arriving at each
user’s buffer are set to N = 105 and A = 1, respectively. The
length of a packet is set to L = 1. The bandwidth and the time
interval of a slot are set to W = 1 and T = 103, respectively.
The noise power at each user’s receiver is set to σ2 = 10−12.
Assume that the magnitude of user n’s channel gain, i.e., hn[t]
is a Rayleigh random variable, which has a density distribution
f(h) = he

−h2
2 . In each timeslot, the packet arrival of each
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user’s buffer follows a Bernoulli arrival process with parameter
θ1. The BS allocates channel symbols according to Theorem
1. Each user’s buffer evolves according to Eq. (3) with each
simulation running over 105 timeslots. The simulation results
and the results derived by the mean-field approximation are
presented in the following figures.

Fig. 3 present the delay performance of the GCFS policy
under different arrival rates θ1. In Fig. 3, the average packet
delay approximated by the mean-field approximation method
and the average bit delay derived through simulation are
denoted by solid lines and marks ‘o’, respectively. From Fig. 3,
it can be seen that the average bit delay under the GCFS policy
can be well approximated by the average packet delay derived
through the mean-field approximation method proposed in
this paper. Fig. 3 also presents the basic tradeoffs between
the queueing delay and the power consumption. When more
transmission power is applied, the queueing delay decreases.

Fig. 4 present the probability distribution of the number
of packets in one user’s buffer under different transmission
powers P . In Fig. 4, the arrival rate and the time interval of
a slot are set to θ1 = 0.6 and T = 2× 103, respectively. The
probability distributions of the number of packets in one user’s
buffer derived by mean-field approximation and simulation are
denoted by solid lines and marks ‘o’, respectively. From Fig. 4,
it can be seen that the probability distributions of the number
of packets in one user’s buffer derived by the mean-field
approximation and simulation match well. This demonstrates
that the established discrete-state Markov chain depicted in
Fig. 2 well reflects the dynamic characteristics of each user’s
queue length.

VI. CONCLUSION

In this paper, we have investigated the problem of queueing
delay minimization in a downlink communication scenario
with massive receivers. To minimize the average total queueing
delay, we have derived the optimal scheduling policy, referred
to as the GCFS policy, by analyzing the established stochastic
optimization problem. Furthermore, to overcome the difficulty
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Fig. 4: The probability distribution of the number of packets
in the buffer.

in analyzing the performance of the GCFS policy due to the
massive users, we have applied a mean-field approximation
method. We have obtained a threshold-based policy with lower
complexity which can approximately achieve minimum delay.
Moreover, we have shown that the complex downlink system
with massive users can be decomposed into massive single-
user scenarios. Besides, we have established a Markov chain
model for the equivalent single-user scenario to analyze the
stationary distribution of each user’s queue length. Numerical
results have demonstrated that the average queueing delay
under the GCFS policy can be well evaluated by the mean-
field approximation method.
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