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Abstract—Cache-enabled device-to-device (D2D) communica-
tion has been widely deemed as a promising approach to tackle
the unprecedented growth of wireless traffic demands. Recently,
tremendous efforts have been put into designing an efficient
caching policy to provide users better quality of service. However,
public concerns of data privacy still remain in D2D cache sharing
networks, which thus arises an urgent need for a privacy-
preserved caching scheme. In this study, we propose a double-
layer blockchain-based federated learning (DBFL) scheme with
the aim of minimizing the download latency for all users in
a privacy-preserving manner. Specifically, in the sublayer, the
devices within the same coverage area run a federated learning
(FL) to train the caching scheme model for each area separately
without exchange of local data. The model parameters for
each area are recorded in sublayer chains with Raft consensus
mechanism. Meanwhile, in the main layer, a mainchain based
on practical Byzantine fault tolerance (PBFT) mechanism is
used to resist faults and attacks, thus securing the reliability
of FL updates. Only the reliable area models authorized by the
mainchain are utilized to update the global model in the main
layer. Numerical results show the convergence, as well as the gain
of download latency of the proposed DBFL caching scheme when
compared with several traditional schemes.

Index Terms—D2D Caching, Federated Learning, Blockchain

I. INTRODUCTION

To cope with the unprecedented growth of wireless traffic,
caching popular contents at network edges has shown great
potential. This pre-download method allows users to fetch
contents from the cache server thus to significantly relieve
the network pressure, and reduce the latency of users [1].
Meanwhile, D2D communication technology has been in-
vented to enable multiple direct transmissions between pairs
of nearby devices in cellular networks [2], hence the spectrum
efficiency can be dramatically improved. Borrowing the D2D
communication technology, a promising and attractive trend is
to allow user equipment (UE) to play an active role as caching
servers, and thus to establish a caching-enabled D2D network
[31-[5].

Considering the limited caching storage of D2D devices
as well as the time-varying user preferences, designing an
efficient caching scheme to minimize the content fetching
delay is an essential yet challenging issue [6], [7]. Recently,

tremendous works have been devoted into utilizing learning-
based algorithms to derive an optimal caching scheme in D2D
networks. Specifically, the authors in [8] designed a caching
scheme based on value-based reinforcement learning (RL).
The authors in [9] applied policy-based RL to cache scheme
design with the assumption that the central server can accu-
rately predict user preferences. In [3], [10], deep RL (DRL) is
used to analyze the preference similarity between users thus
to distribute content. All the above works aim to improve the
caching hit-rate under different scenarios while paying little
attention to user privacy during information exchanges in the
learning process.

However, user local data (including preferences, download
records, cached contents, etc.) are normally sensitive and
private [11]. Thus, UEs would not like to share the local data in
practice. In light of the increasing privacy concerns, federated
learning is considered as a promising solution to design a D2D
caching scheme. Basically, FL is an emerging decentralized
learning approach that requires exchanges of learning models
rather than raw data, which is beneficial for protecting data
privacy. Besides privacy, another key motivation is that FL
can achieve satisfied learning performance by sharing training
models even under the case with insufficient local training data
[12].

In spite of these superiorities, one critical challenge faced
is the reliability of model updates in FL process, especially
in untrusted D2D networks with faults and malicious attacks.
Specially, once some D2D nodes do not send the updates or
send fault updates, the performance of the global model in
FL may be heavily degraded, leading to a poor cache hit. To
tackle this challenge, blockchain, which is a distributed ledger
technology providing immutable and persistent data records
[13], can be expected to serve as an information verification
and storage tool in FL. In addition, using blockchain brings a
by-product to overcome the issue that users in D2D networks
may show a low willingness to transmit data for others and be
indolent in model training [14]. Introducing the blockchain-
based incentive scheme provides rewards for the users who
play an active and positive role in this system. It is promising
to attract more users to actively join the caching model training



and D2D content sharing.

In this study, we propose a privacy-preserved D2D caching
scheme by exploiting FL underpinned by a double-layer
blockchain architecture. Simulations demonstrate both the
convergence and the performance gain of the proposed DBFL
caching scheme compared with the traditional schemes. The
main contributions of our work are listed:

1) We formulate the D2D caching problem as a multi-agent

Markov decision process (MDP) problem, and propose
a novel caching scheme named DBFL.

2) In DBFL, we develop an FL with the double-stage
cluster-based framework to establish a reliable and
privacy-friendly learning scheme. This FL method al-
lows users to train models in a distributed way without
raw data exchange.

3) We exploit a double-layer blockchain architecture to un-
derpin the above FL. Specifically, multi-sublayer chains
based on the Raft consensus mechanism are used to
store area models, and stimulate users to participate
in D2D caching. Meanwhile, a main blockchain with
the PBFT consensus mechanism verifies area models
to resist Byzantine faults, ensuring the accuracy of the
global model.

The remainder of this paper is organized as follows. The
system model is described in Section II, followed by present-
ing the problem formulation in Section III. Then, we propose
the DBFL caching scheme in IV. We show simulations in
Section V. Finally, the conclusion is presented in Section VI.

II. SYSTEM MODEL
A. D2D Network

We consider a D2D network that consists of a central base
station (BS) and multiple UEs with the capability of caching
and D2D communication. Each UE can provide cached con-
tents via D2D links as an independent server [8]. Moreover,
we assume that the BS has an ample cache capacity, and all
the required contents can be obtained from the BS [15].

Let Y = {1,2,...,a} be the set of all the considered UEs
in the coverage of the BS. For a specific UE u, it requests
content from the item library F = {1,2,...,x} with the
content size Sr = {s1,52,...,8+}. Moreover, we denote
Cu = {c1,¢2,...,¢q} as the set of storage capacity of UEs.
The fetching process is first broadcasting the request to the
nearby UEs when UE wu requires item f. Subsequently, the
UEs that locally store the required item f send a reply, and
the UE u is connected to the nearest item holder to obtain the
required item. If no UE replies to the request, the BS should
take over the request.

B. Content Caching Models

In this work, we consider three possible caching models
as shown in Fig. 1 including self-caching, D2D-caching, and
BS-caching, which are illustrated as follows.

1) Self-caching: UE wu first checks whether the item has

been cached in the local storage. The request will be
satisfied immediately if the local cache hits.

BS-caching

BS-caching
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Fig. 1. Three different caching models in the communication community, 1)
self-caching, 2) D2D-caching, and 3) BS-caching.

2) D2D-caching: If the required content items are not
cached at the local device, UE wu will search the nearby
devices within the radius of Rpop trying to get the
required item.

3) BS-caching: BS-caching will be the last method for UE
u to obtain the desired content when neither self-caching
nor D2D-caching hits the requirement. The cellular BS
will receive the request of UE u and transmit items from
the local storage center.

C. Transmission Latency

There are two transmission scenarios: 1. D2D transmission,
2. BS-UE transmission. We assume that the D2D links do
not interfere with each other [8]. For D2D transmission,
let SNRy, = Pp - Gy /012\, represent signal-to-noise ratio
(SNR), where Pp denotes the transmission power of user
device, G, is the channel gain of D2D transmission, and
0% is the Gaussian white noise power. Furthermore, for the
channel gain of D2D link, we have G, , = kp - d;‘i}D, where
kp and ep denote the path loss constant and exponent of the
D2D link respectively. The transmission rate of a D2D pair
UE u and v is w, , = Bp -logy(1 + SNR,, ), where Bp is
the available bandwidth of D2D link [8].

For BS-UE transmission, we use a similar way to calculate
the SNR SNR, o and transmission rate w, o of UE u. We
assume that both the wireless bandwidth and transmit power
are evenly allocated among the multiple serving devices. In
addition, 7, = sy/wp is the transmission latency for u to
fetch item from UE v while 7'1{0 = sf/wp is the transmission
latency for u getting item from the BS.

III. PROBLEM FORMULATION

In this section, the D2D caching scheme design is formu-
lated as a multi-agent MDP with the aim to minimize the
download latency for all users. The following is the illustration
of the state, action, and reward function.

A. Action

Let A, = {au,1,0u,2,--.,0y s} be the action space of UE
u, where a, y € {0,1} denotes the action for UE u cache
content item f. If UE w caches the item f, a, r = 1, otherwise
au,; = 0. Note that the total size of cached content items
cannot exceed the storage capacity ¢, of UE u, i.e., > o s;-
Qg g S Cy-



B. State

The state of the environment for UE w at time ¢ is de-
noted as S, = (P, Q,), where P, = {p} 1,...,pl, ;} is
the estimated local popularity in the coverage range of w.

ol = {qu 1y-- ’qZ,f} is the local hit-rate of file f. Specially,

t
Py = Zh s==L—, where n!, s is the number of requests for

1 ", ’

t
f. qu7 = n“ L where n,,. is the number of UEs among the
coverage of UE u, and mft # 18 the number of UEs fetching

content f from UE u.

C. Reward and Return

Every UE receives the same reward, where the reward is
calculated based on the total transmission latency reduction.
The transmission latency of UE u for fetching content item f
at time ¢ is given by

zt s+l I =dip)|. @
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where N, denotes the neighbors of u, y is the UE with the
u-th lowest latency for sending the item f to UE u, and th f
denotes the lowest latency of UE w to fetch the content item
f from neighbors.

The lowest latency of fetching content f can be calculated

as
[Nul p—1
Z,=3 (f -, az,f) R
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where T[] (1 - atyﬁf) al, ; is an indicator function with
value of 0 to denote that no UE can fetch content faster than
. If || is larger than the total number of neighbors, it means
that no UE in N, stores the item f. In addition, when UE u
fetches item f, the transmission latency reduction is as

~T 3)

Therefore, the total reduction of the transmission latency for
UE w at time ¢ is given as
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where dz’f € {0,1} is a binary decision variable that indicates
whether UE u requests for the item f at time ¢, and ai, =1
denotes that the neighbor p stores the item f.

The total reward obtained by UEs is given as
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To ensure the highest overall reward, some UEs may sacrifice
their own storage space to meet the needs of others. Hence,
in some cases, the content transmission latency of partial UEs
could be relatively high. To avoid this problem, we add a
constraint that the maximum average latency for each UE to
fetch an item cannot exceed the threshold 4,4z

The discounted return is composed of short term reward and
long term reward, which is denoted as

m—1
Ri=> ¥'Riri+7" Retm, 6)
i=0
where ~ denotes the discount rate and 0 < v < 1, the time
t>0.

IV. DBFL CACHING SCHEME DESIGN

In this section, we design a caching scheme DBFL by
exploiting a blockchain-enabled FL framework as shown in
Fig. 2. This is a cluster-based and privacy-preserved scheme
that allows UEs to learn cooperatively without exchanging
users’ private information. Besides, it resists Byzantine and
omission faults by utilizing a double-layer blockchain. We
illustrate the three steps of DBFL: 1) task publishment and
local model training; 2) sublayer blockchains and area models
update; 3) main blockchain and global model update.

A. Task Publishment and Local Model Training

Initially, the cache sharing and model training tasks are
broadcasted by the publisher. UEs respond to the publisher and
send their relevant information (storage, battery, CPU/GPU
model and etc.) for verification. Subsequently, they download
the initial states and models for training. The UEs update the
states after all content requests from UEs are satisfied in the
decision slot. Then, the average latency reduction of users can
be calculated, which is used to update the reward. At time ¢,
the state space, action space, reward, and the next state can
be packed as a transition (s, as, 7, Si+1). Besides, we use
a larger buffer with a capacity n; to store these transitions.
The transition management using the first-in, first-out (FIFO)
method. Furthermore, we use the Stochastic Gradient Descent
(SGD) scheme to randomly sample a transition from the buffer
to compute the temporal difference (TD) error then calculate
the stochastic gradient. The approximate value function pa-
rameterized by the weight w is shown as

Q(s¢, ap;w) = 1 +YQ(St41, Apg1;W). @)

In a double deep Q network (Double DQN), the best action
is given by
a* = argmax Q(s¢+1, a; w). (8)

The action evaluation in Double DQN using TD target network
is as
Yt :rt+’7'maiaXQ(3t+lva*;w_)a (9)

where w™ is the weight parameter of the TD target network
[16]. The TD target network has the same structure as that
of the deep Q network (DQN), but with different weight
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Fig. 2. Blockchain and federated learning framework of the D2D caching system.

parameters. Moreover, v is used to balance the immediate
reward and future rewards. We use Double DQN to shorten the
difference between w™ and w by minimizing the loss function,
given by

1 52
9 [Q(st, ar;w) — Z/t]2 = Et (10)

i

where ¢, is the target error.
We draw samples randomly from the pool of stored samples.
Then, we use the loss to update w as per the following rule
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where ¢, is the stochastic gradient and « denotes the learning
rate.

B. Sublayer Blockchains and Area Models Update

As mentioned, various omission faults (agents send false
data accidentally) and Byzantine faults (malicious agents send
false and fake data, hard to detect) may exist in practical
cache-enabled D2D networks. Thus, in this study, blockchain
is applied to this cache sharing network to secure a reliable
FL performance.

In D2D networks, limited by the low computing capability
of user devices, the proof-based consensus mechanisms with
high consumption (such as Proof of Work and Proof of Stake)
cannot be directly applied to the subchain. Besides, due to the
numerous nodes, the complexity of using PBFT or Byzantine
Fault Tolerance (BFT) in the sublayer is extremely high. In
this problem, we only consider the omission fault in the
sublayer chains. Hence, consortium blockchains are exploited,
where every device needs to get a permit to participate.
Considering the high device density, the consensus mechanism
of these consortium blockchains should have high scalability.
Moreover, it must be implement-friendly subject to the light

capability of D2D nodes. Fortunately, these requirements are
consistent with the characteristics of Raft.

There are three categories of nodes in Raft consensus,
saying leader, candidate, and follower [17]. Each cluster can
select only one trusted UE with the best performance as the
leader, and the rest of UEs then become followers. Candidates
are the immediate state of followers trying to become the new
leader node.

The area model update in the sublayer chains under Raft
consensus is composed of two stages.

1) Leader election stage: the leader UE in each cluster
sends heartbeats to all followers. Once followers can
not receive the heartbeats from the leader, a leader
election stage will be initiated. These followers transfer
the candidate state and first vote for themselves. Then,
the candidates will send a set of data to request other
UEs to vote for them. If a candidate wins the majority
of votes, it will become the new leader and regularly
send heartbeats to all UEs to maintain its rule.

FL model update stage: the leader UE receives local
models and other additional information (training time,
data size and etc.) from followers. To resist the attacks
or faults, the leader will check whether the training
speed matches to the training time and data size, thus to
determine the authenticity of a local model. Only those
verified local models can be used to update the area
model. The update function is shown as

t+1 ot
w,, —wa—a-g
uelU,

2)

Su,n

Sa

" Gt,u (12)

where S, is the total size of training data samples from
n UEs in area a, S, = ZueUa Su,n-

The updated area model and the relevant information will
be packed into a new block in the sublayer blockchain. These
datasets are transparent that can be checked and verified.



C. Main Blockchain and Global Model Update

Only leader nodes of sublayer areas have the right to involve
in the global model update. Therefore, the computational
complexity of using the PBFT in the mainchain can be
decreased due to that a few nodes are allowed to participate
in the consensus process. It is capable of utilizing PBFT to
detect Byzantine faults and preventing the global model from
being severely affected by malicious nodes.

In PBFT, the nodes are divided into two categories: 1)
primary node and 2) secondary node. There is one sublayer
leader taking turns to become the primary node in each round,
while the rest of sublayer leaders are secondary nodes in PBFT.
The ultimate goal is that these primary and secondary nodes
reach a consensus on a principle of the minority obeying the
majority. Once the primary node received a request for area
model verification, it first checks the loss between the previous
global model and every area model, and then evaluates the
cache prediction performance of these models. Only well-
performed area models with high hit-rate are used to update
the global model. Then, the primary node broadcasts the
verification request to all the secondary nodes. Unlike Raft,
secondary UEs in PBFT are able to challenge the reliability
and rationality of the primary UE. Specifically, secondary
nodes can check the cache hit-rate of the global model, and
determine whether the model update is valid and reasonable.
The request is successfully served when there are f+ 1 nodes
that reply with the same result. Here should note that f is
the maximum number of malicious nodes that PBFT can be
tolerated, f = (n, — 1)/3, where n, is the total number of
nodes [18].

The global model update is a large time-scale task, i.e., the
global model update once after several updates on area models.
The update function of the global model is given by

1
r+1 r
“"g § — Wy,

n
acA?

13)

where w_g“ is the weights of the updated global model at
round 7.

V. SIMULATIONS AND DISCUSSIONS

In this section, we conduct simulations to compare the
performance of our proposed DBFL scheme with the three
following caching schemes:

1) Zipf random: UEs randomly cache content with an
assumption that the content popularity obeys Zipf dis-
tribution.

2) DRL-based: This caching scheme is value function-
based, it enables multi-agent cooperatively learning.

3) FL-based: This scheme is similar to the DBFL caching
scheme, except for the involvement of blockchain. In
other words, each agent in this scheme runs a DRL to
train the local model without using blockchain to assist
the global model aggregation.

Both omission and Byzantine faults are considered. The omis-
sion fault is a UE that accidentally stops the model update

06

05 0.01

800 1000
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Fig. 3. Training process of DBFL under different learning rate

process for more than 10 rounds, while the Byzantine fault is
to upload random updates maliciously.

A. Simulation Setting

We consider a cache-enabled D2D network scenario with 3
clusters covering 5 UEs separately. There are 10 content items
with the same size. We assume that a UE can fetch items from
any neighbors via the D2D link within the communication
range. All UEs have the same storage with the size of ¢, =
1000M B. The content request probability of a UE is modeled
by Zipf distribution [8]. We set different content popularity
parameters based on the heterogeneous preferences of UEs.

For each DQN in DBFL, we set the number of input layer
neurons, hidden layer neurons, and output layer neurons as
20, 10, and 10, respectively. We use Sigmod as the activation
function from the input layer to the hidden layer, and ReLU
from the hidden layer to the output layer. The size of the reply
buffer in local model training is set to 100. Each round, we
randomly select 5 continuous transitions from the buffer to
calculate the target loss. The learning rate o = 0.001 and the
influence factor v = 0.1.

B. Numerical Results

We first conduct the simulation in an ideal environment
without any fault or malicious nodes to verify the convergence
of DBFL. Fig. 3 shows the loss curves of our proposed DBFL
under different learning rates. We find that all these four curves
of loss value converge after around 500 episodes. Moreover,
DBFL with a learning rate of 0.001 achieves a fast and stable
convergence speed.

With the aim of evaluating the attack/fault resistance of
our proposed DBFL-based caching scheme, we compare the
reduced transmission latency of these four caching schemes
under an omission fault. Fig. 4 shows that the reduced latency
of all the four schemes. From this figure, we can see that
the DBFL-based scheme and FL-based scheme achieve higher
average rewards than the DRL-based scheme. The reason is
that the local models in DBFL and FL are updated by the
global model every 10 rounds, which can ensure all nodes
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obtain the well-performed model. Moreover, we observe that
the DBFL-based scheme outperforms the FL-based scheme.
This is because that fault nodes cannot be detected and
replaced in the FL-based scheme, which degrades the accuracy
of the global model in FL.

Finally, we compare the latency under Byzantine faults for
all the four caching schemes as shown in Fig. 5, where a
malicious node is considered in the network. From Fig. 5, we
can see that the DRL-based and FL-based schemes perform
unsatisfactorily and bring only a small delay reduction to the
system, although their performances are better than that of the
Zipf random caching scheme. Moreover, we observe that the
DBFL caching scheme always achieves the highest latency
reduction. The reason is that the impact of Byzantine faults
is minimized by blockchain through preventing the malicious
node from participating in the training.

VI. CONCLUSION

In this study, we have developed an intelligent and privacy-
preserving caching scheme DBFL in the D2D network. DBFL
is based on a framework of FL underpinned by a double-layer
blockchain system. We have illustrated the blockchain consen-

sus of each layer and streamlined DBFL, including FL. model
training and model data recording on the blockchain. We
have conducted simulations in scenarios with and without
malicious attacks, where numerical demonstrated both the
improvements of caching performance and the reliability of
resisting attacks. In general, this work can be seen as a pioneer
to explore the interplay of blockchain and FL, thus developing
an intelligent and trusted caching scheme under an unreliable
wireless network.
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