
ar
X

iv
:2

10
5.

14
64

1v
1 

 [
cs

.I
T

] 
 3

0 
M

ay
 2

02
1

On the Secrecy Rate under Statistical QoS Provisioning

for RIS-Assisted MISO Wiretap Channel

Vaibhav Kumar∗, Mark F. Flanagan∗, Derrick Wing Kwan Ng†, and Le-Nam Tran∗

∗School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland
†School of Electrical Engineering and Telecommunications, University of New South Wales, NSW 2052, Australia

Email: {vaibhav.kumar, mark.flanagan}@ieee.org, w.k.ng@unsw.edu.au, nam.tran@ucd.ie

Abstract—Reconfigurable intelligent surface (RIS) assisted ra-
dio is considered as an enabling technology with great potential
for the sixth-generation (6G) wireless communications standard.
The achievable secrecy rate (ASR) is one of the most fundamental
metrics to evaluate the capability of facilitating secure com-
munication for RIS-assisted systems. However, the definition of
ASR is based on Shannon’s information theory, which generally
requires long codewords and thus fails to quantify the secrecy
of emerging delay-critical services. Motivated by this, in this
paper we investigate the problem of maximizing the secrecy rate
under a delay-limited quality-of-service (QoS) constraint, termed
as the effective secrecy rate (ESR), for an RIS-assisted multiple-
input single-output (MISO) wiretap channel subject to a transmit
power constraint. We propose an iterative method to find a
stationary solution to the formulated non-convex optimization
problem using a block coordinate ascent method (BCAM), where
both the beamforming vector at the transmitter as well as the
phase shifts at the RIS are obtained in closed forms in each
iteration. We also present a convergence proof, an efficient
implementation, and the associated complexity analysis for the
proposed method. Our numerical results demonstrate that the
proposed optimization algorithm converges significantly faster
that an existing solution. The simulation results also confirm
that the secrecy rate performance of the system with stringent
delay requirements reduces significantly compared to the system
without any delay constraints, and that this reduction can be
significantly mitigated by an appropriately placed large-size RIS.

I. INTRODUCTION

With the recent development in programmable metasurface

technology, reconfigurable intelligent surfaces (RISs) is being

considered as a prominent candidate for the sixth-generation

(6G) wireless communications systems. In practice, an RIS

consists of multiple low-cost passive reflecting elements which

are capable of steering the incident radio waves in a desirable

direction to optimize the system’s performance [1]. In addition

to their ability to enhance communication metrics such as

the achievable rate, error rate, outage probability and energy

efficiency, RISs are also being considered as one of the most

promising candidates for physical-layer security (PLS) provi-

sioning in the next-generation communication systems [2].

To unlock the potential of RIS for secure communication,

advanced resource allocation has been studied under different

scenarios. For instance, in [3], the authors presented the
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problem of maximizing the achievable secrecy rate (ASR) for

an RIS-assisted multiple-input single-output (MISO-RIS) sys-

tem with multiple eavesdroppers, under a maximum transmit

power budget. More specifically, the transmit beamforming

and RIS reflection coefficients were jointly optimized using an

alternating optimization (AO) based iterative algorithm and it

was concluded that RIS helps to enhance the secrecy of the

MISO system. Also, in [4], the problem of ASR maximization

for a MISO-RIS system without the eavesdropper’s channel

state information (CSI) was studied. To obtain a suboptimal

solution of the underlying non-convex optimization problem,

the authors in [4] adopted oblique manifold and minorization-

maximization algorithms, where the former was shown to offer

a higher ASR for a large number of reflecting elements in the

high-SNR regime.

On the other hand, the problem of ASR maximization for a

MISO-RIS millimeter wave (mmWave) system with multiple

(colluding and non-colluding) eavesdroppers with imperfect

CSI at the transmitter was addressed using AO and semidef-

inite relaxation (SDR) in [5]. Besides, the problem of ASR

maximization for an RIS-assisted multiple-input multiple-

output (MIMO) downlink system was studied in [6], where

an AO-based iterative scheme was used to jointly optimize

the transmit covariance matrix (at the transmitter) and the

phase shifts (at the RIS). Furthermore, a bisection-search-

based AO scheme was applied in [7] to maximize the ASR for

a MISO-RIS system. In order to jointly optimize the transmit

beamforming vector and the phase shifts in [7], a closed-form

expression for the transmitter structure was first obtained for

given phase shifts, and then the phase shifts were obtained

using a bisection search for a given beamforming vector.

Despite the fruitful research in the literature, the defini-

tion of ASR in those works, e.g., [3]–[7], is based on the

Shannon’s definition of achievable rate with infinitely long

channel codes that does not account for the delay requirements

of the legitimate receiver(s). However, 6G communications

standard will be expected to support numerous delay-sensitive

applications including autonomous driving, unmanned aerial

vehicles (UAVs), tactile Internet, ultra-high-definition live

video streaming, and critical healthcare and military services,

etc. In order to quantify the maximum constant arrival rate

of a service process with guaranteed statistical delay QoS

provisioning, the notion of effective rate (ER) was introduced

in [8]. Based on this result, the authors in [9] defined the
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novel concept of effective secrecy rate (ESR) as the maximum

constant arrival rate that can be supported securely over a radio

link while satisfying the delay QoS requirement, where the

secrecy rate was considered as the service rate. However, to the

best of the authors’ knowledge, the ESR for an RIS-assisted

systems has not yet been investigated in the literature and the

existing results are not applicable to the problem in interest.

Therefore, in this paper, we study the ESR maximization of

MISO-RIS system, with main contributions listed below:

• We present the secrecy rate analysis under statistical

QoS provisioning of an RIS-assisted system, where the

transmitter is equipped with multiple antennas, while

the legitimate receiver and the eavesdropper are each

equipped with a single antenna. In particular, by assuming

that the instantaneous CSI for all of the wireless links

are available at all of the nodes, we formulate an ESR

maximization problem and then propose a closed-form-

solution-based block coordinate ascent method (BCAM)

to find a stationary solution. By Monte-Carlo simulations,

we show that the proposed algorithm converges faster

than the existing bisection-search-based AO algorithm.

• We prove the convergence and provide an efficient im-

plementation and the associated complexity analysis of

the proposed algorithm.

• Finally, we perform extensive numerical experiments to

show the impacts of different system parameters includ-

ing the delay QoS exponent, the number of transmit

antennas, and the number of reflecting elements in the

RIS on the ESR of the considered MISO-RIS system.

Notations: We use bold uppercase and lowercase letters

to denote matrices and vectors, respectively. ‖X‖ , X
∗, XT,

and X
† denote the Frobenius norm, complex conjugate, (or-

dinary) transpose, and Hermitian transpose of X, respectively,

while, |x| denotes the absolute value of the complex number

x. We denote the space of complex matrices of size M ×N
by CM×N , E {·} denotes the expectation operator, and ℜ{·}
denotes the real part of a complex number. diag (x) denotes

the square diagonal matrix which has the elements of x on

the main diagonal, and I denotes the identity matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the MISO-RIS system shown in Fig. 1, consisting

of a transmitter (Alice), one legitimate receiver (Bob), one

eavesdropper (Eve), and one RIS. It is assumed that Alice is

equipped with N ≥ 1 antennas, while Bob and Eve are single-

antenna devices. The RIS is assumed to have Nris passive

reflecting elements. The channel matrix between Alice and

RIS is denoted by Hai ∈ CNris×N , while the channel vectors

of Alice-Bob and Alice-Eve links are denoted by hab ∈ C1×N

and hae ∈ C1×N , respectively. The channel vectors of the

RIS-Bob and RIS-Eve links are denoted by hib ∈ C
1×Nris and

hie ∈ C1×Nris , respectively. Considering that Alice transmits

a secret message s ∈ C intended for Bob, the signals received

at Bob and Eve are, respectively, given by

yb = hib diag (θ)Haiws+ habws+ nb,

ye = hie diag (θ)Haiws+ haews+ ne,
(1)

Fig. 1. System model for RIS-assisted MISO wiretap channel.

where w ∈ CN×1 is the transmit beamforming vector,

θ , [θ1 θ2 · · · θNris
]
T ∈ CNris×1, θl = exp (jφl), φl ∈

[0, 2π) denotes the phase shift induced by the l-th reflecting

element in the RIS with l ∈ L, L = {1, 2, . . . , Nris}, and

nb ∼ CN
(

0, σ2
b

)

and ne ∼ CN
(

0, σ2
e

)

denote the additive

white Gaussian noise at Bob and Eve, respectively. Here we

have ‖w‖2 ≤ P , where P denotes the maximum transmit

power budget at Alice. Assuming that instantaneous CSI of

all the wireless links are available at all nodes as well as the

RIS1, the ASR for Bob (in bps/Hz), for given w and θ, is

given by

Rs (w, θ) = log2

(

1 + |zb (θ)w|2

1 + |ze (θ)w|2

)

, (2)

where zb (θ) , ĥib diag (θ)Hai + ĥab, ze ,

ĥie diag (θ)Hai + ĥae, ĥib = hib/σb, ĥab = hab/σb,

ĥie = hie/σe, and ĥae = hae/σe.

We remark that the ASR is a useful performance metric

for delay-tolerant applications. However, in this paper we are

interested in the effective secrecy rate where some degree

of QoS constraints must be satisfied. Let ϑ be the rate at

which the buffer occupancy at Alice decays, where ϑ ,

− limx→∞
1
x
Pr {L > x}, with L being the queue length at

equilibrium. Also, let T denote the coherence time of all of

the wireless links which is an integer multiple of the symbol

duration and B denote the total available bandwidth. Since the

channels are known to all the involving nodes, Alice can adapt

the wiretap coding with respective to each channel realization

to maximize the secrecy service rate. In this regard, the ESR

for Bob (in bps/Hz) is defined as (c.f. [9], [10, eqn. (12)])

Es (w, θ)

,
−1
ϑTB ln

(

E

{

exp

(

−ϑTB max
w∈Sw,θ∈Sθ

Rs (w, θ)

)})

, (3)

where the expectation is performed over the involved channels,

1A similar assumption was considered in many papers, including [6], [7].
Such a scenario is possible where Eve is also a legitimate receiver for Alice,
but is untrusted for Bob. However, the scenario where only partial or no CSI
is available at Alice will be considered in a future work.



and Sw and Sθ are defined as

Sw ,

{

w

∣

∣

∣
‖w‖2 ≤ P

}

,

Sθ , {θ ||θl| = 1, l ∈ L} .
(4)

Note that ϑ → 0 represents the system without any delay

constraint, whereas, ϑ → ∞ corresponds to the system with

extremely-strict delay constraint. For the case when ϑ → 0,

the ESR is identical to the ASR. It is obvious that to evaluate

the effective secrecy rate, we need to solve the following

optimization problem:

maximize
w,θ

f (w, θ)

subject to w ∈ Sw, θ ∈ Sθ.
(5)

where

f (w, θ) ,
1 + |zb (θ)w|2

1 + |ze (θ)w|2
. (6)

It is not surprising that when channels are perfectly known

at all nodes, finding the effective secrecy rate boils down to

solving the conventional secrecy rate maximization problem.

In the following section, we propose a method based on the

concept of block coordinate ascent method to maximize the

objective.

III. PROPOSED SOLUTION BASED ON BLOCK COORDINATE

ASCENT METHOD

In this section, we present a computationally efficient al-

gorithm to find a stationary solution to the problem in (5)

that optimizes the beamforming vector w and each individual

phase shift of the RIS using the BCAM. More specifically, we

optimize w for a given θ, and optimize a specific phase shift

θl for when w and other phase shifts θm 6=l are held fixed.

These two steps are achieved in closed-forms as described in

the next two subsections.

A. Closed-Form Expression for Optimal w for Given θ

For a given phase shift vector θ, the optimization over w

is expressed as

maximize
1 +w

†
Zb (θ)w

1 +w†Ze (θ)w

subject to w ∈ Sw,
(7)

where Zb (θ) , z
†
b (θ) zb (θ) and Ze (θ) , z

†
e (θ) ze (θ),

which admits a closed-form solution given by (c.f. [11])

wopt =
√
Pumax, (8)

where umax is the normalized eigenvector associated

with the maximum eigenvalue of the matrix

(PZe (θ) + I)
−1

(PZb (θ) + I).

B. Closed-Form Expression for Optimal θl for Given w and

other θm (m 6= l)

In this subsection, we derive a closed-form expression

for optimal θl while other variables (including w and θm,

m ∈ {L \ l}) are kept fixed. In fact, there are a few existing

methods to find the phase shifts for a given w. In [12], a com-

bination of semi-definite rank relaxation method and Gaussian

randomization was used. Yet, such a method incurs high

complexity since a semi-definite program needs to be solved

in each iteration. In [7], the authors applied Dinkelbach’s

method together with the majorization-minimization principle

to maximize a lower bound of f (w, θ) in each iteration. The

main drawback of this method is that a bisection search is

still required, each iteration of which involves computing the

maximum eigenvalue of a large matrix whose dimension is the

number of reflecting elements (this value can be in the order

of hundreds or even thousands in practically-envisioned RIS

deployments).

Different from the existing solutions, our method can be

viewed as a generalization of [13]. Note that the direct links

for Alice-Bob and Alice-Eve channels were not considered

in [13], and therefore it is not straightforward to adopt the

solution proposed in [13]. Using the relation xdiag (θ) =
θ
T diag (x), we can further express the numerator of (7) as

1 +w
†
Zb (θ)w

= 1+w
†
[

ĥib diag (θ)Hai+ĥab

]†[

ĥibdiag (θ)Hai+ĥab

]

w

, 1 + θ
†
Ab (w)θ + b

†
b (w)θ + θ

†
bb (w) + cb (w) , (9)

where

Ab (w)=ab (w)a†b (w) ; ab (w)=diag
(

ĥ
∗
ib

)

H
∗
aiw

∗;

bb (w)=diag
(

ĥ
∗
ib

)

H
∗
aiw

∗
w

T
ĥ
T

ab; cb (w)=
∣

∣

∣
ĥabw

∣

∣

∣

2

.
(10)

Following a similar set of arguments, the denominator of (7)

can be represented as

1 +w
†
Ze (θ)w

= 1 + θ
†
Ae (w) θ + b

†
e (w) θ + θ

†
be (w) + ce (w) , (11)

where

Ae (w)=ae (w) a†e (w) ; ae (w)=diag
(

ĥ
∗
ie

)

H
∗
aiw

∗;

be (w)=diag
(

ĥ
∗
ie

)

H
∗
aiw

∗
w

T
ĥ
T

ae; ce (w)=
∣

∣

∣
ĥaew

∣

∣

∣

2

.
(12)

Therefore, the optimization problem in (5) for a given w can

be given by

maximize
θ

1 + θ
†
Ab (w) θ + b

†
b (w) θ + θ

†
bb (w) + cb (w)

1 + θ
†
Ae (w)θ + b

†
e (w)θ + θ

†
be (w) + ce (w)

subject to θ ∈ Sθ.
(13)

To realize a more efficient method, we sequentially optimize

each θl at a time while the other phase shifts (along with

the other variables) are held fixed. To lighten the notations,

we write Ab instead of Ab (w) onward. The same applies

to other quantities in (10) and the quantities in (12). Let

ab = [ab1 ab2 · · · abNris
]
T

, ae = [ae1 ae2 · · · aeNris
]
T

,

bb = [bb1 bb2 · · · bbNris
]
T

and be = [be1 be2 · · · beNris
]
T

.

Then the maximization over a specific θl is expressed as

maximize
θl

ℜ{α∗
blθl}+ βbl

ℜ{α∗
elθl}+ βel

subject to |θl| = 1,

(14)

where αbl = 2
(

abl
∑

m∈{L\l} a
∗
bmθm + bbl

)

, βbl = |abl|2 +
∣

∣

∣

∑

m∈{L\l} a
∗
bmθm

∣

∣

∣

2

+ 2ℜ
{

∑

m∈{L\l} b
∗
bmθm

}

+ cb + 1,



αel = 2
(

ael
∑

m∈{L\l} a
∗
emθm + bel

)

and βel = |ael|2 +
∣

∣

∣

∑

m∈{L\l} a
∗
emθm

∣

∣

∣

2

+ 2ℜ
{

∑

m∈{L\l} b
∗
emθm

}

+ ce + 1. To

proceed further, we rewrite αbl = rbl exp (jφbl), αel =
rel exp (jφel) and θl = exp (jφl). Then, (14) reduces to

maximize
φl

rbl cos (φl − φbl) + βbl

rel cos (φl − φel) + βel

, g (φl)

subject to 0 ≤ φl < 2π.

(15)

Differentiating the objective function in (15) w.r.t. φl, we get

g′ (φl) =
−rbl sin (φl − φbl) {rel cos (φl − φel) + βel}

{rel cos (φl − φel) + βel}2

+
rel sin (φl − φel) {rbl cos (φl − φbl) + βbl}

{rel cos (φl − φel) + βel}2

=
rblrel sin (φbl−φel)+relβbl sin (φl−φel)−rblβel sin (φl−φbl)

{rel cos (φl − φel) + βel}2
.

(16)

Using the following relation,

rblβel sin (φl − φbl)− relβbl sin (φl − φel) = rl sin (φl + ϕl) ,

where

rl =
√

r2blβ
2
el + r2elβ

2
bl − 2rblrelβblβel cos (φel − φbl),

ϕl =arctan

[−rblβel sin (φbl) + relβbl sin (φel)

rblβel cos (φbl)− relβbl cos (φel)

]

,

we can rewrite g′ (φl) as

g′ (φl) =
rblrel sin (φbl − φel)− rl sin (φl + ϕl)

{rel cos (φl − φel) + βel}2
. (17)

Note that if |rblrel sin (φbl − φel)| > rl, then g′ (φl) is

either positive or negative (i.e., g′ (φl) can not be equal to

zero) for all φl ∈ [0, 2π). As a result, g(φl) is maximized

when φl = 0, resulting in θl = 1. On the other hand,

if |rblrel sin (φbl − φel)| ≤ rl, then g′ (φl) = 0 has two

solutions:

φl1 = arcsin
[

rblrel
rl

sin (φbl − φel)
]

− ϕl,

φl2 = π − arcsin
[

rblrel
rl

sin (φbl − φel)
]

− ϕl.
(18)

Thus the optimal solution to (14) admits a closed-form ex-

pression given by

θl,opt = exp (jφl,opt) , (19)

where

φl,opt = argmax{g (0) , g (φl1) , g (φl2)} , (20)

and φl1 and φl2 are given in (18). The overall algorithm is

summarized in Algorithm 1.

C. Convergence Analysis

We now show that the iterates generated by Algorithm 1

converge to a stationary solution of (5). First, it is easy

to see that f(wn+1, θn+1) ≥ f(wn+1, θn) ≥ f(wn, θn)
and thus Algorithm 1 generates a non-decreasing objective

sequence. It is also trivial to check that the objective func-

tion is continuous and bounded from above. Moreover, the

feasible set is compact. Thus, the objective sequence must

converge to certain limit, i.e., lim
n→∞

f(wn, θn) = f∗. Let

S = {(w, θ) | f(w, θ) ≤ f∗}. By the continuity of f(w, θ)

Algorithm 1: Block Coordinate Ascent Method

Input: θ0, w0

Output: θn,wn

1 n← 1;

2 repeat

3 Given θn−1, compute wn via (8)

4 for l ∈ L do

5 Compute θl,opt for given wn via (19)

6 θl ← θl,opt
7 end

8 n← n+ 1
9 until convergence;

and the compactness of the feasible set, it is obvious that S
is compact. Thus there exists a subsequence (wnj

, θnj
) con-

verging to the limit point (w∗, θ∗). By continuity of f(w, θ)
we must have f∗ = f(w∗, θ∗). The proof that (w∗, θ∗) is a

stationary solution of (5) is rather standard and thus is omitted

here for the sake of brevity. We refer the interested reader

to [14, Sec. 2.7] for further details.

D. Efficient Implementation and Complexity Analysis

We now provide an efficient implementation and the asso-

ciated complexity analysis of the proposed solution. For the

complexity analysis, we use the conventional big-O notation

and focus on the number of complex multiplications. First,

note that PZb (θ) can be represented as (Pzb (θ))
†
zb (θ).

The number of multiplications required to compute Pzb (θ) is

equal to O (NNris) and the number of multiplications required

to compute PZb (θ) is given by N2/2. Note that the w-

update requires the eigenvector associated with the maximum

eigenvalue of
(

PZe (θ) + I
)−1(

PZb (θ) + I
)

. If we compute

this term in a straightforward manner, it would take O
(

N3
)

complex multiplications. We now provide an efficient way

to achieve this, which has not been discussed in the related

literature. Using the Woodbury matrix identity [15], it can be

shown that PZe (θ) + I
)−1

= I − Pze(θ)
†
ze(θ)

1+Pze(θ)z
†
e(θ)

. Therefore,

we have
(

PZe (θ) + I
)−1(

PZb (θ) + I
)

= I+ PZb (θ)−
P 2

ze (θ)
†
ze (θ) z

†
b (θ) zb (θ)

1 + Pze (θ) z
†
e (θ)

.

Note that the terms ze (θ) z
†
e (θ) in the denominator

and ze (θ) z
†
b (θ) in the numerator are scalars; both

require N complex multiplications, whereas the term

ze (θ)
†
zb (θ) in the numerator needs O

(

N2
)

complex

multiplications. Therefore, the complexity to compute

(PZe (θ) + I)−1 (PZb (θ) + I) is O
(

N2
)

. Reducing the

complexity for computing (PZe (θ) + I)
−1

(PZb (θ) + I)
from O

(

N3
)

to O
(

N2
)

is particularly helpful for the case

of extra-large MISO system where the number of transmit

antennas at Alice is very large. Moreover, to find umax,

we need O
(

N3
)

complex multiplications. Therefore, the

overall complexity for each update of wn is given by

O
(

NNris +
N2

2 +N2 +N3
)

= O
(

N3 +NNris

)

. Follow-



TABLE I
SYSTEM PARAMETER VALUES [7].

System Parameter Value

Transmit power, P 15 dBW

Noise power, σ2

b
= σ2

e -75 dBW

Reference distance, dref 1 m

Path loss at reference distance, PLref -30 dBW

Path loss exponent for Alice-RIS links, ξai 2.2

Path loss exponent for RIS-Bob links, ξib 2.5

Path loss exponent for RIS-Eve links, ξie 2.5

Path loss exponent for Alice-Bob links, ξab 3.5

Path loss exponent for Alice-Eve links, ξae 3.5

Alice-RIS distance, dai 50 m

Alice-Eve horizontal distance, dae,h 44 m

Alice-Bob horizontal distance (in meters) dab,h
2Vertical distance between the line joining

2 m
Alice and RIS, and Bob and Eve, i.e., dv

ing a similar line of argument, it can be noted that the

number of multiplications required to compute αbl, βbl, αel,

and βel are all O (Nris). Therefore, the complexity associated

to update all phase shifts is given by O
(

N2
ris

)

. Hence, it

can be concluded that the overall complexity associated with

each iteration of Algorithm 1 (see lines 3–8) is given by

O
(

N3 +NNris +N2
ris

)

.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we present the simulation results for the

ESR for the MISO-RIS system. In order to facilitate a fair

comparison with a benchmark scheme, we consider the same

system parameters as used in [7]. For all of the wireless

links, the small-scale fading is modeled as Rayleigh dis-

tributed, whereas, the path loss model is given by PL =
[PLref − 10ξ log10 (d/dref)] dB. Here, PLref denotes the path

loss at the reference distance dref , ξ is the path loss exponent,

and d is the distance between transmitter and receiver. The

values of different system parameters are given in Table I. In

Fig. 2, the ESR is plotted for 50 different channel realizations,

whereas, in Figs. 3–5, the ESR is plotted for 103 different

channel realizations.

Fig. 2 shows a comparison of the speed of convergence

between the proposed method (BCAM) and the bisection-

search-based AO given in [7]. Here one iteration constitutes

one update of the beamforming vector and one update of the

phase shift vector (see lines 3–8 in Algorithm 1), which is

consistent with one iteration of the method in [7], and thus

the comparison is fair. It is clear from the figure that the

proposed method converges significantly faster than that of

the algorithm adopted in [7], establishing the superiority of

the proposed algorithm.

Fig. 3 shows the variation in ESR versus the horizontal

distance between Alice and Bob (denoted by dab,h). Note that

for the system without any delay constraints (i.e., ϑ → 0),

the ESR becomes equal to the ASR. It is evident from the

figure that as the delay requirement of the system becomes

more stringent, i.e., for larger values of ϑ, the ESR of the

MISO-RIS system decreases significantly. It can also be noted

2It is assumed that Bob and Eve lie in a horizontal line that is parallel to
that between Alice and the RIS.
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Fig. 2. Convergence of ESR for ϑ → 0 and dab,h = 10 m.
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Fig. 3. The variation in ESR versus the horizontal distance between Alice
and Bob for N = 4, Nris = 32 and different values of delay QoS exponent.

from the figure that as the horizontal distance between Alice

and Bob increases, the ESR of the system decreases, because

the Alice-Bob links becomes weak. However, when dab,h ∈
[40, 50] m, the distance between RIS and Bob becomes very

small, and therefore, the RIS-Bob links become very strong,

resulting in an increased ESR. Moreover, the superiority of

introducing RIS is also clearly evident from the figure, as the

ones with RIS result in a significantly higher ESR than those

without RIS, for which the ESR decreases monotonically with

increasing value of dab,h.

In Fig. 4, we show the effect of increasing delay QoS ex-

ponent on the ESR for different number of transmit antennas.

It is clear from the figure that as the delay constraints for the

system becomes more strict, the ESR decreases. As expected,

the RIS-assisted system outperforms its counterpart without

RIS. More interestingly, for the case when Alice is equipped

with a single transmit antenna (N = 1), the system exhibits

very poor ESR. However, as the number of transmit antennas
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at Alice increases, sharp energy-focused beamforming can

performed at Alice to enhance the secrecy rate performance.

It is also noteworthy that increasing the value of N results in

diminishing returns.

Fig. 5 shows the variation in the ESR w.r.t. Nris for

different values of the delay QoS exponent ϑ. The performance

superiority of the RIS-assisted system over the ones without

RIS is clearly evident from the figure. More interestingly, it

can be noted from the figure that for an exponential increase

in the number of reflecting elements at RIS, i.e., Nris, the ESR

increases exponentially. Moreover, it is also interesting to note

that as the value of Nris increases, the difference between

the ESR of the RIS-assisted system with different ϑ values

decreases. This occurs due to the fact that for a very large value

of Nris, the fluctuation in the term Rs(w, θ) in (3) becomes

very less, and therefore, the effect of the delay QoS exponent

ϑ on the ESR becomes negligible. This result indicates that a

large number of reflecting elements in the RIS helps reducing

the degradation in the ESR for delay-constrained systems.

V. CONCLUSION

In this paper, we considered the problem of maximizing the

secrecy rate of a MISO-RIS system subject to the total transmit

power constraint and the delay-limited QoS constraint. We

proposed a block coordinate ascent method to find closed-

form expressions for the beamformer and the phase shift

vector to maximize the objective. The convergence superiority

of the proposed solution over the bisection-search-based AO

is confirmed via Monte-Carlo simulation. The simulation

results confirmed that the secrecy rate of the system under

stringent delay requirements is significantly lower than the

achievable secrecy rate, however, a large-size RIS can greatly

enhance the secrecy rate performance of the system under

delay constraints. Our results also confirm that the ESR of the

MISO-RIS system increases with an increase in the number

of transmit antennas and/or the number of reflecting elements

at the RIS.
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