
Towards Artificial Neural Network Based Intrusion
Detection with Enhanced Hyperparameter Tuning

Andrei Nicolae Calugar∗, Weizhi Meng∗ and Haijun Zhang†
∗SPTAGE Lab, DTU Compute, Technical University of Denmark, Denmark

†Harbin Institute of Technology, Shenzhen, China

Abstract—Due to the development of complex communication
paradigms and the rise in the number of inter-connected digital
devices, intrusion detection system (IDS) has become one basic
and important security mechanism to identify cyber intrusions
and protect computer networks. Currently, various deep learning
algorithms have been studied in intrusion detection to achieve
a high detection rate, whereas the detection performance may
be still dependent on specific datasets. To maintain the detection
performance, parameter optimization is believed as an effective
solution. Motivated by this observation, in this work, we propose a
concise but effective hyperparameter tuning process to enhance the
artificial neural network (ANN) based IDS. In the evaluation, we
consider three ANN variants and four datasets. The experimental
results indicate that our approach can outperform similar studies
and typical learning algorithms.

Index Terms—Intrusion Detection, Deep Learning, Hyperpa-
rameter Optimization, Artificial Neural Network, Tuner Search,
Internet of Things.

I. INTRODUCTION

In the past decade, there has been a significant expansion
in computer networks and networked digital devices, such as
Internet of Things (IoT) [7]. While how to preserve the security
of information and communication has become a critical issue.
For example, the number of attacks continued increasing as
malicious intruders become more versatile across a broader
network, even beyond embarrassing privacy leaks [1]. This
could lead to being very costly and dangerous for businesses
and governments as there is a high risk of leaking sensitive
information, i.e., infrastructure could be sabotaged. According
to a cyber-incident report from the Center for Strategic and
International Studies (CSIS) [13], cyber attacks on government
institutions and high tech companies have resulted in financial
losses more than millions of dollars.

For protection, an intrusion detection system (IDS) is one
of the most essential and important security mechanisms by
continuously monitoring the network systems and detecting
unwanted events based on the predefined security policies [10].
An IDS can be classified into two broad categories: signature-
based detection and anomaly-based detection. For signature-
based method, it works by comparing the monitored data with
stored signatures or patterns [11]. This kind of approach is
potent and accurate such as Suricata [15] and Snort [14],
whereas it has a significant drawback, that is, it can only detect
documented attacks that have been described and stored in the
signature / pattern database.

On the other hand, anomaly-based detection method has to
first create a model of the system’s normal behavior and then
examine the network data to spot any deviations [12]. The big
merit is the capability of detecting unknown threats, while it
may also produce a large number of false alarms. To help model
normal behavior, numerous machine learning approaches have
been investigated in the literature [6]. With the current advance
in deep learning, artificial neural networks (ANNs), inspired
by the simplification of neurons in a brain, have been widely
studied about how to enhance the detection performance [16].
ANNs typically consist of three basic layers: the input layer,
the hidden layers and the output layer. The nonlinear processing
units can extract useful features and transform data, which is
promising for intrusion detection.

Motivation and Contributions. However, the high accuracy
and detection performance of deep learning still relies on the
adequate quantity of labeled data. To improve the unstable
performance, parameter optimization is a promising solution.
In the literature, most studies are investigating how to per-
form hyperparameter optimization using ANNs. For example,
Khan et al. [5] introduced how to apply ANNs to improve
bug prediction accuracy through hyperparameter optimization.
Hyperparameters are the parameters that characterize the model
architecture, hence the method of finding the optimal model
architecture is referred to as hyperparameter tuning. Motivated
by this observation, in this work, we aim to design a concise
while effective hyperparameter tuning process to enhance the
artificial neural network based IDS. Our contributions can be
summarized as below.

• We propose a hyperparameter tuning process with tuner
search loop that can search for the optimal model archi-
tecture and enhance the performance of ANN-based IDS,
including hyperparameter combination, model training and
model evaluation. We further consider three ANN variants
such as deep neural network (DNN), recurrent neural
network (RNN), and convolutional neural network (CNN).

• In the evaluation, we consider four datasets to investigate
the performance of our approach, such as KDDCUP’99,
UNSW15, CICIDS2017 and CSECICIDS2018. In compar-
ison with typical leaning algorithms and similar approach-
es, the experimental results demonstrate that our approach
can help maintain an overall accuracy higher than 91%,
by considering the complexity of different datasets and
various features.978-1-6654-3540-6/22 © 2022 IEEE

The paper structure is summarized as follows. Section II
presents the background of artificial neural network with three
variants, our proposed hyperparameter optimization process,
and the implementation details. Section III presents the eval-
uation details, including four datasets, evaluation metrics and
the results. Section IV discusses the limitations and the related
work on deep learning in intrusion detection. Section V finally
concludes our work.

II. OUR APPROACH

A. Artificial Neural Network

Artificial Neural Networks (ANNs) are one of the most
widely used machine learning techniques for intrusion detection
and have been shown to yield successful results in identifying
different malicious events.

An ANN can be defined as “a computing system made up of
a number of simple, highly interconnected processing elements,
which process information by their dynamic state response to
external inputs” [2]. The inspiration for neural networks comes
from the structure of the mammalian cerebral cortex but with
lesser complexity.

Fig. 1. Schematic of a neuron.

The processing elements of a neural network are called
neurons and the way they work can be observed in Fig. 1. The
input vector x of elements x1, x2, ..., xn has their corresponding
weights w1, w2, ..., wn. The weighted sum is performed and
then a bias b and the activation function f can be applied to
obtain the output.

The neurons are typically organized in layers that, when put
together, can form the architecture of the neural network. The
data is fed into the network via the input layer, which would
not do any computation but feed one or more hidden layers
where the actual calculation is done using a system of weighted
connections [9]. Lastly, the results are given in the output layer.
The way that the weights are modified uses a learning rule that
comes as an algorithm, providing input to the network, and
constructing a favored output.

1) Hyperparameter: The properties that govern the whole
training process are called hyperparameters, which have a high
impact on the training performance, as they control how the
training algorithm behaves. In this work, we aim to investigate
how to configure and optimize the hyperparameters in order to
enhance the detection performance in the best case. Below is
a list of variables that can be configured:

Fig. 2. A recurrent neural network unit.

• Learning rate – how quickly a network can update the
parameters;

• Number of Epochs – the number of epochs through the
whole training data;

• Batch size – the number of samples given to the network;
• Dropout – regularization technique that approximates the

training and helps avoid over-fitting;
• Hidden layers – the layers between input and output layer;
• Activation function – introducing nonlinearity to models.
2) ANN variants: There are several variants for ANN in

the literature. In this work, we focus on deep neural network
(DNN), recurrent neural network (RNN), and convolutional
neural network (CNN).

a) DNN: Deep neural networks often contain multiple
hidden layers between the input and the output, making it
being a higher level of complexity and more computationally
demanding than a simple neural network. This is not given only
by higher number of neurons but also the fact that this neuron
may influence the computation by triggering different actions.
Mathematically, DNN can be described as below:

O : Rm ×Rn

with m being the size of the input vector x = x1, x2, ..., xm,
and n being the size of the output vector y = y1, y2, ..., yn.

b) RNN: A recurrent neural network is a type of neural
network that checks the current input and considers the past
state information to determine its output [9]. Fig. 2 presents
the representation of such a recurrent neural network. Each
green block represents a simple feed-forward neural network.
Considering x of elements x1, x2, ..., xt as an input that maps
them to hidden and output elements h of elements h1, h2, ..., ht.
For each time step, an input x0 enters the network and produces
an output h0. In the next step, the input x1 is taken into block
A and additional input from the previous block. In this way,
the neural network considers the context of the previous input
to determine the next results.

The following Equations 1 and 2 are governing the compu-
tation at any time t, with the activation function g(), X input,
H output, b the bias and W the weight matrix.

At = g · (Wax ·Xt +Waa ·At−1 + ba) (1)

Ht = g · (Wya ·At + by) (2)

c) CNN: Convolutional neural networks are a typical deep
learning method by extending traditional feed-forward neural
networks. They are typically used as a model to process data
with a grid pattern such as an image. This type of neural
network has proven a substantial success in image recognition

Fig. 3. Hyperparameter tuning process

Fig. 4. Grid search tuning method

tensorflow.keras.callbacks
log dir

tensorboard callback
log dir histogram freq

Model.fit()
tensorboard−−logdirlogs/fit

http : //localhost : 6006

Fig. 5. Implementation with TensorBoard

and classification, speech processing application, and self-
driving cars and robotics applications [18].

In a traditional CNN, a three-dimensional input (x rows, y
columns, z depths) is required [18]. For example, an image that
has x width, y height and z channels. In this work, we study the
one-dimensional input data as a three-dimensional picture that
has one channel and the height is also one. For this purpose,
we convert the dataset into the input format of one-dimensional
convolution architecture.

The architecture of a CNN is comprised of several building
blocks such as convolution layer, pooling layers and fully
connected layers. After the input is converted into a three-
dimensional form, it will be fed into the convolution layer. This
layer is a fundamental component of CNN that is in charge
of feature extraction. A combination of linear and nonlinear
operations is carried out, namely convolution operation and
activation function.

B. Our Proposed Hyperparameter Optimization
Intuitively, when deploying a machine learning algorithm

into intrusion detection, the model settings are usually not
optimized from the beginning. Ideally, the optimization process
should be automatically run by an algorithm in order to search
for the optimal model architecture. Hyperparameters are the
parameters that characterize the model architecture.

The types of parameters present in a machine learning model
can be divided into trainable parameters that the algorithm
learns through testing. The weights of a neural network, for
example, are trainable parameters and hyperparameters that
must be set before initiating the learning process. Some critical
metrics include the learning rate, the number of hidden layers,
and the number of nodes in a dense layer.

Fig. 3 describes the steps of our proposed tuning process
(with a tuner search loop): hyperparameter combination, model
training, model evaluation, and the best model determination.
It is observed that the tuner search loop runs each time with
a different hyperparameter selection. The training process is
completed with a set of parameters on each iteration, after
which some evaluation metrics are computed. Finally, possible
combinations are discovered, and the models with the best
results can be output. Fig. 4 shows an example by detailing the
process as a grid search. In the example, three hyperparameters
are chosen for a convolutional neural network (CNN) model:
the number of dense layers, the number of convolutional layers,
and size of the layers. The process is straightforward, the
accuracy of the trained model is determined after each run, and
the optimal combination of parameters would be maintained till
the end.

C. Implementation with TensorBoard
TensorBoard [19] is a powerful optimization tool that can

serve as a user interface for visualizing graphs and accessing
additional resources to understand and debug models. It can
calculate and visualize the workflows of a machine learning al-
gorithm. It enables tracking metrics such as loss and precision,
the analysis of concept graphs, and the embedding of projects
in lower-dimensional spaces among other things. A key feature
of TensorBoard is the capability of updating metrics constantly.
In this case, the time required for training and adjusting a model
can be shortened.

In this work, we therefore implemented our proposed hy-
perparameters optimization method based on TensorBoard, as
illustrated in Fig. 5. Firstly, the library needs to be imported
from tensorflow.keras.callbacks, and then create and com-
pile a model. The next step is to start initialization of a log dir
variable with the location where the logs are saved and a
time-stamp followed by a tensorboard callback variable that
takes the log dir, and to set histogram freq to one (allowing
histogram computation per one epoch). Finally, we pass this to
Keras’s Model.fit() together with the rest of the parameters.

III. EVALUATION

To explore the performance of our approach, we conduct an
evaluation on four datasets, and consider some similar studies

and typical learning algorithms in the comparison.

A. Datasets

In the evaluation, we consider four publicly known datasets:
KDDCUP’99, UNSW15, CICIDS2017 and CSECICIDS2018.

• KDDCUP’99. This is one of the most known and widely
used datasets for intrusion detection applications. It is a
collection of data transferred from a virtual environment
on a typical US Air Force Local Area Network (LAN).
It contains around five million single connection records
where each has a number of 41 features [20].

• UNSW15. This dataset is composed of regular and mali-
cious network traffic data in a packet-based format using
the IXIA Perfect Storm tool. It captured a large amount of
raw network traffic data, and after processing that data, 49
features were extracted, and a number of 257,673 records
were stored [21].

• CICIDS2017. This dataset contains up-to-date common
network attacks combined with normal network behavior.
The data capturing period spammed a total of five days:
only benign traffic data was recorded on Monday, while
the following days having up to 14 types of attacks, in-
cluding brute-force attack, denial of service (DoS) attack,
Heartbleed, distributed denial of service (DDoS), network
infiltration attacks, port scanning, botnet, and web attacks.
Overall, it contains 3,119,345 records with a total of 83
features [22].

• CSECICIDS2018. This dataset is an extended version of
CICIDS2017. The main difference is that it provides ten
days of traffic from 18 February 2018 to 2 March 2018.
The 14 attack types are the same as CICIDS2017. Overall,
it contains approximately 15 million instances of network
traffic with nine files that have 79 features and one file
with 83 features [23].

B. Evaluation Measures

There are four possible primary outcomes of detection. The
number of positive samples in the test dataset is denoted by
TP . FP denotes the number of samples that are potentially
negative but are counted as positive. The number of negative
samples measured in the test dataset is denoted by TN . FN
denotes the number of test samples that are currently positive
but are counted as negative samples by the model. To measure
the performance, we adopted the following metrics:

• Accuracy is defined as the proportion between correctly
predicted observations and the total number of observa-
tions.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

• The precision of a prediction is defined as the ratio of
correctly predicted positive observations to all predicted
positive observations.

Precision =
TP

TP + FP
(4)

TABLE I
HYPERPARAMETER CONFIGURATIONS/RANGES USED IN THE TUNING PROCESS.

Model DNN CNN RNN
Number of layers 1,2,3 1,2,3 1,2,3
Number of nodes 256,128,64 64,64,64 32,32,32
Layer activations ReLU LeakyReLU ReLU
Output layer activation softmax/sigmoid softmax/sigmoid softmax/sigmoid
Loss function cross-entropy cross-entropy cross-entropy
Layer dropout rates 0.1 0.3 0.1 - 0.4
Batch size 64 - 128 256 or 512 512 - 1024
Number of epochs 25 - 30 25 - 30 25 - 30
Optimizer Adam Adam Adam

• The recall ratio is the number of correctly estimated
positive observations divided by the total number of ob-
servations in the actual class.

Recall =
TP

TP + FN
(5)

• The F1-Score is calculated by averaging Precision and
Recall.

Recall =
2× Precision×Recall

Precision+Recall
(6)

C. Experimental Result

In this work, we used the hyperparameter values recorded in
the literature as a reference for defining the range of random
search. These values can serve as a baseline for the first model.
Thus, the final set of hyperparameters for each model on each
dataset can be determined after applying our approach. Table I
describes the final hyperparameter configurations based on the
highest accuracy on the validation set (40% of each dataset by
random selection).

To validate the obtained results, we adopted the 5-fold cross
validation. The detection performance results are shown in each
Table II, Table III, Table IV and Table V. We also compared
the detection performance with and without our hyperparameter
optimization. Below are the main observations.

• By comparing the accuracy with and without our hyper-
parameter optimization, it is observed that our approach
could greatly enhance the detection performance across
all datasets. For example, our approach could generally
improve the accuracy by 5% according to Table II.

TABLE II
PERFORMANCE RESULTS FOR KDDCUP’99.

Model Acc.
(Org)

Acc.
(After)

Precision
(After)

Recall
(After)

F1-score
(After)

DNN1 94.2323 99.9588 99.9570 99.9589 99.9577
DNN2 95.7238 99.9547 99.9527 99.9548 99.9527
DNN3 96.6377 99.9614 99.9595 99.9615 99.9598
CNN1 96.7328 99.9406 99.9355 99.9406 99.9322
CNN2 95.3342 99.9609 99.9583 99.9609 99.9586
CNN3 94.2763 99.9059 99.9063 99.9059 99.9036
RNN1 95.2883 99.9812 99.9799 99.9812 99.9805
RNN2 96.2388 99.9755 99.9746 99.9756 99.9746
RNN3 96.4434 99.9843 99.9838 99.9843 99.9840

TABLE III
PERFORMANCE RESULTS FOR UNSW15.

Model Acc.
(Org)

Acc.
(After)

Precision
(After)

Recall
(After)

F1-score
(After)

DNN1 95.7783 99.6052 99.6080 99.6053 99.6053
DNN2 94.8892 98.8279 98.8546 98.8280 98.8279
DNN3 94.7236 98.9433 98.9650 98.9434 98.9433
CNN1 95.6621 99.6660 99.6677 99.6660 99.6660
CNN2 95.8827 99.6644 99.6662 99.6645 99.6645
CNN3 96.2366 99.9423 99.9424 99.9423 99.9423
RNN1 92.1873 96.9120 97.0920 96.9121 96.9093
RNN2 94.6621 99.9954 99.9954 99.9954 99.9954
RNN3 94.2133 99.0860 99.1009 99.0861 99.0860

TABLE IV
PERFORMANCE RESULTS FOR CICIDS2017.

Model Acc.
(Org)

Acc.
(After)

Precision
(After)

Recall
(After)

F1-score
(After)

DNN1 91.2833 95.8991 95.9557 95.8991 95.4269
DNN2 88.7723 93.3076 93.7944 93.3077 92.7291
DNN3 90.8722 93.7170 94.1924 93.7170 93.1555
CNN1 91.1299 96.7281 96.6678 96.7281 96.5661
CNN2 90.8827 96.9331 96.8102 96.9332 96.4291
CNN3 92.3772 98.4399 98.3506 98.4400 98.3589
RNN1 93.7263 99.6700 99.6603 99.6701 99.6329
RNN2 94.5524 99.6386 99.5815 99.6387 99.6037
RNN3 95.2311 99.6437 99.6594 99.6438 99.6032

• As compared to the DNN and CNN models, RNN models
could reach a higher accuracy. For example, in Table IV,
RNN could reach an accuracy over 99% while DNN and
CNN could provide an accuracy rate of 93%-96%.

• As shown in Table IV and Table V, the detection perfor-
mance on CSECICIDS2018 was slightly worse than the
same models applied on CICIDS2017. One possible reason
for this could be that the training and validation data may
be in the order of millions, and in some cases, it is harder
for the model to classify correctly.

Comparison with similar studies. It is worth noting that
a direct comparison with similar studies is often difficult, as
most research studies do not detail the pre-processing steps
performed on datasets, and the experimental platforms with im-
plementation are different in most cases. While as a reference,
in this work, we still considered some similar approaches (i.e.,
applying deep learning for IDS) and typical learning algorithms
in a comparison. As shown in Table VI, it is easily noticed that
our approach could provide and maintain a better detection rate
compared with three recent similar studies and typical learning
algorithms (e.g., LogisticRegression, AdaBoost, GaussianNB)

TABLE V
PERFORMANCE RESULTS FOR CSECICIDS2018.

Model Acc.
(Org)

Acc.
(After)

Precision
(After)

Recall
(After)

F1-score
(After)

DNN1 81.7733 90.4057 90.9670 90.4058 88.8832
DNN2 80.6237 89.6870 90.4469 89.6871 87.9723
DNN3 84.8822 92.8383 92.8970 92.8383 92.0008
CNN1 73.5682 81.6705 75.6440 81.6706 77.3512
CNN2 85.8374 92.1221 90.4862 92.1222 90.3389
CNN3 90.7263 95.2052 94.5229 95.2053 94.0680
RNN1 82.6399 88.5359 89.6032 88.5360 86.5132
RNN2 91.7233 96.2413 95.8368 96.2413 95.4874
RNN3 89.7822 96.2692 95.5717 96.2693 95.2236

TABLE VI
DETECTION ACCURACY COMPARISON AMONG TYPICAL LEARNING

ALGORITHMS AND SIMILAR STUDIES.

Detection Approach KDD’99 UNSW15 CICIDS2017
Vinayakumar et al. [17] in 2019 0.930 0.763 0.944

Liu et al. [8] in 2021 0.807 - -
Gupta et al. [3] in 2022 0.780 - 0.880

Our work 0.990 0.947 0.937
LogisticRegression 0.978 0.811 0.883

AdaBoost 0.975 0.882 0.796
GaussianNB 0.663 0.677 0.701

on these datasets.

IV. LIMITATIONS AND RELATED WORK

1) Limitation and Discussion: Our work is still developing
at an early stage, and some challenges are considered for future
work. a) This work considers four datasets, while some more
datasets can be considered to analyze and validate the results,
such as CAIDA dataset. b) There are many relevant studies on
designing an IDS based on deep learning and ANNs, our future
work has to consider more relevant studies in the comparison.

2) Related Work: In the literature, deep learning has been
widely studied in intrusion detection. For instance, Vinayaku-
mar et al. [17] studied how to develop a flexible and effective
IDS to detect cyber-intrusions based on DNN. They explored
the optimal network parameters and the network topologies for
DNNs with the method: that is, all the experiments of DNNs
should run till 1,000 epochs with the learning rate varying in the
range [0.01-0.5] on KDD’99 dataset. Liu et al. [8] introduced a
Difficult Set Sampling Technique (DSSTE) algorithm to tackle
the class imbalance problem and enhance the performance of
deep learning in IDS. Gupta et al. [3] introduced CSE-IDS, a
three-layer IDS, based on Cost-Sensitive Deep Learning and
Ensemble algorithms. More related research on deep learning /
artificial neural networks and relevant applications in IDS can
refer to several surveys [4], [16].

V. CONCLUSION

Artificial neural networks have been widely studied in in-
trusion detection, by transferring data across numerous hidden
layers and learning the abstract and high-dimensional attribute
representation of the data. The ideal parameters and typologies
for the neural network models can be found using hyperparam-
eter selection approaches. In this work, we propose a hyperpa-
rameter tuning process with tuner search loop to optimize the

hyperparameters for three variants of ANNs including DNN,
RNN and CNN. To investigate the performance, we considered
four datasets in the evaluation such as KDDCUP’99, UNSW15,
CICIDS2017 and CSECICIDS2018. As compared with similar
studies and several typical learning algorithms, our approach
was shown to greatly enhance the detection performance across
different datasets, i.e., maintaining an overall accuracy higher
than 91% by averaging all dataset-results.

ACKNOWLEDGMENT

This research was partially supported by H2020 DataVaults.

REFERENCES

[1] Safeguarding the Internet of Things. [Online] https://www2.deloitte.
com/content/dam/Deloitte/global/Documents/Risk/gx-ra-safeguarding\
%20the\%20IoT.pdf

[2] M. Caudill, “Neural Networks Primer, Part I,” AI Expert, 2(12), pp 46-
52, 1987.

[3] N. Gupta, V. Jindal, and P. Bedi, “CSE-IDS: Using cost-sensitive deep
learning and ensemble algorithms to handle class imbalance in network-
based intrusion detection systems,” Comput. Secur. 112, 102499, 2022

[4] D. Gumusbas, T. Yildirim, A. Genovese, and F. Scotti, “A Comprehen-
sive Survey of Databases and Deep Learning Methods for Cybersecurity
and Intrusion Detection Systems,” IEEE Syst. J. 15(2), pp. 1717-1731,
2021.

[5] F. Khan, S. Kanwal, S. Alamri, and B. Mumtaz, “Hyper-Parameter
Optimization of Classifiers, Using an Artificial Immune Network and
Its Application to Software Bug Prediction,” IEEE Access 8, pp. 20954-
20964, 2020.

[6] H. Mliki, A.H. Kaceam, and L. Chaari, “A Comprehensive Survey on
Intrusion Detection based Machine Learning for IoT Networks,” EAI
Endorsed Trans. Security Safety 8(29), e3, 2021.

[7] L. Liu, Y. Wang, W. Meng, Z. Xu, W. Gao, and Z. Ma, “Towards
Efficient and Energy-aware Query Processing for Industrial Internet of
Things,” Peer-to-Peer Networking and Applications, vol. 14, pp. 3895-
3914, 2021.

[8] L. Liu, P. Wang, J. Lin, and L. Liu, “Intrusion Detection of Imbalanced
Network Traffic Based on Machine Learning and Deep Learning,” IEEE
Access 9, pp. 7550-7563, 2021.

[9] V.S. Lalapura, J. Amudha, and H.S. Satheesh, “Recurrent Neural Net-
works for Edge Intelligence: A Survey,” ACM Comput. Surv. 54(4), pp.
91:1-91:38, 2021.

[10] W. Meng, W. Li, and L.F. Kwok, “Towards Effective Trust-based Packet
Filtering in Collaborative Network Environments,” IEEE Transactions
on Network and Service Management, vol. 14, no. 1, pp. 233-245, 2017.

[11] W. Meng, W. Li, and L.F. Kwok, “EFM: Enhancing the Performance of
Signature-based Network Intrusion Detection Systems Using Enhanced
Filter Mechanism,” Computers & Security, vol. 43, pp. 189-204, 2014.

[12] Y. Meng, “The practice on using machine learning for network anomaly
intrusion detection,” In: Proc. the 2011 International Conference on
Machine Learning and Cybernetics, pp. 576-581, 2011.

[13] Significant Cyber Incidents. [Online]. https://www.csis.org/programs/
strategic-technologies-program/significant-cyber-incidents

[14] M. Roesch, “Snort Lightweight Intrusion Detection for Networks,” In:
Proc. the 13th Conference on Systems Administration (LISA), pp. 229-
238, 1999.

[15] Suricata. https://suricata.io/
[16] S. Gamage and J. Samarabandu, “Deep learning methods in network

intrusion detection: A survey and an objective comparison,” J. Netw.
Comput. Appl. 169, 102767, 2020.

[17] R. Vinayakumar, M. Alazab, K.P. Soman, P. Poornachandran, A. Al-
Nemrat, and S. Venkatraman, “Deep Learning Approach for Intelligent
Intrusion Detection System,” IEEE Access 7, pp. 41525-41550, 2019.

[18] S. Mittal, A survey of FPGA-based accelerators for convolutional neural
networks. Neural Comput. Appl. 32(4), pp. 1109-1139, 2020.

[19] TensorBorad. https://www.tensorflow.org/tensorboard
[20] KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/
[21] UNSW15. https://research.unsw.edu.au/projects/unsw-nb15-dataset
[22] CICIDS2017. https://www.unb.ca/cic/datasets/ids-2017.html
[23] CSECICIDS2018. https://www.unb.ca/cic/datasets/ids-2018.html

