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Abstract—The number of Internet of Things (IoT) devices being 
deployed into networks is growing at a phenomenal level, which 

makes IoT networks more vulnerable in the wireless medium. 
Advanced Persistent Threat (APT) is malicious to most of the 
network facilities and the available  attack  data  for  training 

the machine learning-based Intrusion Detection System (IDS) is 
limited when compared to the normal traffic. Therefore, it is quite 
challenging to enhance the detection performance in order to 

mitigate the influence of APT. Therefore, Prior Knowledge Input 
(PKI) models are proposed and tested using the  SCVIC-APT- 
2021 dataset. To obtain prior knowledge, the proposed PKI model 

pre-classifies the original dataset with unsupervised clustering 
method. Then, the obtained prior knowledge is incorporated into 
the supervised model to decrease training complexity and assist 

the supervised model in determining the optimal mapping between 
the raw data and true labels. The experimental findings indicate 
that the PKI model outperforms the supervised baseline, with the 

best macro average F1-score of 81.37%, which is 10.47% higher 
than the baseline. 

Index Terms—Advanced Persistent Threat, Machine Learning, 
IoT, Network Security, Prior Knowledge Input 

 

I. INTRODUCTION 

Unlike common network attacks, which have a limited attack 

period, the Advanced Persistent Threat (APT) has a prolonged 

attack time, disguised among normal traffic patterns so as to 

pose serious data leakage in a network [1]. There are six 

principal stages in the APT and different attack stages can 

be transformed into each other. The six principal stages of 

APT are demonstrated in Fig. 1. Due to the adaptability of the 

attack strategy, it is challenging to acquire appropriate data for 

APT detection. The term APT was initially coined in 2006 [2], 

and it is implemented to intrude networks of military organiza- 

tions and stole non-public information originally. Government 

departments have been targets of APT due to the invaluable 

and nonpublic information [3]. The leakage of the information 

and data causes unpredictable losses to relevant departments 

[4]. Aside from the internal networks of enterprises, Internet 

of Things (IoT) environments such as smart grid and Industry 

Control System (ICS) are also vulnerable to APT attacks due to 

the prevalence of devices that are equipped with smart decision 

support systems [5]. In a large-scale IoT environment, the 

vulnerabilities of the underlying the communication protocols 

utilized by smart sensors and IP cameras could serve as initial 

compromise sites for APT attackers. 

 

 

 

 
Fig.  1:  APT  attack  stages.  Yellow  Blocks:  initial  and  final 

stages. Red Blocks: attack stages. 

 

 
The defence strategies against APT attacks are primarily 

divided into monitoring, mitigation and detection methods [6]. 

The monitoring methods entail detecting APT by analyzing the 

hardware information and event traces generated by the devices. 

PCs and anti-virus software are the primary consumers of the 

monitoring methods. The mitigation methods are described as 

taking reactions to lessen the impact of APT. Two instances of 

the mitigation methods are related to attack graphics and fake 

network files [6]. It is worth noting that both the monitoring 

and mitigation methods have inherent downsides. When there 

are a significant number of network users or when network 

traffic is excessively complicated, the monitoring methods lead 

to a relatively high false-positive rate, which complicates real- 

time monitoring. Since the mitigation methods are incapable of 

actively detecting attacks, they are used to mitigate losses only 

after part of the network is compromised. 

Due to the shortcomings of the monitoring methods  and 

mitigation  methods  that  are  illustrated  above,  the  machine 



learning detection methods are proposed [7]. The trained model 

is capable of monitoring the coming network packets in real 

time with high accuracy in order to raise an early alert prior 

to data exfiltration. Because of the APT attack data deficiency, 

conventional machine learning strategies are not adequate to 

efficiently detect the APT attack. The motivation of this study is 

to incorporate more knowledge in detection systems to improve 

the overall performance of defense strategies. In light of this, 

the contributions of this paper are listed below: 

• A knowledge-based neural network, namely Prior Knowl- 

edge Input (PKI) is introduced into the detection model to 

combine additional knowledge provided by unsupervised 

clustering algorithms with existing features to detect the 

APT. Since PKI is originally developed to reduce the 

computational complexity of engineering problems, it is 

applied to this problem to boost the detection performance 

under limited available APT attack data. 

• SCVIC-APT-2021 dataset [8] 1  that was originally gener- 

ated in a laboratory setting covers five APT stages: Initial 

Compromise on a node that represents the services used 

by smart sensors and IP cameras (i.e., an IoT context), 

Pivoting, Lateral Movement, Reconnaissance, and Data 

Exfiltration. The performance evaluation criteria is chosen as  

F1-score to take into account false predictions during the  

testing phase. The highest macro average F1-score under  

the SCVIC-APT-2021 dataset is 81.37%, which is 10.47% 

higher than the supervised baseline performance. 

In the remainder of this paper, Section II demonstrates related 

work on APT attack detection using machine learning. Section 

III describes the PKI and Progressive PKI models’ workflow. 

Additionally, the evaluation criteria for the experimental out- 

comes are introduced. The numerical results and conclusions 

are given out in Section IV and Section V respectively. 

II. RELATED WORK 

A. Machine Learning for APT Detection 

Machine learning algorithms are more adaptable, since they 

can evaluate a single network flow or host event in real time [9]. 

T. Bodström et al. propose a deep learning stack for detecting 

APT attacks [10]. This approach detects APT layer-by-layer by 

first operating in serial mode and then in parallel mode. When 

the model detects an APT attack, it sends the data to the attack 

database for storage and analysis. 

Due to the malicious payload transmission happening prior 

to data exfiltration, the APT can be identified indirectly by 

detecting the presence of malicious payload. Lu et al. propose 

using time transform features to distinguish normal network 

traffic and network traffic with malicious payloads [11]. They 

capture normal traffic passing through university gateways and 

merge it with APT traffic before feeding them to machine learn- 

ing algorithms. The results indicate that temporal transform 

features have the potential to significantly improve detection 

performance. 

 
1The SCVIC-APT-2021 dataset in [8] is publicly available at https:// ieee-

dataport.org/documents/scvic-apt-2021. 

Matsuda et al. propose a method for detecting APT with 

host events [12]. Attackers can utilize Active Directory (AD), 

a centralized administration system for Windows computers, 

to appear as legal administrator account users, facilitating data 

leakage. This type of APT, on the other hand, leaves user login 

and logout records on the host events system, which can be 

used to detect intrusions. 

B. ML- and Knowledge-Based models for IoT security 

In a recent survey, we have summarized the APT attack types 

and machine learning-based APT detection solutions in IoT 

environments [5]. The study was pursued by using a specific 

threat analysis model, namely Process for Attack Simulation 

and Threat Analysis (PASTA), whichbuilds on seven layers to 

enable analysis of the impact of APT in a top-down manner. 

Generally, both supervised and unsupervised methods are used 

to safeguard IoT systems against APT attacks. Indeed, with the 

advent of improved computational power with the availability 

of graphical processing units, deep learning-based solutions 

such as Deep Neural Network (DNN) and Convolutional Neural 

Network (CNN) have considerably advanced the performance 

of predictive solutions [13]. 

The knowledge-based models are used to shorten the training 

time of neural networks and simplify the complexity of the 

link between input and output [14]. The implementation of 

the knowledge-based models boosts the performance of the 

baseline model and reduces the training complexity. This study 

is inspired by the following knowledge-based solutions in other 

areas. 

In a distinct IoT setting, namely mobile crowdsensing 

(MCS), Simsek et al. propose a method for detecting fake sens- 

ing tasks uploaded to the MCS servers that combines a Deep 

Prior Knowledge Input (Deep-PKI) with a Self-Organizing 

Feature Map. As a result, the Deep-PKI model helps the MCS 

server filter out identified fake tasks and does not allocate them 

to participants. The proposed method outperforms the baseline 

accuracy of deep neural networks [15]. 

III. METHODOLOGY 

A. Prior Knowledge Input 

Machine learning aims to replicate the principle of human 

cognition when it comes to new objects by building algorithm 

models for regression or classification. After the model is 

trained by Prior Knowledge Input (PKI) [16], fewer features 

can be utilized to obtain the same or better classification results. 

Therefore, the training complexity is reduced and the training 

efficiency is increased. The PKI model is extensively utilized 

to embed the prior knowledge besides the existing features [17] 

in an efficient neural network modelling process. 

The training and testing phases of the PKI model are rep- 

resented in Fig. 2. To begin with, the unsupervised model is 

trained for prior knowledge generation The number of clusters 

is the most crucial parameter for the unsupervised clustering 

algorithm and it directly affects the performance of the unsu- 

pervised model. Another important aspect is the validation set 

that is separated from the training set in order to determine 



 

 

Fig. 2: (a) The training phase of the PKI model, (b) The testing 

phase of the PKI model 
 

the appropriate number of clusters for the unsupervised model. 

Following upon training of the unsupervised model, the super- 

vised model is trained with both existing features and prior 

knowledge generated by the unsupervised model. The prior 

knowledge provides regional knowledge based on similarity 

of each sample so the supervised model with prior knowledge 

can establish more accurate input-output relationship than those 

without prior knowledge during the training phase. 

The testing phase of PKI is substantially identical to training. 

The only difference is that the testing phase does not require to 

assess the error and to update the parameters of the supervised 

model. During the testing phase, the features of all data points 

are fed into the unsupervised model in order to obtain the prior 

knowledge. Then, prior knowledge and original features are fed 

into the supervised model for prediction. 

 
B. Progressive PKI 

The Progressive PKI model is dependent on the PKI model 

and utilizes an unsupervised model stack to obtain prior knowl- 

edge. In the PKI model, clustering labels generated by a single 

unsupervised model are used to reduce training complexity. 

The SCVIC-APT-2021 dataset contains more than 80 features. 

Due to the prior knowledge obtained by the PKI model being 

limited to a single dimension, it is difficult to improve the 

classification performance of the model in comparison to the 

huge number of original features. Additionally, if the clustering 

of the unsupervised model is unable to adequately reflect the 

true distribution of data points, the performance of the model 

degrades. As a result, Progressive PKI is developed to solve the 

prior knowledge dimensionality limitations of the PKI model. 

 
Fig. 3: (a) The training phase of the Progressive PKI model, 

(b) The testing phase of the Progressive PKI model 

 
The  training  and  testing  phases  of  the  Progressive  PKI 

model are presented in Fig. 3. Prior to the training phase, the 

unsupervised model stack is trained. The unsupervised model 

stack is composed of multiple unsupervised models that are 

totally independent of each other. Each unsupervised model 

obtains prior knowledge by clustering the original features of 

the dataset. The crucial step in this approach is to determine 

the size of the unsupervised model stack. The size indicates the 

number of unsupervised models included in the stack. In order 

to obtain the optimal size, a validation set is separated from the 

training set and used for tuning the stack size. After training 

the unsupervised model stack, all prior knowledge from the 

unsupervised stack and original features from the dataset are 

fed into the supervised model for traffic classification training. 

During the testing phase, the original features of the dataset 

and  the  prior  knowledge  generated  from  the  unsupervised 

model stack are input into the trained supervised model to 

predict whether the network flow is malicious. 

C. Evaluation Criteria 

Normal Traffic occupies 98.36% of the dataset in order to 

imitate the real network environment, resulting in the imbalance 

problem. The average evaluation measures, such as precision 

and recall, do not capture the true performance of the model. 

For instance, if the model classifies all data points as Normal 

Traffic, it can still produce excellent average precision and 

recall, but the attack detection accuracy is 0. 

The Macro Average F1-score is used as the criterion for 

evaluation. As formulated in (1), it is defined as the average of 

F1 scores of all classes where F1 score denotes the harmonic 





TABLE IV: Parameters tuning for GMM and XGB combination 
 

Algorithms Parameter Candidate Set 

GMM Covariance Type ”spherical”, ”diag”, ”full”, ”tied” 

XGB 
Number of Estimator Range: (10, 200), Step Size: 10 

Learning Rate 0.01, 0.05, 0.1, 0.2, 0.3 

 

 
to cluster the selected features produced from feature selection 

and then supervised models are used to predict the final classes 

using the clustering labels and selected features. It is critical for 

unsupervised models to pick the appropriate number of clusters. 

The validation set separated from the training set is utilized to 

determine it. In this experiment, k-means clustering (KMeans) 

and Gaussian Mixture Model (GMM) are two candidates for 

the unsupervised model. RF and XGB are candidates for the 

supervised model. Therefore, a total of four combinations are 

tested. The number of clusters varies from 2 to 20 during the 

experiment. The PKI model results on SCVIC-APT-2021 are 

illustrated in Table V. The bold rows in the tables are  the 

highest performance that the PKI model can reach. The best 

macro average F1-score is 81.03% when the GMM (number of 

clusters = 5) is combined with RF. The confusion matrix for 

this combination is shown in Fig. 5. When KMeans and RF 

are combined, and the number of clusters of KMeans is 17, the 

highest macro average F1-score of this combination is 80.33%. 

However, for XGB, no matter which unsupervised model is 

used for prior knowledge clustering, the results obtained are 

lower than the results of Baseline 2. Therefore, the optimal 

number of clusters for GMM is 1 when combined with XGB 

and the detection performance equals Baseline 2. 

Progressive PKI: Fig. 3 indicates that multiple columns of 

clustering labels obtained via the unsupervised model stack are 

integrated into the original dataset as new features to aid in 

detecting APT. The optimal results are illustrated in Table VI 

after traversing the size of the unsupervised model stack from 1 

to 20. For XGB, it is discovered that the Progressive PKI model 

performs better than the PKI model. The combination of GMM 

and XGB produces the best macro average F1-score, 81.27%. 

Furthermore, Fig. 4 compares the detection performance of 

Baseline 1, Baseline 2, PKI model and Progressive PKI model. 

An extraordinary APT detection improvement can be found 

when the PKI and Progressive PKI models are applied. 

Parameter Tuning: According to previous findings, the 

combined GMM and XGB Progressive PKI model achieve the 

highest macro average F1-score. The parameters are tuned for 

this combination to maximize APT detection performance. We 

define a set within an appropriate range for each parameter 

and then use grid search to identify the optimal parameter 

combination. The adjustment range and step length for each 

parameter can be found in Table IV. 

During the grid search, 0.2 is selected as the optimal learning 

rate for XGB as the learning  rates  of  0.3  or  smaller  than 

0.2, the performance of Progressive PKI-based XGB leads to 

performance degradation. Regarding the number of estimators 

of XGB, the default value of 100 is chosen as the optimal for 

the proposed model during the grid search. Therefore, when the 

 

 

Fig. 4: Macro average F1-score comparison of all methods 
 

 

Fig. 5: Confusion Matrix for Random Forest PKI 

 

 

covariance type of GMM is ”full”, the number of estimators, 

and the learning rate of XGB are 100 and 0.2, respectively, 

the best macro average F1-score is 81.37%. The classification 

confusion matrix is depicted in Fig. 6. It is found that several 

more data points in Data Exfiltration, Normal Traffic and 

Reconnaissance classes are classified correctly when compared 

to the RF PKI model in Fig. 5. Although the performance of 

the XGB Progressive PKI model on the Lateral Movement and 

Pivoting is degraded a bit, it is still the highest macro average 

F1-score that the proposed methods obtained in this experiment. 

V. CONCLUSION 

As the APT attack initiators can modify their strategies based 

on the real-time environment of the victim network, there is 

an urgent demand for accurate APT attack detection on IoT 

environments. This study proposes a Prior Knowledge Input 

(PKI)-based APT detection in an IoT context. The PKI and a 

Progressive PKI model utilize unsupervised learning to cluster 

features and reduce the complexity of training so that the model 

performs better with fewer features. The experimental results 



TABLE V: The PKI model results for SCVIC-APT-2021 dataset 

 
Supervised 

Method 
Feature 

Selection 
Number 

of Features 
Unsupervised 

Methods 
Optimal Number 

of Clusters 
Macro Avg 

F1-score 

RF Chi2 51 KMeans 17 0.8033 
GMM 5 0.8103 

XGB Chi2 49 KMeans 1 0.8092 
GMM 1 0.8092 

 

TABLE VI: The Progressive PKI model results for SCVIC-APT-2021 Dataset 
 

Supervised 
Method 

Feature 
Selection 

Number of 
Features 

Unsupervised 
Method 

New Added Columns 
of Prior Knowledge 

Macro Avg 
F1-score 

RF Chi2 51 
KMeans 3 0.8046 
GMM 2 0.8061 

XGB Chi2 49 
KMeans 9 0.8127 
GMM 1 0.8088 

 
 

 

Fig. 6: Confusion Matrix for XGBoost Progressive PKI 

 
 

also illustrate that the introduced PKI and Progressive PKI 

models significantly improve the APT detection performance 

under a dataset generated in an IoT context. The PKI model 

increases the macro average F1-score of RF from 75.20% to 

81.03%. For the Progressive PKI model, it improves the macro 

average F1-score of XGB from 70.90% to 81.37%. 
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