2208.12230v1 [cs.LG] 25 Aug 2022

arxXiv

Semantic Preserving Adversarial Attack Generation
with Autoencoder and Genetic Algorithm

Xinyi Wang
School of Info. Tech and Elec. Engr.
University of Queensland
Brisbane, Australia
x.wang9 @ugq.net.au

Abstract—Widely used deep learning models are found to have
poor robustness. Little noises can fool state-of-the-art models
into making incorrect predictions. While there is a great deal
of high-performance attack generation methods, most of them
directly add perturbations to original data and measure them
using L_p norms; this can break the major structure of data,
thus, creating invalid attacks. In this paper, we propose a black-
box attack, which, instead of modifying original data, modifies
latent features of data extracted by an autoencoder; then, we
measure noises in semantic space to protect the semantics of
data. We trained autoencoders on MNIST and CIFAR-10 datasets
and found optimal adversarial perturbations using a genetic
algorithm. Our approach achieved a 100% attack success rate
on the first 100 data of MNIST and CIFAR-10 datasets with less
perturbation than FGSM.

Index Terms—Adversarial attack, Attack generation, Cyber-
attacks, Defense, Deep Learning, Machine learning, Neural net-
works

I. INTRODUCTION

The rapid growth of artificial intelligence (AI) techniques
has popularized deep learning (DL) for handling machine
learning tasks such as malware classification, image classi-
fication, spam detection, efc. However, the DL models are
known to be vulnerable to attacks [[1]. Samples with carefully
designed noises, namely adversarial attacks, have been found
to be able to easily fool state-of-the-art DL models. This
vulnerability to adversarial attacks is found to be a general
problem among many Machine Learning (ML) and DL archi-
tectures. As an example, one can use 3D printed eyeglasses
to fool the facial recognition system into regarding him or her
as another person [2]; therefore, achieving an attack on the
facial recognition payment system. Another example is self-
driving cars; slightly modified traffic signs can mislead them
into making incorrect decisions [3] therefore resulting in traffic
accidents.

Given these challenges, techniques for attack generation and
defense have been researched and proposed in several studies.
However, most of the attack methods use L_p norms for
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measurement of perturbations and they focused on generating
attacks with small L_p distances, while less attention is paid
to the semantics of samples. Providing that noises with small
L_p norms can still produce perceptually different adversarial
examples [4], this work focuses on generating attacks with
small perturbations while preserving the semantics of original
samples.

In this paper, we proposed a new approach for adversarial
attack generation which uses an autoencoder to preserve the
semantics of data and finds optimal perturbations with a
genetic algorithm. In particular, we proposed a new black-
box attack approach to achieve the best attack success rate on
the data of MNIST (Modified National Institute of Standards
and Technology dataset) and CIFAR-10 (Canadian Institute
For Advanced Research) datasets with relatively smaller per-
turbation sizes than FGSM [5]]. Here, the MNIST dataset is a
dataset of 60,000 small square 28x28 pixel grayscale images
of handwritten single digits between 0 and 9, while the CIFAR-
10 dataset consists of 60,000 32x32 color images in 10 classes,
with 6,000 images per class. There are 50,000 training images
and 10,000 test images. Both datasets are among the most
widely used datasets for machine learning research. The main
contributions of this paper are as follows:

o We proposed a new approach for adversarial attack gen-
eration using an autoencoder to preserve the semantics of
data.

« We compute the optimal perturbations for the attack using
a genetic algorithm.

o We evaluate the performance of untargeted and targeted
attacks and then compared them with several basic and
state-of-the-art attacks.

The rest of the paper is structured as follows. Section
provides the related work and the background to the study.
Our proposed approach is presented in Section [[TI] In Section
IV} we provide the description of the experimental setup and
analysis of the obtained results. The conclusion, discussion,
and future work are provided in Section

II. RELATED WORK

In this section, we review relevant papers based on methods
for generating attacks for text classifiers and image classifiers.



Attacks to image classifiers: Goodfellow er al. [5] pro-
posed the Fast Gradient Sign Method (FGSM). This method
achieves attack by moving a seed towards the direction in
which the loss of a target model increases. It supports un-
targeted attacks and can be modified to generate targeted
attacks by calculating noises to minimize loss with regard to
target classes. Kurakin er al. [6] proposed a basic iterative
method based on the same hypothesis of FGSM (the linearity
hypothesis). Different from FGSM, BIM is an iterative method
that adds small noises to seeds iteratively. At each step, noises
are calculated with the same equation as FGSM.

Szegedy et al. [7] defined adversarial attack generation
as an optimization problem and solved it with the Limited-
Memory BFGS algorithm. The authors applied this attack on
different neural networks and different datasets; they success-
fully generated attacks with little noise in all experiments.
Similarly, Carlini et al. [8|] also defined generation of attacks
as an optimization problem. Different from L-BFGS, they
explored seven different objective functions to overcome the
non-linearity of the objective function in the L-BFGS attack.

Attacks to text classifiers: Generating attacks on text
classifiers is different from generating attacks on image clas-
sifiers. Adding noises to texts as to images will lead to
invalid words or sentences. Li et al. [9] proposed TextBugger
which combines character level perturbation with word-level
perturbation to generate attacks. For word-level perturbation,
they first calculate words’ importance using the Jacobian
matrix, then, closest neighbors of important words are found
to replace them using a pre-trained model which embeds word
semantics. In character-level perturbation, important words are
found in the same way as in word-level attacks. Alzantot et al.
[10] proposed a word-level attack using genetic algorithm. The
key idea of their attack is to replace as few as possible words
with semantically similar words. They use GloVe embedding
space to measure the semantic distance of words to find some
candidates; then, Google’s 1 billion words language model
is used to check if these candidates are suitable in original
sentences. Optimal replacements are found with a genetic
algorithm by checking how wrong the target model is; that
is, the confidence with which the target model misclassifies
an attack.

III. THE PROPOSED APPROACH

We proposed a black-box approach for adversarial attack
generation trying to provide a semantic preservation func-
tionality. We use latent space learned by an autoencoder to
measure the semantic distance between attacks and their seeds
and use GA to find optimal noises. The major characteristics
of our method are; Black-box, Support for untargeted and
targeted attacks, No direct modification of original data, and
considering semantic distance during attack generation

Similar to L-BFGS, we define attack generation as an
optimization problem but with an additional term to minimize:

Minimize: D1 (z, /) + D2 (0, 0/)

subject to: f (/) =y

and z/ € [l,7]n

where : 0 = encode (z), of = o+ 9§, x! = decode(o + ¢),
and f(z) =y

where X is a seed, y is the correct class of x, f'is the classifier
under attack, 1 and r define the valid range of data, n is the
dimension of data, z/ is an attack, D and D, are distance
functions, o and o/ are the latent code of x and xz/,§ is the
noise in latent space. That is, for a seed x, we want to find the
optimal attack x/ which is close to x in both original space
and semantic space. We generate such x/ by adding noises on
the latent code of x and decode the perturbed latent code with
the decoder. We use GA to solve this optimization problem.
The overall procedure of our approach is shown in Figure [I}

Our approach supports both untargeted and targeted attacks.
Furthermore, with the help of an autoencoder, our approach
is possible to be extended to work on other forms of datasets
apart from image datasets.

For image data, we use L_2 norm to measure both pixel
distance and semantic distance between attacks and their seeds.
This is because noises with small L_2 norm are less likely to
distort semantics of images according to the experiment results
from [4]. Therefore, assuming pixels are normalized to [0, 1],
the problem becomes:

Minimize: ||g||2 + |]6]|2
subject to: f (af)! =y

and 2/ € [0,1]", where:p = x — xf

For other forms of data, problem-specific distance can be used
to replace L_2 distance.

A. Feature extraction

The intuition behind our method is to protect major features
of seeds to preserve their semantics and core structures.
Because the latent space of an autoencoder is believed to be
a semantic space, we use this space to measure the semantic
distance to achieve our functionality. Training an autoencoder
on data, we get: (1) A latent space for semantic distance
measurement, (2) A low dimensional space for GA to search
on, and (3) A decoder to generate attacks. After training, we
obtain two functions:

Encode(z) = 0, and Decode(0) = x!

The decoder is then used as a generative model; new samples
are generated using the decoder by modifying latent code o.

B. Attack generation

After we have extracted the latent space, attack generation
can be done by a genetic algorithm. Given a seed x, we can
easily get its latent code using the decoder. Then, we use
chromosomes to represent noises and search for optimal noises
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Fig. 1. The proposed approach

in the latent space. The main procedure of attack generation
is illustrated in Figure 2]

1) Chromosome: We encode noises on latent space into
chromosomes; therefore, a chromosome is of the same di-
mension as the latent space of the autoencoder. Each gene
in a chromosome is a float value which is the noise to the
seed’s latent code at the same location. Given a seed x and
a chromosome c, a new sample can be generated with the
decoder (Figure [3) : 2’ = decode(encode(x) + ¢)

2) Selection: We use elitism selection in GA for offspring
production. In each generation, the best k individuals are
protected and added to the next generation without modifi-
cation. Other individuals of the next generation are produced
by Roulette wheel selection. Note that the elitists are also
considered when choosing parents so that their good genes
can be shared by others.

3) Crossover: We use one-point crossover in this work to
keep the implementation and parameter tuning simple. When
crossover happens, a random position is chosen and then used
to split and recombine parents.

4) Mutation: We apply mutation operation on new off-
spring after crossover. Once a gene is decided to be mutated, it
will get modified with a pre-defined step size. Because genes
are of float type, this step size is a small float value and its
magnitude is tuned individually for different datasets.

5) Fitness function: Fitness describes how good a pertur-
bation is. We evaluate adversarial perturbations from three
aspects: (1) perturbation size, (2) semantic distance, and (3)
attack performance.

Perturbation size is the distance between an attack and
its seed; given a sample x and chromosome c: PS(z,c) =
||decode(h + ¢) — decode(h)||2 where h = encode(x) is
the latent code of sample x. Instead of the original x, the
reconstructed sample (decode(h)) is used in the equation;
this is because the distance between = and decode(h) may
make the objective of GA become decreasing the loss of the
autoencoder instead of finding adversarial attacks.

Semantic distance is the L_2 norm of perturbations in
the latent space; given a chromosome c¢: SD(c) = |[|¢||2
Evaluation of attack performance uses confidence of the target
model which is inspired by [11]. As for the untargeted attack,
given a seed x and a chromosome c, then it can be computed
by Equation (T).

max(p) — second_max(p), yl =y
—(max(p) — second_maz(p)), y==1y/
1

where y is the true label of sample x and y/ is the predicted
label of x/ which is generated by c: 2/ = decode(encode(x) +
¢); p is the output of target model where p[yi] is the probability
of x belonging to yi. When a sample is correctly classified by
the target model, we want to decrease the model’s confidence
in this prediction; when a sample is misclassified, we want
to increase the model’s confidence in the wrong prediction,
therefore, making the attack more aggressive.

For a targeted attack, the probability of x belonging to class
y1! is used to direct the search as given by Equation (2).

AP(y,p) = {

max(p) — second_max(p), y!/ =y
—(max(p) — ply]), y!l == yn
(2
where y// is the targeted class label, p[y/] is the probability
of x belonging to class y//, and y/ is the predicted label.
Given above definition, fitness function for a chromosome
¢ is defined by Equation (3).

AP(yn,p) = {

AP — PS xa—5D x 3, (misclassified)
AP, (correctly classify)
3)
The hyper-parameter « and [ are used to control the
importance of perturbation size and semantic distance. With
small « and S, the searching process will focus more on
attack performance, while with large o and S, attacks with
large PS and SD will be eliminated and the search focus more
on perturbation size; therefore, using these two parameters,

Fitness = {
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we can have a trade-off between attack performance and
perturbation size. Perturbation size and semantic distance are
not considered if a generated sample is correctly classified; this
allows GA to keep the noises that are most likely to create
adversarial attacks when there is no attack found, therefore
reaching the space in which attacks lay faster.

IV. EXPERIMENT, RESULTS, AND ANALYSIS

We choose to use two well-known datasets MNIST digits
and CIFAR-10 colored images.

A. Experiments on MNIST

1) Autoencoder : We trained a simple sparse autoencoder
on the training set of MNIST. Firstly, we built an autoencoder
with only fully connected layers and found it performs quite
well on MNIST. The structure of our initial autoencoder is
shown in Figure [

—Inputs: 784 Outputs: 784+
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Mish Mish Mish Mish Mish  Sigmoid

Fig. 4. Structure of initial autoencoder; the number of nodes of each layer
is later reduced to 512, 264, 128, 128, 264, 512

We use binary cross-entropy loss to calculate reconstruction
error and Adam optimizer to train our model because Adam

can adjust the learning rate automatically. With a learning rate
of 0.001, we trained the autoencoder for 10 epochs in Figure
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Fig. 5. Results showing the training loss of the autoencoder and the extracted
features of a random sample from training set

Then, we tried to reduce the number of nodes in each
layer because the dimension of latent space will affect GA’s
time efficiency. After exploring different settings, we finally
reduced the number of nodes in the latent layer to 128 which
have similar reconstruction performance and are small enough
so that GA can run fast on it. Because a decrease in the number
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of nodes in each layer will cause the reconstruction error to
increase but the further decrease has little improvement in
GA’s time efficiency (from 128 to 64: around 2 seconds on
average for 100 generations), we stopped reducing the number
of nodes in latent space. The structure of our final encoder is
Layer 1: 512 nodes, Layer 2: 264 nodes, and Layer 3: 128
nodes; the decoder has a symmetrical structure. Training loss,
examples of reconstructed images, and distribution of latent
space is illustrated in Figure [7] and Figure [§]

We use the Mish activation function in the latent layer
because it has been shown to perform better than other
activation functions on many datasets [12] as it provides a
smooth optimization surface. Another feature of the Mish
function is that it allows negative values while ReLU does not.
Because mutation in GA can result in many negative noises,
given most of the latent features are close to 0 in a sparse
autoencoder, a lot of noises will be unreasonable; therefore,
the Mish function works better in this scenario.

2) Model under attack: We trained a convolutional network
on the training set of MNIST and used it as a target model for
attack generation. The structure of this model is illustrated in
Figure 0] After training for 25 epochs with a learning rate of
0.001, the target model achieved 99.05% accuracy on the test
set.

3) Attack generation with GA: With the trained autoen-
coder, we can start generating attacks with GA. Taking a
random image from the training set, we pass the latent code
of this seed to GA and modify it with chromosomes. After
100 generations, we successfully got an adversarial attack.
Because there are many hyperparameters in GA, we fixed
some of them with the same values heuristically and tune one
or two parameters at each time. We split the parameter into
the following groups:

o Crossover rate and mutation rate; initial value: 0.2 and

0.1

e The number of population in each generation and the

number elitist to keep; initial value: 50 and 5 respectively
« Range of initial noises and step size used in mutation;
initial value: [0, 0.04] and 0.02

e « in fitness function which controls the importance of
perturbation size; initial value: 0.2

e [ in fitness function which controls the importance of
semantic distance; initial value: 1
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Fig. 9. Structure of the target model

o Number of generations before termination; initial value:
100

The initial values were decided by generating several attacks
and manually checking the generated images as well as the



magnitude of perturbations.

Lastly, using the previously tuned parameters, we gener-
ated attacks with different numbers of generations. Average
perturbation size goes down when the number of generations
increases while average fitness grows up when the number of
generations increases. However, fitness increases slowly when
the number of generations is larger than 150 while the running
time increases quickly. Therefore, we think 150 generations is
a good choice.

After an untargeted attack, we explored targeted attacks with
the same hyperparameters. However, we found that targeted
attacks exhibit more distortion (Figure [I0) in comparison to
untargeted attacks. This is because GA works on a non-convex
fitness function and different initialization can lead to different
results; while an untargeted attack finds the best attack starting
from its initial population, a targeted attack has to discard
many good attacks and is more affected by initialization.

h Targeted  Untargeted
Predicted as: 0

2 3 4 l
Original ___ 8
image
5 6 7 8 9

Fig. 10. Comparison of untargeted and targeted attack with a random seed
from the training set; (o = 0.4)

Predicted as:

4) Comparison with other attacks: To compare our pro-
posed work with other attack methods, we generated attacks
with foolbox [13] using the first 100 data from MINST’s
training set as seeds. Mean perturbation per pixel is measured
using L_2 norm and the average running time for a single
attack is counted in seconds.

We found that our approach has a good attack success rate
as state-of-the-art attacks, but our attack has around 3 times
more perturbations than the Boundary attack and C&W attack.

Attacks generated by FGSM, BIM, and PGD have more
noise than those generated by other attacks. C&W is one
of the most powerful attacks which achieved a 100% at-
tack success rate with the lowest average perturbation size.
Boundary attack also has good performance; being a black-
box attack, it achieved the same success rate as C&W with
close perturbation size and even better time efficiency.

Using the first 6 images from MNIST’s training set, we
generated adversarial attacks with different attack methods.
We noticed that compared to other attacks, those generated
by our method have features from other classes, or have their
own features weakened; some attacks look like interpolations
between different classes.

We found an attack that is semantically different from its
seed. The attack generated for number ‘9’ in Figure [[T] has its
upper part erased; although it is misclassified by the target
model with a small perturbation size, it looks fairly close
to number ‘4’ and should be considered an invalid attack.

This indicates that we might have to further explore the
effectiveness of /3 to better understand our method and prevent
this kind of attack from being produced. However, this also
indicates that our approach is truly working on the semantic
space and can potentially provide a semantic preservation
functionality. More experiments are needed to improve and
validate this functionality.
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Fig. 11. Attacks generated by different methods. The first 6 data from the
training set of MNIST are used. The second last attack generated by our
approach is overly distorted

B. Experiments on CIFAR-10

1) Autoencoder: Because the CIFAR-10 dataset contains
colored images, the dimension of data becomes 3 x 32 x 32 =
3072 which is about 4 times larger than that of MNIST.
Therefore, instead of a fully connected autoencoder, we used a
convolutional autoencoder from [[14] with some modifications
on activation functions. We trained the autoencoder with a
training set for 30 epochs and observed good reconstruction
performance.

2) Model under attack: We found that simple convolutional
networks have poor performance on the CIFAR-10 dataset
(around 65% accuracy on the testing set), therefore, to better
understand the performance of our proposed method, we use
a pre-trained VGG-11 model from [15] which has testing
accuracy of 92.39%.

3) Attack generation: Because the dimension of data and
semantic space have changed, hyperparameters tuned for the
MNIST dataset do not work well now. Initialization range and
step size are affected by the magnitude of latent features and
the previously used values cannot find any adversarial attack
this time; « value also has to be returned because perturbations
have different magnitudes on colored images in relation to
grayscale images.



The crossover rate and mutation rate are kept the same as
before because we have the same selection, crossover, and
mutation scheme. The effectiveness of population size and the
number of elitists to keep per generation is clear according
to the previous experiments; increasing them together can
improve average fitness but also increase the running time.
Therefore, they are left unmodified to keep a balance between
the quality of solutions and time efficiency. The number of
generations is decreased to 100 to make the later experiments
easier; it is set back to 150 when evaluating the overall
performance of the algorithm.

Observing the magnitude of latent features, we set the value
of 8 to 0.01 heuristically. Also, because the dimension of data
is about 4 times higher than before (from 784 to 3072), we set
the value of « to 0.1. Keeping other parameters unmodified,
we generated 10 attacks with random seeds for different
initialization ranges and step sizes. Although 10 attacks are
not enough to show a stable average performance and the plots
are not smooth, the overall tendency consents to the previous
experiments.
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Fig. 12. Attacks generated with max initial noise of 1.5 and step size of 0.3
using random seeds from the training set

We give more importance to attack success rate and leave
«a to control perturbation size. We choose 1.5 as the max
magnitude of initial noises and 0.3 as the step size (Figure

Finally, we explored the effectiveness of 3. We found that
generated attacks are overly distorted with a 3 of 0, and the
attacks are similar with non-zero /3 values. This agrees with
the experiment on MNIST. However, to validate the semantic
preservation functionality, further experiments are needed.
Using the same parameters as MNIST, we generated some
targeted attacks. However, we found many of them are overly
distorted or failed and only those with their original classes
close to targeted classes (cat and dog, automobile and truck,
etc) succeeded. We explain this as the use of autoencoder and
its latent space; because the map from latent space to image
space is not continuous, noises cannot be freely added onto
seeds but have to follow the patterns learned by the decoder.
This property somehow narrowed the searching space to a
small range and led to poor performance on targeted attacks.
The over distortion indicates that our choice of o may be too
small; it works on the untargeted attack because they are easy
to find, but it cannot guarantee that all perturbations are small.
Therefore, a targeted attack on CIFAR-10 left as a future job.

4) Comparison with other attacks: Foolbox is again
used to compare our untargeted attack with other attacks on

CIFAR-10. We generated 100 attacks with different methods
and collected their performance. The first 100 images from
the training set are used as seeds and the result is recorded.

We noticed that our approach has poor time efficiency; the
running time is 3 times longer than C&W and more than 10
times longer than the Boundary attack.
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Fig. 13. Attacks generated by different algorithms compared with our
approach; first 6 images from the training set are used as seeds

V. CONCLUSION

We developed a new black-box attack approach that
achieved a 100% attack success rate on the first 100 data
of MNIST and CIFAR-10 datasets with relatively smaller
perturbation size than FGSM. While the average perturbation
size of our attack is larger than state-of-the-art attacks such
as Boundary attacks and C&W, our attack is more aggressive
and most of the attacks are misclassified by the target model
with a probability higher than 99% (Figure [T1] Figure [T3).
In addition, attacks generated by our method have better
diversity; using a single seed, different running of GA can find
different attacks with different class labels. This can be helpful
to adversarial training. Our approach does not require gradients
and is more practical than regular white-box attacks. Although
our approach has poor time efficiency compared with other
attacks, it can be improved by moving GA to GPU. We have
evaluated the performance of untargeted attacks and compared
it with several basic attacks and state-of-the-art attacks.
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