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Abstract—Class-of-service (CoS) network traffic classification
(NTC) classifies a group of similar traffic applications. The CoS
classification is advantageous in resource scheduling for Internet
service providers and avoids the necessity of remodelling. Our
goal is to find a robust, lightweight, and fast-converging CoS
classifier that uses fewer data in modelling and does not require
specialized tools in feature extraction. The commonality of
statistical features among the network flow segments motivates us
to propose novel segmented learning that includes essential vector
representation and a simple-segment method of classification. We
represent the segmented traffic in the vector form using the EVR.
Then, the segmented traffic is modelled for classification using
random forest. Our solution’s success relies on finding the optimal
segment size and a minimum number of segments required in
modelling. The solution is validated on multiple datasets for
various CoS services, including virtual reality (VR). Significant
findings of the research work are i) Synchronous services that
require acknowledgment and request to continue communication
are classified with 99% accuracy, ii) Initial 1,000 packets in any
session are good enough to model a CoS traffic for promising
results, and we therefore can quickly deploy a CoS classifier,
and iii) Test results remain consistent even when trained on
one dataset and tested on a different dataset. In summary, our
solution is the first to propose segmentation learning NTC that
uses fewer features to classify most CoS traffic with an accuracy
of 99%. The implementation of our solution is available on
GitHub.

Index Terms—network traffic classification (NTC), class of
service (CoS), virtual reality traffic. machine learning, segmented
learning.

I. INTRODUCTION

The surge in Internet traffic has posed a significant challenge
for Internet service providers (ISPs) to strategize the resource
allocation for a better quality of service (QoS) [1]. The ISPs
use network traffic classification (NTC) to understand the traf-
fic [2] and decide on network management. The conventional
multi-class NTC [3]–[6] classifies the network traffic into
respective applications such as Facebook, Netflix, YouTube
traffic, etc. Conventional NTC needs to be remodelled for
every new application type released on the Internet, which
is expensive in training and adds up to the maintenance cost
for ISPs [7], [8]. Unlike the conventional multi-class NTC,
the class-of-service (CoS) classifier groups similar applications
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and maps them into one CoS type. For example, Skype, Hang-
outs, and Facebook chat services are treated as “chat” CoS
types instead of three different classes. The CoS classification
is more suitable and offers less latency in scheduling for
better QoS [9]. The CoS NTC is getting more attention from
researchers to provide better solutions because of its necessity
in faster resource scheduling for a better QoS [10].

Interactive (e.g., VoIP), bulk data transfer (e.g., FTP),
streaming (e.g., video), and transactional (e.g., chat) CoS
types are investigated in [11]. The linear discriminant analysis
and the K-nearest neighbours-based solutions achieve 43%
and 86% accuracy, respectively. The solution has a complex
feature engineering process, which uses packet-level, flow-
level, connection-level, intra-flow level, and multi-flow level
features to obtain statistics for CoS classification, and the
performance is not satisfactory. Shapley value-based super-
features are used to represent the CoS traffic data in [12].
The preprocessing requires 266 features to obtain the Shapley
values. The work uses a neural network in classification.
Currently, the solution stands as the state-of-the-art (SOA)
solution with an accuracy of 92.5%. However, the result is
validated on only 10% of the dataset. No works consider the
network traffic in segments for classification to take advantage
of the commonality of statistical features in traffic features.

Based on the literature review, we observe the following
issues in the current CoS classifiers: i) complex feature engi-
neering methods that are impractical in a real-world scenario,
ii) less robust solutions evaluated on a limited dataset, iii)
an extensive number of packets in modelling, iv) complex
classifiers with huge training complexity and v) lack of taking
advantage of properties of traffic segments. The research gaps
motivate us to find a simple feature engineering technique that
is feasible in a real-world scenario, and a quicker method to
model a robust CoS classifier that learns the CoS services
holistically to avoid retraining.

We propose a novel segmented learning that includes an
essential vector representation (EVR) and a simple-segment
method of classification (S2MC) algorithms. Segmented learn-
ing treats the network traffic in segments and learns the unique
and common properties among the segments pertaining to a
CoS class. The traffic packets are collected with four primary
features: packet direction, inter-arrival time, packet length, and
timestamp segments. The EVR forms one feature vector per

ar
X

iv
:2

20
8.

01
79

3v
1 

 [
ee

ss
.S

P]
  3

 A
ug

 2
02

2



segment with eleven elements: packet size statistics, inter-
arrival time statistics, the number of packets in the uplink
and downlink directions, and time duration from the segment.
The main aim of segmented learning is to find the ideal
segment size (N ) so that the statistical feature shows less
or no variation, and a minimum number of segments (ST )
is required for modelling a classifier. Therefore, segmented
learning involves finding (N,ST ) pair by employing a self-
learning heuristic technique that uses a random forest. The
solution is validated on different datasets [13]–[15] that consist
of several CoS types such as file transfer, remote cloud service,
video, VoIP, virtual reality (VR), chat, audio, and peer to peer
(P2P). Hence, we provide a robust CoS classifier. In addition,
we show the generalization of the solution by training on one
dataset and testing on a different dataset.

The implementation of our work is available in GitHub
[16]. A few crucial findings of the work are as follows. i)
Synchronous services (e.g. video, VR streaming and many
others) that requires acknowledgements from the other end are
modelled with 99% accuracy. ii) Test accuracy is consistent
even when trained on one dataset and testing on the other
dataset for synchronous services. iii) We find that N=20 and
ST =50 provide best performance for both datasets used in the
work. iv) The maximum packet length, maximum mean, and
standard deviation of inter-arrival time consistently provide
more information for classification using random forest. v)
Asynchronous services (e.g. Chat, email and many others) are
not modelled accurately when delay occurs in communica-
tion. vi) Different parameters such as user inactivity, delay
in networks or congestion are not effectively captured in
segmented learning. We will discuss more on synchronous and
asynchronous services in later sections.

The contributions of the paper are as follows.

• We develop a lightweight CoS classifier that uses fewer
features captured by simple sniffer tools like Wireshark
or TCPdump.

• The new segmented learning, which includes EVR and
S2MC, has a superior classification compared to state-
of-the-art solution [12].

• We prove the robustness of the solution by validating on
various CoS traffic services (virtual reality, video, chat,
and many others) and on multiple datasets.

• To the best of the author’s knowledge, ours is the first
lightweight, robust, and high-performing CoS classifier.

II. SEGMENTED LEARNING

Segmented learning treats the traffic in segments. Then,
statistics of segments are modelled for classification. The
fruition of segmented learning depends on finding an optimal
segment size N and a minimum number of segments ST

required for modelling. We introduce the EVR and S2MC to
find segment size and number of segments pair (N,ST ) for
successful classification of CoS traffic.

Fig. 1. Representing vn for the nth segment. We show the representation of
EVR for 15th and 115th segment from FTP.

Algorithm 1 EVR Algorithm
Data: total number of segments required (ST ), segment size

(N ) and Raw traffic data with time, pkt len, iat, dir.
Result: S
initialization
S = [ ]
n = 0
while n != ST do

initialize data packets and time
while length(data packets) != segment size (N ) do

data = collect data packets
time = timer value

end

vn = stats(data.pktlen, data.iat, data.up, data.dn, time)
S.append(vn)
n++

end
return S

A. Essential Vector Representation (EVR)

In the EVR, traffic segments are represented in a vector
form, denoted by vn, where n represents the index of the
vector. The process of the vector formation using EVR is
illustrated in Fig. 1. Every segment consists of a N number
of packets with 4 features in each, i.e., packet direction, inter-
arrival time, packet length, and timestamp. The vector vn

consists of 11 features derived from the above 4 features. The
first 4 are the packet length’s statistical information (minimum,
maximum, average, and standard deviation derived from pkt
len in the figure). The second 4 features are the statistical
information of the packet inter-arrival time (iat in the figure).
The next feature is the number of packets in uplink and
downlink directions. Finally, the last feature is the time taken
to form the traffic segment. In total, eleven features are used
in the proposed method, as shown in Fig. 1.

Algorithm 1 shows the EVR implementation that is invoked
by the S2MC algorithm, which will be explained in the
next section. Algorithm 1 requires the segment size (N ), the
number of segments required (ST ) and the raw traffic data with



Fig. 2. Histogram of packet length (len), inter-arrival time (iat), and direction
(dir) for file transfer service. (a,b,c) shows histogram for the 15th segment with
N=20 packets. (d,e,f) shows histogram for the 115th segment with N=20
packets. Histograms at different parts of traffic look similar, showing that the
statistical information of segments can be used to represent the traffic data.

the basic features. EVR algorithm perform segmentation and
vectorization based on the input. Every vector vn is stacked
to form a matrix S. Stacking action is performed by “append”
in Algorithm 1.

We analyze the rationality behind the 11 statistical features
present in vn. Asynchronous services such as chat and VoIP
use smaller packets than synchronous services such as video
and file transfer. Because the service type and quality of ser-
vice are essential in synchronous services. Therefore, statistics
of packet size provide unique information on different CoS.
Inter-arrival time is another critical feature. The delay-sensitive
services like VoIP and chat show aggressive packet bursts
in both directions and smaller inter-arrivals. However, if the
users are inactive or take a long time to respond, the inter-
arrival time might be more significant in those services. Video
or file transfer services use the cache and spend mechanism
[17], which causes a slightly longer inter-arrival time because
the server transmits data in bulk. The client caches the data
in a buffer. Once the buffer gets depleted to lower than the
threshold, it sends a request for the remaining data to the
server. However, the inter-arrival time will be less in those data
transferred in bulk, even for file transfer or video streaming
services. We capture this behavioural information well in
the statistics from the traffic segments, and we observe that
these characteristics remain almost constant if we choose the
segment size N correctly. We can observe in Fig. 2 that
statistical information of packet length, inter-arrival time and
direction is almost the same in the 15th and 115th segments for
N=20 for file transfer service. However, we see the differences
in statistical information of features for different values of N .
How to select the value of N will be explained in the next
subsection. Therefore, the 11-feature vector with statistical
information can provide a good representation of different CoS
types.

B. Simple-Segment Method of Classification (S2MC)

The fruition of the solution majorly depends on finding
the optimal segment size (number of packets in a segment)
N . That means we need to find segment sizes that produce
less or no variation in statistical information. The statistical
information can vary for a given CoS traffic at different stages
in a session. The minimum number of segments ST required
for modelling the CoS traffic is also an imperative parameter.
With an appropriate ST , we can save time in modelling.
Because of the high randomness of CoS traffic, we employ the
S2MC that employs a heuristic machine learning method to
find the ST value. We observe variation in the statistical infor-
mation at the beginning of the session due to irregular packet
transmissions related to protocol negotiations. However, that
is unique to the CoS types, and statistical information remains
constant throughout the session. Intuitively, the solution can
perform well if we choose the packets at the beginning and
a few packets from the middle part of a session. We can use
irregularities and stationarity at the beginning and middle of
the session, respectively.

The N and ST are positive integers that can take val-
ues from 0 to ∞. At this stage, it is difficult to find the
values analytically because of randomness and hence, we
employ a heuristic method to take advantage of machine
learning. The S2MC chooses different values from the pool
N = {10, 20, · · · , 50} and ST = {10, 20, · · · , 50}. Any value
less than 10 is too low for N because segment information
might be statistically insignificant, and we choose 50 as the
maximum to not exhaust the data. A small value for ST might
underfit, and a huge value might overfit. Therefore, the S2MC
uses the random forest classifier to evaluate the performance
and optimize the algorithm for a given network with a given
type of CoS. The (N , ST ) pair might not be universal and
depends on the network’s behaviour and health. However, the
found pair value by Algorithm 2 holds good for all CoS types
within a network. In our experiment, the (N , ST ) remains the
same for both datasets.

Algorithm 2 S2MC model and segment size selection
Data: CoS traffic data, benchmarkAccuracy
Result: final model, N
initialization
for ST = 10; ST 6 50; ST += 10 do

for Nf = 10; Nf 6 50; Nf += 10 do
trainData = EVR(ST , Nf , CoS data)
testData = EVR((L− ST ), Nf , CoS data)
model = RandomForest(10,trainData)
performanceMetrics = model.test(testData)
if performanceMetrics > benchmarkAccuracy then

N = Nf

finalModel = model
break

end
end

end
return final model, N



Fig. 3. Flow chart of the segmented learning that includes the EVR and
S2MC

Algorithm 2 shows the model and segment size selection
using S2MC. L − ST represent the size of the testing data.
L is the size of the original data. The algorithm employs
optimization for every number from the N and ST pool to find
the best pair. Random forest is trained based on the selected
ST number of segments, and performance is analyzed on the
new data. We use 97% as the benchmark accuracy for Dataset I
and 99% for Dataset II. The benchmark accuracies are selected
arbitrarily. If it is lower than the benchmark accuracy, the
algorithm selects new values from the N and ST pool and
continues until the algorithm converges. Once the algorithm
converges, we keep the N value required for the deployment
and trained model on the ST number of segments. The general
flow of segmented learning is shown in Fig. 3 that consists of
EVR and S2MC.

III. EXPERIMENTAL SETUP & RESULTS

The experiments are done on a computer with Intel i9
processor, 32 GB RAM and Nvidia RTX 2080S GPU with 8
GB RAM. The required software is implemented in python
using TensorFlow and Keras APIs along with sci-kit learn
libraries.

A. Dataset Preparation

We use the datasets from [13], [14] and [15]. We combine
the datasets from [13] and [14] to form Dataset I, which
consists of 16 different services and 850,857 traffic packets
in total. Dataset II from [15] provides the traffic captures of
19 different services with 6,977,991 packets in total. Both
datasets represent the real-world traffic. We use four features,
namely timestamps, packet size, uplink and downlink inter-
arrival time, and packet direction as shown in Fig. 1. It does
not require scanning the contents of the packets to obtain those
four features. Therefore, our method does not breach privacy,
and simple sniffers like Wireshark [18] or TCPDump [19] are
good enough. Moreover, we can obtain the packet captures
at any point in the network. Our solution is the first to use
only 4 features in traffic classification problems to the best of
our knowledge. We combine the similar applications and label
them with CoS types. The services and labels of Dataset I and
Dataset II are shown in Table I.

TABLE I
COS LABELLING OF DATASET I AND DATASET II

CoS label service type services

D
at

as
et

I

File
transfer Synchronous FTP, OneDrive

Video Synchronous RTP, YouTube, UDP video
VoIP Synchronous JoinMe, line, Skype, Zoom

Remote
cloud Synchronous ncuCloud, RDP, VmWare, Xen

VR Synchronous cloud and local gaming

D
at

as
et

II

File
transfer Synchronous FTP, SCP etc.

Video Synchronous Vimeo, Youtube, Netflix
VoIP Synchronous Facebook voice, Skype voice, etc.
Chat Asynchronous Facebook chat, ICQ etc.

Audio Asynchronous Spotify
P2P Asynchronous Bittorrent

Email Asynchronous SMPTS

B. Performance Metrics

We use accuracy, recall, precision, F1 score and false-
negative rate (FNR) as the performance metrics. The equation
of all performance metrics are given below:

Accuracy =
TP + TN

TP + TN + FP + FN
,

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

F1 = 2× Precision×Recall

Precision+Recall
,

FNR =
FN

TP + FN

where, FP is the false-positive that signifies the flows when the
flow is not present in reality. False-negative (FN) represents no
detection when the flows present in reality. True-negative (TN)
shows correct no detection. The correct detection is captured
in true-positive (TP). The false-negative rate (FNR) in the
NTC problem is important because we need to know when
our model indicates no traffic, whereas the traffic is present in
reality. Generally, a model with a higher F1 score is robust and
reliable. A model with lower FNR is better in classification.
Ideally, a model with a higher F1 score and lower FNR is
preferred.

C. Performance on the Real-world Datasets

We perform three different experiments. Dataset I is used
for both training and testing in the first experiment. In the
second experiment, for training and testing Dataset II is used.
Finally, in the third experiment, Dataset II is used in training
and Dataset I in testing. The performance of the solution for
different values of N and ST is shown in Fig. 4 for both
datasets. We observe 96.1% accuracy when N=50 and ST =30
for Dataset I from Fig 4 (a). Values greater than ST =30 provide
lower accuracy for N=50. The results show that with greater
N values, segmented learning cannot capture the holistic



characteristics required for classification. The observation is
similar on Dataset II. Therefore, we provide results for N=20
and ST =50 and these values are consistent in all the three
experiments. ST greater than 50 shows poor performance
mainly because of data exhaustion.

(a)

(b)

Fig. 4. Effects of different values of N and ST on Dataset I (a) and Dataset
II (b) modelling. We find the best accuracy when N=20 and ST =50 in both
cases.

Our solution shows an accuracy of 97.13% and an F1
score of 97.14% in experiment 1 as given by Fig. 5. In the
second experiment, we obtain 99.15% accuracy and 99.36%
F1 score as given by Fig. 5. We notice that Dataset II is
highly unbalanced, which is one of the reasons for miss-
classifications. The number of test segments, accuracy per
class, and FNR in both experiments are given in Table II.
Classes like FTP, Video, and VoIP are modelled perfectly
in both experiments as given by the table. Email and P2P
services show FNR of 46% and 42%, respectively. We observe
the variations in statistical information among the segments
from these services because of asynchronous timeout in the
protocols.

In the third experiment, we use FTP, video, and VoIP CoS
type from Dataset II in training and test the same CoS types

Fig. 5. Results of performance metrics on test set of Dataset I and Dataset II

TABLE II
ACCURACY AND FNR FOR DATASET I AND DATASET II

CoS label Number of test
segments

Accuracy
(%) FNR

D
at

as
et

I File transfer 9849 98.07 0.04
Video 5153 99.89 0.0005
VoIP 12948 99.54 0.014

Remote cloud 4202 98.47 0.07
VR 10143 98.28 0.02

D
at

as
et

II

File transfer 286971 99.86 0.001
Video 6504 99.96 0.02
VoIP 49817 99.85 0.009
Chat 647 99.82 0.19

Audio 54 99.44 0
P2P 3803 99.52 0.42

Email 757 99.78 0.46

TABLE III
ACCURACY AND FNR COMPARISON OF OUR SOLUTION WITH PRIOR

WORK.

CoS class SOA work [12] Our solution
FNR FNR

File transfer 0.27 0.001
Video 0.22 0.02
VoIP 0.36 0.009
chat 0.35 0.19

Audio 0.27 0
P2P 0.04 0.42

Email 0.14 0.46
Accuracy (%) 92.5 99.13

but from Dataset I. We notice 99.8% accuracy and 99.11% F1
score in that case. As expected, synchronous communication
CoSs such as video, VoIP and VR, have better results which
is observed in the third experiment.

D. Feature Importance

The essential features that provide information in the ran-
dom forest classifier are shown in Fig. 6 for both datasets.
The impurity-based feature importance is calculated using the
Scikit-learn library [20]. In the figure, 0 represents the mini-
mum contribution, and 1 represents the maximum contribution
from the features towards classification. We can see from Fig.
6 that, in Dataset I, min. and max. packet length provides
more information than the mean and std of the packet length.
Also, max., mean, and std of inter-arrival time, the number of
downlink packets, and time duration all together provide good
information in classification. In Dataset II, max., mean, and
std of packet length provide more information. In addition,
max., mean, and std of inter-arrival time also provide good
information in classification.

E. Result Comparison

The second experiment explained in Section III-C uses the
same dataset as in the SOA [12]. Because of the unavailability
of the feature extraction tool used in [12], we could not
reproduce the work. However, the datasets used in the SOA
and our work are the same. Hence, we compare the results with
those of the SOA paper. The results published in SOA paper



Fig. 6. Feature importance in the S2MC classifier

[12] are based on 10% of their dataset. On the contrary, we use
1,000 packets from each CoS traffic for training and the rest for
testing. The exact number of test segments in our experiment
is shown in Table II. Except for P2P and Email, our method
achieves lower FNR for all other CoS types, and the overall
accuracy is 99.13%, whereas the SOA achieves only 92.5% as
shown in Table III. In our method, we observe that the CoS
type, which uses asynchronous communication [21] with more
extensive delays, is not appropriately modelled. In our dataset,
P2P and Email are asynchronous types of communication with
massive delays. Chat is another asynchronous type, but there
are no considerable delays in the dataset. Hence, in Table III,
we can observe that chat is the third-worst performing class.

IV. CONCLUSION AND FUTURE WORK

We develop a novel segmented learning that includes the
EVR and S2MC algorithms. We represent the CoS traffic in
segments to model a traffic classifier. Then, S2MC determines
the number of segments required for modelling to achieve
superior classification performance. The proposed method is
validated using multiple test scenarios that contain a number of
real-world class-of-service network traffic flows. We employ
multiple performance metrics to study the performance of
the solution and show that it outperforms the state-of-the-
art solution [12]. To the best of our knowledge, ours is the
first work to classify more than 6 CoS traffic, including the
latest hot trend VR traffic. Furthermore, our method exhibits
exceptional results compared to the current solutions and
stands as the state-of-the-art method for quick convergence,
generalized, lightweight and robust CoS NTC.

Moving forward in the research, we need to investigate
the modelling of asynchronous CoS types that introduce
irregularities and abnormalities. A statistical variation imposes
complexity in capturing the holistic characteristics of such
asynchronous traffic. We need to test the solution in multiple
networks to find the fruition of segmented learning in differ-
ent conditions. We wish to explore incremental learning to
improve the scalability of model and avoiding training from
scratch to save time during deployment.
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