
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Communication-Efficient Federated Learning in Channel Constrained Internet of Things

© 2022, IEEE

Accepted version (Final draft)

Hu, Tao; Zhang, Xinran; Chang, Zheng; Hu, Fengye; Hämäläinen, Timo

Hu, T., Zhang, X., Chang, Z., Hu, F., & Hämäläinen, T. (2022). Communication-Efficient Federated
Learning in Channel Constrained Internet of Things. In GLOBECOM 2022 IEEE Global
Communications Conference (pp. 275-280). IEEE.
https://doi.org/10.1109/globecom48099.2022.10000898

2022

Communication-Efficient Federated Learning in
Channel Constrained Internet of Things

Tao Hu∗, Xinran Zhang∗, Zheng Chang∗‡, Fengye Hu †, and Timo Hämäläinen‡
∗School of Computer Science and Engineering, University of Electronic Science

and Technology of China, 611731 Chengdu, China
†College of Communication Engineering, Jilin University, Changchun, China

‡Faculty of Information Technology, University of Jyväskylä, P. O. Box 35, FIN-40014 Jyväskylä, Finland

Abstract—Federated learning (FL) is able to utilize the com-
puting capability and maintain the privacy of the end devices
by collecting and aggregating the locally trained learning model
parameters while keeping the local personal data. As the most
widely-used FL framework, federated averaging (FedAvg) suffers
an expensive communication cost especially when there are large
amounts of devices involving the FL process. Moreover, when
considering asynchronous FL, the slowest device becomes the
bottleneck for the cask effect and determines the overall latency.
In this work, we propose a communication-efficient federated
learning framework with partial model aggregation (CE-FedPA)
algorithm to utilize compression strategy and weighted device
selection, which can significantly reduce the size of uploaded
data and decrease the communication time. We perform a series
of experiments on the MNIST/CIFAR-10 datasets, in both IID
and non-IID data settings. We compare the communication time
of different aggregation schemes, in terms of iteration rounds
and target accuracy. Simulation results demonstrate that the
uploading time of the proposed scheme is up to 4.3 times shorter
than other existing ones. Experiments on an end-to-end FL
framework also verify the communication efficiency of CE-FedPA
in a real-world setting.

Index Terms—Compression, Internet of Things, device selec-
tion strategy, dynamic communication environment.

I. INTRODUCTION

During the past few years, the applications of Internet
of Things (IoT) has gained growing popularity [1], such
as smartphones, wearable devices, and autonomous vehicles.
These IoT devices generate a vast amount of data which
has not been efficiently utilized. As the raw material for
machine learning (ML), the data has attracted attention from
a variety of organizations for different purposes [2], such as
image classification [3] and speech recognition [4]. However,
personal data privacy has become an increasing concern [5].
Some papers have revealed the data leakage concerns and
pointed out gathering user data in the centralized ML is risky
for the end-users [6]. As the local computation capability is
getting stronger and data privacy is becoming more concerned,
there is a potential to store data locally and train models at
the network edge.

In traditional distributed ML schemes, all local devices
contribute to training a global model cooperatively. The data
in each device is independent and identically distributed (IID)
and the load on each device is roughly balanced. However,
this is not practical in most IoT scenarios, because the data

distribution may vary significantly [7]. Devices generate non-
independent identically distributed (non-IID) data, which may
affect the ML performance.

Therefore, it is crucial to investigate how to train an ML
model by utilizing the massive number of unbalanced and
non-IID data stored locally. FL [8] addresses this problem
by collaboratively training an ML model. Multiple devices
perform stochastic gradient descent (SGD) locally and upload
the updated model parameters to the central server without
revealing their local data to others. In this context, one
typical FL method is so all federated averaging (FedAvg) [9],
which is based on averaging the uploaded local parameters
for aggregation, and has been shown to work effectively by
Google with their GBoard [10].

However, some practical problems arise in FedAvg in the
typiscal IoT scenario. The most crucial one is the expen-
sive communication cost. FL process typically comprises a
large number of devices, e.g., hundreds of smartphones or
autonomous vehicles, so there are long periods of uplink and
downlink communication time. Then, FL is 50 to 115 orders
of magnitude slower than traditional centralized ML schemes
[11]. Besides, if the transmission rate of some devices is
plodding, the central server and other participating devices
have to wait for a period. Moreover, due to the asymmetric
property of wireless network, the uplink data rate is typical
much slower than the downlink data rate [12] and the uplink
data rates of different end-user also vary a lot, which inherently
create the communication bottleneck for the FL process.
In order to promote the application of FL in practice, the
communication latency needs to be reduced.

Many researchers have considered the communication cost,
especially the wireless channel effect, as one of the key
problems in FL [7], and proposed some methods for reducing
communication costs, which can be divided into three cate-
gories. The first one is the transmitted parameter model com-
pression schemes [13], such as sparsification, subsampling,
and quantization [14]. Although this method reduces the size
of the transmitted message, it cannot significantly reduce the
communication consumption due to the different communi-
cation environments of the participating devices. The second
approach, federated learning with partial model aggregation
(FedPA), selects only a subset of all devices to participate in
aggregation to reduce the communication consumption [15].

A common practice is to randomly select devices with the
same probability, but this method treats all devices equally and
does not consider the differences and priorities of all devices.
The third group is to reduce the number of training rounds
by optimizing the model’s convergence speed [16]. Moreover,
existing schemes are generally primarily developed with the
assumption that the communication of devices is in a static
network. However, this assumption does not apply to real
scenarios.

Bearing in mind aforementioned works, in this article, we
propose a communication-efficient FL partial model aggre-
gation framework (CE-FedPA), which is able to significantly
reduce the total communication time compared with previous
works. Our major contributions are as follows:

• We propose the CE-FedPA algorithm, composed of two
parts: a) model compression; b) device selection. This
model can reduce the uploaded model size in each round
and the total communication time by taking into channel
constraints compared with FedPA and FedAvg.

• In the device selection algorithm, we propose to use a
new indicator for evaluating device contribution: contri-
bution index. Using this indicator, we can determine the
priority of the selected device. Moreover, we consider
that all devices are in a dynamically changing network,
making our simulation results closer to the real channel
constrained IoT scenario.

• We use typical data sets MNIST and CIFAR-10 to per-
form extensive simulations and experiments on different
ML models (MLP, CNN). Simulation results show that
CE-FedPA significantly reduces the communication time.
Then we perform CE-FedPA on an end-to-end federated
learning framework composed of several Android cell
phones and a server. The experiment results show that
our model can significantly reduce the communication
time in the real world.

The rest of this paper is organized as follows. In section II,
we first introduce a concept of partial model aggregation, and
then we demonstrate the structure of CE-FedPA. In section III,
we provide the simulation results compared to FedAvg. More-
over, we present the end-to-end federated learning framework
results, which show that our proposed model performs well in
the practical IoT scenario.

II. PRELIMINARY

A. System Model

We consider a general FL model, as shown in Fig. 1, in
which there are a central server and a number of IoT devices.
Assume that we have N IoT devices {I1, I2, ..., Ii, ..., IN}
with local data sets {D1,D2, ...,Di, ...,Dn}, denote D ≜∑N

i=1Di. At each communication round, the selected IoT
devices perform local training on their local data. Then the
local parameters are uploaded to the central server for global
aggregation. After aggregating all the local parameters, the
server broadcasts the updated global model back to all partic-
ipating IoT devices.

B. Partial Model Aggregation

There is an expensive communication consumption in Fe-
dAvg because the server aggregates the uploaded parameters
from all the devices. Assume some devices in the model have
an impoverished communication environment, other models
in good communication condition and the central server have
to wait for a long time, which causes the bottleneck problem
for the federated learning. Therefore, FedPA is proposed to
mitigate the communication bottleneck.

In FedPA, the loss function at device i is F (w;xi, yi), where
w is the parameter matrix, (xi, yi) is the data sample. The
objective function is as follows:

w∗ = argmin
1

|D|
∑

(xi,yi)∈D

F (w;xi, yi). (1)

As shown in Fig. 1, the FedPA consists of three phases:
• Phase I:Initialization.

The central server firstly initializes a global ML model,
the parameter matrix W0 and the fraction of selected
devices θ. Then the server sends w0 to the randomly se-
lected device subset C0. The number of selected devices
is determined by N × θ.

• Phase II:Local training. At the t-th round, the devices
i in Ct run the Stochastic Gradient Descent(SGD) al-
gorithm with the local data sets to calculate the local
parameter matrix wt

i . The mathematical expression is
formulated as follows:

wt
i = W t−1 − η

∑
(xi,yi)∈Di

∇F (W t−1;xi, yi)

|Di|
(2)

where η is the learning rate. Moreover, the calculation
process of ∆wt

i is as follows:

∆wt
i = wt

i − wt−1
i (3)

• Phase III:Aggregation.
At the t-th round, the server determines the device
subset Ct with the device selection algorithm, and then
the selected devices in Ct participate in calculating the
global parameter matrix W t. The mathematical form is
as follows:

W t = AVG([wt
i∀i ∈ Ct]) (4)

where AVG() is the weighted averaging method. In order
to reduce the communication consumption, typically, the
device i uploads the update of the parameter matrix ∆wt

i .
Thus, the above equation is rewritten as follows:

W t = W t−1 +AVG([∆wt
i∀i ∈ Ct]), (5)

Repeat the above phases until the model converges.

III. PROPOSED CE-FEDPA SCHEME

In this section, with the introduction of model compression,
we present the procedure of CE-FedPA, and then explore the
device selection algorithm.

(a) Initialization

w

w

(b) Local training

SGD SGD

(c) Aggregation

w

w

data

Device 1

data

Device 2

data

Device n

data

Device 1

data

Device 2

data

Device n

data

Device 1

data

Device 2

data

Device n

Fig. 1. Federated learning with a parameter server. (a) The server sends global
parameters to a subset of devices. (b) Devices train the local model on their
own data. (c) The local parameter updates are uploaded to the server, and
then aggregated to generate the new global model.

A. Model Compression

The model compression method is used by many researchers
to reduce communication consumption, and how to find an
appropriate compression method is a key problem. As known
in the data structure field, if a matrix is compressed losslessly,
it must be in a particular form, such as a symmetric matrix,
a diagonal matrix, a sparse matrix, etc. However, there are no
strict form requirements for lossy matrix compression.

In the aggregation phase, the parameter matrix uploaded
by each device is trivial. Therefore, in theory, compressing
the uploaded parameter matrix is lossy, and the relationship
between the information loss and the compression ratio is
linear. In FedPA, the matrix updates ∆wt are uploaded in the
aggregation phase, which has a pre-specified structure—low
rank.

In FedPA, the number of bits that each device uploads to
the central server in the aggregation phase is given by

b ∈ O(|W | × (H(∆W) + η))) (6)

where |W | is the size of the parameter matrix, H(∆W) is
the entropy of the weight updates exchange during the upload
phase, η is the encoding redundancy [17].
|W | cannot always decrease in order to reduce the amount of

data uploaded by devices. There are two directions to achieve
this targit: 1) reduce H(∆W) through lossy compression
schemes; 2) reduce η by using a more efficient encoding
scheme. The following is a detailed introduction to the com-
pression scheme in our proposed model.

We assume the updated parameter matrix wt
i ∈ Rm×n,

as mentioned above, is a low-rank matrix. For simplicity of
description, we define its rank as k. Therefore, wt

i as the
product of two matrices: wt

i = Rt
i × P t

i , where Rt
i ∈ Rm×k

is the reconstruction matrix, and P t
i ∈ Rk×n is the projection

matrix. Rt
i is generated randomly in each round via pseudo-

random generation algorithm pse(), and then optimized and
updated during the training procedure [12].

The procedures for compressing the model are divided into
the following steps in CE-FedPA: 1) at round t, the central
server generates a random seed sti and shares it with the device
i. Then the pseudo-random generation algorithm computes
Rt

i = pse(sti) on the central server and device i. For security
reasons, random seeds are generated afresh in each round;
2) the device i trains local parameter matrix wt

i by SGD
with local data. Then it computes P t

i by low-rank matrix
factorization(MF), and sends it to the central server; 3) The
central server gets the P t

i , and computes the wt
i = Rt

i × P t
i .

With this compression scheme, we save a factor of d1/k in
the aggregation phase.

B. Device Selection Algorithm

1) Contribution Index: In the general implementation of
FedPA, the devices are selected randomly, which ignores the
differences between devices. Therefore, we define an indicator
to evaluate the difference between devices.

Different devices have different data and CPUs with dif-
ferent computing capabilities in the practical case. Assume
that the device’s contribution is affected by two indicators:
the amount of local data Dt

i and the computing capability λi.
We define the contribution index as:

πt
i =

Dt
i

(1− α)λi
(7)

where α is the control parameter used to balance the influence
of the local data and computing capabilities on the contribution
index. For a device, the larger the size of the data sets is,
the stronger the computing capabilities are, and the higher
its contribution index is. A device with a higher contribution
factor is more possible to be selected by the central server.

2) Problem Formulation: We propose an algorithm for
selecting devices to participate in the aggregation phase. T
is a pre-defined time, representing the time window to collect
device updates at each round. In real-world scenarios, The
communication environment of each device is dynamic. We
use Ct

i to represent the channel size allocated to the device
i at round t, representing its communication environment.
According to the Shannon theory, the communication time T t

i

consumed by device i communication is shown below.

T t
i =

k × |W| × (H(△W) + η)

Ct
i × log2(1 + SNR)

. (8)

We define C as the total channel in our model. Our goal
is to obtain a bigger contribution index under the constraints
of T and C. Thus, the device selection problem at round t is
formulated as:

max

N∑
i=1

πt
iS

t
i ,

s.t.
N∑
i=1

k × |W| × (H(△W) + η)

ctilog2(1 + SNR)
St
i ≤ T ,

N∑
i=1

ctiS
t
i ≤ C,

St
i ∈ {0, 1},

(9)

where k is the compression ratio. (9) is a 0-1 knapsack
problem with two constraints. Next, we will explain how to
solve this problem with dynamic programming in detail.

1) Firstly, we define I{i} as a device set that contains the
first i devices, and define the state Π(I{i}, C, T) as the
optimal choice under the constraints of C and T .

2) Then, we provide an explanation on the state
transition equation. If Ci > C or Ti > T ,
Π(I{i}, C, T) = Π(I{i−1}, C, T), otherwise,
Π(I{i}, C, T) = max(Π(I{i−1}, C, T),Π(I{i−1}, C −
Ci, T − Ti) + πi).

3) Finally, we obtain the optimal device selection subset at
each round according to the device selection algorithm,
which is shown in Algorithm 1.

Note that Iselect is an N-bit integer representing the se-
lection vector, i.e. when N = 3, 000 indicates that no device
is selected, 111 means that all devices are selected. In the
algorithm, we have two hash tables S and D. S holds the
state and D holds the device selection vector. According
to the state transition equation given before, new state and
device selection vectors are added continuously. If device i is
selected, the Iselect’s ith bit will be set to 1. Then the selection
vector is updated bitwisely with the previous selection vector.
Finally the optimal device selection vector is obtained in
D(Π(I{N}, C, T).

The algorithm consists of three loops. Thus the time com-
plexity is O(N×|T |×|C|), where N represents the number of
devices, |T | represents the number of time intervals divided,
|C| represents the number of divided channel intervals.

To this end, we analyze the optimality of the device se-
lection algorithm. If the time and channels can be divided
infinitely small, we can obtain the optimal solution, at the
cost of increased time complexity. In the actual scenario, even
with lower time complexity, i.e. the time and channel partition
is not so fine, we can still obtain a satisfying result. Let S∗ be
the optimal device selection set, and selected device set in our
algorithm is S, then the difference between optimal solution
and ours is S∗ − S ∈ O(1

|T |×|C|).

IV. PERFORMANCE EVALUATIONS

In this section, we firstly conduct simulations and experi-
ments to evaluate the performance of the proposed CE-FedPA
method and compare it with the FedPA approach. Then,

Algorithm 1 Device selection algorithm
Input: I , T , C
Output: Device select set
1: Initialization S ← {} //State set
2: Initialization D ← {} //Devices selection set
3: Initialization Iselect ← 0[N] // type N-bit int
4: for c← 0 : C do
5: for t← 0 : T do
6: for each i ∈ I do
7: if Ti > t or Ci > c then
8: S(Π(I{i}, c, t))← S(Π(I{i−1}, c, t))
9: D(Π(I{i}, c, t))← D(Π(I{i−1}, c, t))

10: else
11: π1 ← S(Π(I{i−1}, c, t))
12: π2 ← S(Π(I{i−1}, c− Ci, t− Ti)) + πi

13: if π1 ≥ π2 then
14: S(Π(I{i}, c, t))← π1

15: D(I{i}, c, t)← D(Π(I{i−1}, c, t))
16: else
17: S(Π(I{i}, c, t))← π2

18: Iselect[i]← 1
19: Iselect ← D(Π(I{i−1},
20: c− Ci, t− Ti))&Iselect
21: D(I{i}, c, t)← Iselect

22: end if
23: end if
24: end for
25: end for
26: end for

we apply this scheme in a practical scenario, where several
Android phones are located around a server.

A. Simulation

1) Simulation Setup: We consider two ML-based models
for image classification, multilayer perceptron (MLP) and
convolutional neural networks (CNN). The task is conducted
on the datasets MNIST and CIFAR-10, which cover hand-
written digit images and 10 different class colored figures.

To verify the effectiveness of CE-FedPA, we compare the
training performances under different numbers of devices,
compression ratios, and the amounts of data on each device.
Besides, both IID data and non-IID data are leveraged in the
simulations. The IID data owned by each device is assigned
randomly. To generate non-IID data, all data are separated
into ten categories and then divided into fragments, and each
device occupies one fragment. Thus each device has only one
class of data. Furthermore, the test set comes from official
test data. The channel size of each device in each round of
simulation is represented by the random numbers from 1 to 3.
The compression ratio in CE-FedPA is set to be 0.7. For the
purposes of comparison, we apply two baselines:1) FedPA (θ
= 0.3) and 2) FedAvg.

2) Simulation Results: Fig. 2 shows the difference among
the training loss of CE-FedPA, FedAvg and FedPA on the

0 20 40 60 80 100

round

0

0.2

0.4

0.6

0.8

1

1.2

lo
s
s

IID Data

MLP CE-FedPA

MLP FedPA

MLP FedAvg

CNN CE-FedPA

CNN FedPA

CNN FedAvg

0 20 40 60 80 100

round

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
s
s

non-IID Data

MLP CE-FedPA

MLP FedPA

MLP FedAvg

CNN CE-FedPA

CNN FedPA

CNN FedAvg

Fig. 2. Training loss per round for CE-FedPA (k = 0.7), FedPA (θ = 0.3)
and FedAvg.

IID
-M

LP

IID
-C

NN

non-IID
-M

LP

non-IID
-C

NN

0

1000

2000

3000

4000

c
o

m
m

u
n

ic
a

ti
o

n
 t

im
e

(/
s
)

CE-FedPA

FedPA

FedAvg

IID
-M

LP

IID
-C

NN

non-IID
-M

LP

non-IID
-C

NN

0

20

40

60

80

100

a
c
c
u

ra
c
y
(%

)

CE-FedPA

FedPA

FedAvg

Fig. 3. Left is the total upload time for CE-FedPA(k = 0.7), FedPA(θ = 0.3)
and FedAvg. Right is the test accuracy for CE-FedPA (k = 0.7), FedPA
(θ = 0.3) and FedAvg.

dataset MINIST with the same learning round. For the IID
setting, the training losses in all three algorithms first decrease
and eventually converged. While for the non-IID settings, the
training loss of FedPA and CE-FedPA’s oscillate in a larger
region. Compared to FedAvg, fewer devices are involved in
the aggregation phase in CE-FedPA, so only several classes
are allowed of data are used in the local training.

Fig. 3 presents the communication time and accuracy of
CE-FedPA, FedPA and FedAvg. It is obvious that there is less
communication time in CE-FedPA than that in FedPA (1.8×)
and that in FedAvg (5.8×). Furthermore, the accuracy of CE-
FedPA and FedPA are similar, but smaller than that in FedAvg.

The above results indicate that CE-FedPA highly reduces the
communication time with only a small cost of model accuracy.

In Fig. 4, to achieve the same accuracy, the communication
time of FedAvg, FedPA, and CE-FedPA is displayed. The
target accuracy on the dataset MNIST is 97.5% for the IID
setting and 85% for the non-IID setting, and 50% on the
dataset CIFAR-10 data sets for both data distributions. In the
IID setting, the accuracy profiles of all three schemes are
stable compared to those in the non-IID setting. The curve
for FedAvg is the most stable in the IID setting, while FedPA
oscillates violently in the non-IID setting. In both settings, the
CE-FedPA has the least communication time compared with
FedPA and FedAvg.

Similarly, Fig. 5 shows the accuracy and communication
time on the dataset CIFAR-10. Compared to MNIST, it is
more difficult to improve the training accuracy in CIFAR-10.

0 500 1000 1500 2000

communication time(/s)

91

92

93

94

95

96

97

98

a
c
c
y
ra

c
y
(%

)

CE-FedPA

FedPA

FedAvg

200 300 400 500
97.3

97.4

97.5

0 200 400 600 800

communication time(/s)

30

40

50

60

70

80

90

a
c
c
y
ra

c
y
(%

)

CE-FedPA

FedPA

FedAvg

350 400 450
80

85

Fig. 4. Accuracy during training on MNIST (left: IID, right: non-IID)

0 200 400 600

communication time(/s)

40

42

44

46

48

50

52

a
c
c
y
ra

c
y
(%

)

CE-FedPA

FedPA

FedAvg

100 150 200
49

50

51

0 200 400 600 800 1000

communication time(/s)

20

25

30

35

40

45

50

55

a
c
c
y
ra

c
y
(%

)

CE-FedPA

FedPA

FedAvg

50 100 150 200
42

44

46

48

Fig. 5. Accuracy during training on CIFAR-10 (left: IID, right: non-IID)

In the IID setting, the profile in FedAvg is the smoothest,
and the communication time in CE-FedPA is the shortest
compared with FedPA (2.3×) and FedAvg (3.2×). In the non-
IID setting, the curves of the three schemes are oscillating,
and the curve for FedPA oscillates more violently. The CE-
FedPA has the least communication time over FedPA (1.4×)
and FedAvg(3.4×).

B. Practical tests

1) Testbed Setup: To further evaluate the performances of
CE-FedPA, we consider a practical channel constrained IoT
scenario consisting of 4 Android devices and a server, and
we leverage an end-to-end FL framework. All devices are
using the same wireless network. To simulate the constrained
networks, the wireless network setup tools are utilized to
limit the bandwidth for all devices. The server selects the
device for FL based on the device selection algorithm. The
devices upload not only local models to the server, but also
the timestamp of the uploading time, and then the server can
calculate the communication time.

The client application were installed in the Android devices
for local training and data upload purposes. A laptop acted as
a server. The software is supported by Python using Tensor-
flow and cherrypy. We train the Multi-class Neural Networks
(MNN) training model on the dataset MNIST. For comparison

TABLE I
SPECIFIC PARAMETERS OF EXPERIMENTAL EQUIPMENT

Device model CPU ROM RAM Battery capacity
M2007J22C Dimensity 800U 256GB 8GB 5000mAh

M2010J19SC Qualcomm Snapdragon 662 128GB 4GB 6000mAh
CHL-AN00 MediaTek MT6833 128GB 8GB 4000mAh

V2072A Dimensity 1100 Octacore 128GB 8GB 4000mAh

Fig. 6. CE-FedPA on end-to-end federated learning framework

perposes, FedPA(θ = 0.5) is set as the baseline. The system
parameters of the Android devices are shown in Table I.

2) Testbed results: Fig. 6 shows the result of CE-FedPA on
end-to-end federated learning framework. Table II displays the
performances of CE-FedPA and FedPA with the same learning
iterations. Total upload time includes the time to compress the
data and upload the model. The result demonstrates that CE-
FedPA can reach a similar high accuracy but take much less
uploading time than FedPA (up to 2× less).

V. CONCLUSION

In this paper, we develop a communication-efficient FL
framework in a channel constrained IoT, CE-FedPA, which
largely reduces the transmission latency while guarantee-
ing a high learning performance. In CE-FedPA, we design
model compression scheme and a device selection algorithm.
Accordingly, the amount of uploaded data is reduced, and
thus the uploading time significantly decreases. To verify the
performance advantages, we perform a series of experiments
on the datasets MNIST and CIFAR-10. In the simulations,
CE-FedPA takes less communication time than FedPA(1.8×)
and FedAvg(5.8×) to achieve the same learning accuracy.
Further experiments are conducted where an end-to-end FL
framework composed of several Android devices is applied.
In this experiment, CE-FedPA takes 2× less uploading time to
reach the target accuracy. To investigate how to better evaluate
the quality of local data, future works can take the data quality
into account for device selection priorities and select a better
subset of devices in each round of training.

REFERENCES

[1] D.-R. Berte, “Defining the iot,” in Proceedings of the International
Conference on Business Excellence, vol. 12, no. 1, 2018, pp. 118–128.

TABLE II
THE PERFORMANCE OF CE-FEDPA OVER FEDPA

Model Total upload time(s) Training accuracy Testing accuracy
CE-FedPA 70.437 97.4% 98.1%

FedPA 156.606 98.7% 98.2%

[2] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[4] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal processing magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[5] W. J. Long and M. P. Quek, “Personal data privacy protection in an
age of globalization: the us-eu safe harbor compromise,” Journal of
European Public Policy, vol. 9, no. 3, pp. 325–344, 2002.

[6] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and
M. I. Jordan, “Mlbase: A distributed machine-learning system.” in Cidr,
vol. 1, 2013, pp. 2–1.

[7] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[8] B. McMahan and D. Ramage, “Federated learning: Collaborative ma-
chine learning without centralized training data,” Google Research Blog,
vol. 3, 2017.

[9] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated
learning of deep networks using model averaging,” arXiv preprint
arXiv:1602.05629, 2016.

[10] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.

[11] M. Chen, N. Shlezinger, H. V. Poor, Y. C. Eldar, and S. Cui,
“Communication-efficient federated learning,” Proceedings of the Na-
tional Academy of Sciences, vol. 118, no. 17, 2021.

[12] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[13] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi, “Feder-
ated learning with compression: Unified analysis and sharp guarantees,”
in International Conference on Artificial Intelligence and Statistics.
PMLR, 2021, pp. 2350–2358.

[14] A. Li, J. Sun, X. Zeng, M. Zhang, H. Li, and Y. Chen, “Fedmask:
Joint computation and communication-efficient personalized federated
learning via heterogeneous masking,” in Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems, 2021, pp. 42–55.

[15] J. Jiang and L. Hu, “Decentralised federated learning with adaptive
partial gradient aggregation,” CAAI Transactions on Intelligence Tech-
nology, vol. 5, no. 3, pp. 230–236, 2020.

[16] J. Mills, J. Hu, and G. Min, “Communication-efficient federated learning
for wireless edge intelligence in iot,” IEEE Internet of Things Journal,
vol. 7, no. 7, pp. 5986–5994, 2019.

[17] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 9,
pp. 3400–3413, 2019.

