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Abstract—Distributed artificial intelligence (AI) has recently
accomplished tremendous breakthroughs in various communi-
cation services, ranging from fault-tolerant factory automation
to smart cities. When distributed learning is run over a set of
wireless connected devices, random channel fluctuations, and the
incumbent services simultaneously running on the same network
affect the performance of distributed learning. In this paper,
we investigate the interplay between distributed AI workflow
and ultra-reliable low latency communication (URLLC) services
running concurrently over a network. Using 3GPP compliant
simulations in a factory automation use case, we show the impact
of various distributed AI settings (e.g., model size and the number
of participating devices) on the convergence time of distributed
AI and the application layer performance of URLLC. Unless
we leverage the existing 5G-NR quality of service handling
mechanisms to separate the traffic from the two services, our
simulation results show that the impact of distributed AI on the
availability of the URLLC devices is significant. Moreover, with
proper setting of distributed AI (e.g., proper user selection), we
can substantially reduce network resource utilization, leading to
lower latency for distributed AI and higher availability for the
URLLC users. Our results provide important insights for future
6G and AI standardization.

Index Terms—6G, availability, distributed AI, factory automa-
tion, federated learning, quality-of-service, URLLC.

I. INTRODUCTION

Future 6G networks are envisioned as an unprecedented

evolution from connected things to connected intelligence,

thereby serving as the backbone of a cyber-physical world with

the integration of connected devices, intelligence, and humans

[1]. Numerous 6G artificial intelligence (AI) applications have

emerged recently to improve efficiency and system perfor-

mance in many vertical sectors, such as industrial automation

[2], autonomous driving [3], and enhanced mobile broadband

[4]. Centralized training of the models can be impractical in

many wireless communication applications because of (i) the

distributed nature of the data generated/collected by mobile

devices, (ii) privacy concerns on sharing the local data with

a central server, especially when the computational server is

managed by a third party operator, and (iii) limited wireless

resources (in terms of bandwidth and power). Therefore,

privacy-preserving distributed AI techniques have become the

cornerstone of recent advancements in AI applications over
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wireless networks. In most distributed training algorithms, a

set of devices upload their local updates (in terms of e.g.,

gradients in distributed stochastic gradient descent [5], or local

models in federated learning (FL) [6]) via uplink (UL) channel

to a master node (or a set of nodes) that maintains global

parameters. Once the master node updates the global model,

it shares them with the devices in a downlink (DL) channel.

Nevertheless, the UL/DL transmissions of AI gradi-

ents/models are prone to errors and delays by the wireless

channel, impacting the learning performance in terms of

convergence time [7]. There can be two remarks for distributed

training on wireless systems. On the one hand, in addition

to the number of iterations, the convergence time of the dis-

tributed training algorithm depends on the amount of time in

which global model parameters are transmitted to the devices,

trained locally, and transmitted back to the master node. On

the other hand, the general perception is that increasing the AI

model size improves the training accuracy [8], given enough

data samples and a proper training approach that reduces

over-fitting. However, using a larger AI model means longer

communication and computation time, resulting in higher con-

vergence time [7]. Higher AI communication overheads may

also be detrimental for other communication services running

in parallel to the AI. The tighter the requirements of the

underlying service, the harder to design smooth coexistence.

Ultra-reliable low-latency communications (URLLC) is

characterized by strict requirements in terms of latency, which

could be as short as 500 `s, and availability, which could be as

high as 99.9999999 [9]. Regarded as the most challenging use

case in fifth generation of mobile communication systems (5G)

and beyond 5G, this type of service is supposed to enable chal-

lenging applications (e.g., factory automation or autonomous

intelligent transport systems [10]) that have not been feasible

in preceding generations of wireless communications.

As distinct services, the performance of both URLLC and

distributed AI over wireless networks have been widely in-

vestigated in the existing literature. However, the coexistence

of URLLC, with its stringent requirements, and distributed

AI workflow, with its unique traffic model and performance

characteristics, have not yet been discussed in the literature.

Such coexistence introduces new fundamental challenges as

well as unique trade-offs between URLLC latency and avail-

ability on the one hand, and convergence time and accuracy
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of distributed AI on the other hand. Notice that there are fun-

damental differences between AI service and other traditional

communication traffic. In particular:

• Due to the statistical correlation of the data among

different nodes, the missing gradients/models of some

nodes can be approximated by the ones of other nodes,

and we can run distributed learning workflow seamlessly.

• Due to the local smoothness of most objective functions

used for the training, the training algorithm (and therefore

the master node) may tolerate getting late updates from

some devices or even use some outdated local gradi-

ents/models to update global parameters [11].

These are unique characteristics of distributed learning that

distinguishes it from other traditional communication services.

In this paper, we address the following research questions:

• What are the trade-offs between URLLC availability and

distributed AI convergence time and accuracy?

• How does the AI setting (e.g., model size, the number of

participating AI devices, or the number of extra workers

providing resilience against straggling) impact its own

and the URLLC performance?

We address the above research questions with 3rd Generation

Partnership Project (3GPP) compliant 5G-NR simulations us-

ing network and link level simulations. Within our simulations,

we observe that the number of participating AI devices can

have a significant impact on URLLC performance. Moreover,

we show that introducing a soft synchronous protocol, in

which the master node initiates the global model update upon

receiving local updates from a portion of the participating

devices, can help reduce the training delay in the order of

seconds. Our results are also an important contribution to the

ongoing standardization activities on 5G and beyond 5G to

support distributed AI model distribution and transfer.

The rest of this paper is organized as follows. In Sec-

tion II, we discuss related works and introduce URLLC and

distributed AI key performance indicators (KPIs). We describe

our link level and network level simulations in Section IV.

Section V presents the main results and insights on the

coexistence scenario. Section VI concludes the paper.

Notations: Normal font G or - , bold font x or X , and

uppercase calligraphic font X denote scalar, vector and set,

respectively. We denote by |X| the cardinality of set X, by

1{G} the indicator function taking 1 only when condition G

holds, and by [#] set {1, 2, . . . , #}.

II. BACKGROUND AND SYSTEM MODEL

A. Distributed Learning

Consider the problem of minimizing a sum of functions

{ 58 : R3 ↦→ R}8∈[# ] , with corresponding gradients {∇ 58 :

R
3 ↦→ R3}8∈[# ] :

w
★
≔ min

w∈R3
5 (w)= min

w∈R3

1

#

∑

8∈[# ]
58 (w) . (1)

Such problems frequently arise in distributed learning where

each 58 could represent a local model. In practice, to parallel

the computations or to preserve the privacy of local datasets,

we use distributed algorithms to solve (1) [12]. That is, at

iteration :, a subset of the workers compute and upload their

gradients {∇ 58 (w: )}8 to a master node, which updates the

model and broadcasts the updated model parameters w:+1 to

the workers. Federated learning is another popular method in

which the workers will run one or several local training passes

and upload their local models afterward. The master node will

then take a global average over them. The communication

overhead is almost the same as uploading gradients [3]. How-

ever, most of these uplink messages (gradients or local models)

are redundant, carrying almost no additional information since

they can be retrieved from their past communicated messages

as well as messages of other devices [13]. Forcing some of

them to remain silent would 1) reduce uplink interference to

other users, 2) increase throughput, and 3) improve latency.

In conventional synchronous distributed training methods,

the master node should wait to receive the local updates from

all participating devices, leading to a considerable inoperative

time in the master node waiting for stragglers. To tackle the

straggler’s problem, in =-synch approaches, the master node

only waits for a subset of participating devices, say = out of all

# devices, and updates the global model using their messages

at every iteration [5]. Nevertheless, vanilla =-synch-based

methods add extra load on the underlying communication

system, as they will ask all the devices to upload their data,

and the master node starts its update with the first = received

data. Reference [14] proposed an algorithm to adjust = at

every iteration. References [6], [13], [15] proposed various

approaches to eliminate some unnecessary uploads. However,

none of those works study or optimize the interplay between

distributed learning and other parallel communication services.

B. System Model

We consider an industrial automation scenario where a set

of M≔["] industrial devices in the factory hall execute

different functions that enable automated production. The

communication system should timely and reliably deliver (i)

monitoring data to gNodeBs (gNBs) and (ii) computed or

emergency control commands to the actuators. However, we

consider application-layer performance for URLLC service,

implying that consecutive failures that are shorter than survival

time ()sv) do not affect the end-to-end performance.

For simplicity, we assume that AI devices are distinct from

industrial devices, and there exist a set of participating AI

devices U≔[#] serving a background AI task. Moreover,

we assume that the AI master node requires to receive the

relevant local information from = out of these # participating

AI devices to update its global model. For simplicity, we define

[≔ =
#

. Therefore, we obtain fully synchronous and =-synch

distributed training for [=1 and [<1, respectively.

To manage the coexistence of two services, where the

priority of services are inherently different, 5G and beyond

5G envision two approaches. The first approach, employed

in this paper, is to use the existing standardized protocols in

5G-NR for quality of service (QoS) handling. In this case,



each connected device is assigned with one or several QoS

flows and data radio bearers, where the former is set in the

core network, depending on the service QoS requirements. For

example, in our scenario, the traffic from/to URLLC devices is

set to have high priority QoS flow to ensure low latency, whilst

the traffic from/to AI devices is set to have low priority QoS

flow. Each (or several) of these QoS flows are then mapped to

a data radio bearer in the radio access network. In gNB and

devices, there is an associated radio link control (RLC) buffer

to each data radio bearer, and in our case, with strict priority

scheduling [16]. The second approach, as we foresee, is to

have separate slices for URLLC and distributed AI, resulting

in full resource separation (e.g., in terms of bandwidth).

To model a distributed learning task, we consider a network

of # AI devices that cooperatively solve a distributed learning

problem. Iteration : of an abstract distributed algorithm reads:

w:+1=�
(

c8,:+1, w:

)

, for ∀8 ∈ U= (2a)

c8,:+1=�8 (w:+1) , for ∀8 ∈ U (2b)

where function � represents an algorithm update of the

decision variable w: , function �8 picks out the relevant

information, c8,: , that node 8 uploads to the server to run the

algorithm. This general algorithmic framework covers many

machine learning (ML) algorithms, including federated learn-

ing and distributed stochastic gradient descent, with or without

data compression. For example, when �8 returns a stochastic

gradient, say ∇̂ 58 (w:+1), and � = w: − U
∑

8 ∇̂ 58 (w:+1)/= for

some positive step size U, we recover =-synch and synchronous

distributed stochastic gradient descent for =(<#) and =(=#).

When �8 returns an updated local model parameters of AI

device 8 and � takes an averaging step over a subset of =(≤#)

AI devices, we recover FL (=-synch or synchronous).

In the next section, we use these models to formulate

performance metrics.

III. PERFORMANCE METRICS

A. URLLC: Application Layer Availability

The reliability of URLLC service is typically identified by

application layer availability, where such KPI is measured at

the application layer of the end device [9]. In terms of relia-

bility, the main difference between the observed performance

on the application layer with the observed performance on the

network layer is driven by a system parameter called survival

time, )sv. Survival time is a duration of time for which the

application layer can tolerate failures in the communication

system without any performance degradation in availability

[17]. Let us denote the communication system state variable

by a Bernoulli state variable -8 (C), where -8 (C) for the 8th

URLLC device is zero if the last packet reception at network

layer has failed, either because it could not be decoded at

the lower layers or the packet has been received after its

corresponding delay bound. Consequently, we define the per-

Fig. 1: The simulation setup.

device application layer state variable, . (C) as

.8 (C)≔

{

0 if
∫ C

g=C−)sv
-8 (g)3g=0,

1 otherwise.
(3)

Therefore, we can define the long-term availability of the 8th

industrial device as [2]

08≔ lim
C→∞

Pr {.8 (C) =1} = lim
)→∞

1

)

∫ )

C=0

.8 (C)3C. (4)

The availability can be estimated over a short time using

0̄8≔
1

)

∫ )

C=0

.8 (C)3C. (5)

In URLLC applications, the requirement is often defined in

the form of [18]

Pr
{

08 ≤ 0
req

8

}

≤ W,∀8 ∈ M, (6)

where 0
req

8
is the availability requirement for URLLC device

8, and W is the sensitivity of the application to 0
req

8
.

B. Distributed AI: Training Delay

The convergence time of the distributed AI is bounded by

the communication and processing latency [7]. Let us assume

U= ⊆ U where |U= |==. Based on the abstract distributed

algorithm in Section II-B, the AI training delay in the master

node for :th iteration, 3AI
:

, can be derived as

3AI
: = min

∀U=⊆U

[

max
∀8∈U=

(

3D
8,: + 3

pr

8,:
+ 3U

8,: + 3
pr

:

)

]

, (7)

where 3D
8,:

, 3
pr

8,:
, and 3U

8,:
, are the latency of DL global

model broadcasting, local training (represented in (2b)), and

UL transmission of local gradients/models for :th iteration

of 8th device, respectively. It is worth noting that 3D
8,:

and

3U
8,:

include the transmission processing, payload transmission,

and queuing delay, which is determined by the number of

devices sharing the same time-frequency resources. Besides,

3
pr

:
is the :th iteration processing delay required to perform

the global model update on the master node, represented in

(2a). Thus, in equation (7), for each subset, the maximum

aggregated communication and processing delay is calculated

among devices. Then, among subsets, 3AI
:

is determined by

picking the subset with the lowest delay.

IV. SIMULATION METHODOLOGY

For simulating the URLLC and distributed AI coexistence

deployment, we performed both link level and network level



simulations for a factory automation scenario (as shown in

Fig. 1). More explicitly, we designed a 3D model of a small

factory of size 15×15×11 m3 with a gNB in the middle at the

height of 10 m. We assumed that the gNB is configured with

a 3-sector cell setting. In link level simulations, we modeled

blockers with the width and height that are uniformly selected

from the range of [0.5, 2] m and [1, 3] m, respectively, and

positioned them randomly inside the factory. We leveraged

the blockage model B from [19] to determine the multipath

attenuation caused by each of the blockers using a knife-edge

diffraction method. The path gain matrix and 3D channel

data for all possible devices’ locations are then imported to

a network level simulator in which we simulated physical

(PHY), medium access control (MAC), and above layers in

a multi-cell multi-user scenario.

The network level simulator is event-based, 3GPP compli-

ant, and operates at orthogonal frequency-division multiplex-

ing (OFDM) symbol resolution. We considered numerology

one from [16], implying that each slot and symbol are 0.5 ms

and 33.33 `s long, respectively. At each seed, the location

of both URLLC and AI devices are selected randomly. To

ensure seamless training of distributed AI until the end of a

simulation, we considered RLC in acknowledged mode (AM)

for distributed AI. Nevertheless, the RLC retransmissions are

slow and unlikely to benefit URLLC packets with their tight

delay bounds [16]. Accordingly, we configured the RLC in

unacknowledged mode (UM) for URLLC flow. Besides, we

assumed strict priority scheduling where URLLC flow has

higher priority than AI flow, implying that AI packets can not

be scheduled unless there is no URLLC packet on the queues.

Upon transmission, one or several packets are drawn from

the head of the corresponding RLC buffer, depending on

the selected modulation and coding scheme on lower layers.

Alternatively, RLC could perform segmentation of packets into

smaller segments to fit them into transport blocks via which

the packets are transmitted. Upon reception, the received

instantaneous signal to noise and interference ratio (SINR) of

each transport block (which depends on the radio channel and

the dynamic interference of other devices’ transmissions) de-

termines an error probability. Consequently, the receptive RLC

entity reassembles successfully decoded segments and delivers

them to the application layer. For availability calculation on

the application layer, we considered a URLLC packet lost if

it is not fully received before its corresponding delay bound,

followed by applying )BE as in (5) where ) is the duration of

one simulation. TABLE I presents the simulation parameters.

On the traffic modeling, we considered 10 URLLC devices.

The URLLC traffic is represented by periodic UL and DL

traffic, with delay bound of 6 ms and 2 ms as well as size

of 64 bytes and 80 bytes, respectively, both with period

5 ms. Motivated by [20], we assumed that the shared deep

neural network (DNN) architecture (i.e., used on the devices

and the master node) follows MobileNets [8], a class of

efficient DNN models based on a streamlined architecture

for mobile and embedded vision applications. We considered

G MobileNet-224 in [8], where G∈{0.25, 0.5, 0.75, 1}, implying

TABLE I: Simulation Parameters
Parameter Value

Deployment 1 gNB, 3 cells

Duplex/Carrier frequency FDD/2600 MHz

Blocker’s density 0.15 blocker/m2

gNB antenna height 10 m

Devices’ height 1.5 m

Carrier frequency 2.6 GHz

Bandwidth 40 MHz

TTI length/Subcarrier spacing 0.5 ms/30 KHz

UL/DL transmit power 0.2 W/0.5 W

Max num of UL/DL URLLC Trans. (MAC) 3/2

Max num of UL/DL AI Trans. (MAC) 10/10

Max num of UL/DL AI Trans. (RLC) 8/8

UL/DL URLLC delay bound 6/2 ms

UL/DL URLLC Survival time ()sv) 5/5 ms

Simulation time 100 s

that the DNN model can have 0.5, 1.3, 2.6, or 4.2 million

parameters, respectively. To model the distributed AI traffic,

we assumed FL and 32 bits quantization for each model

parameter, implying that each model (local or global) can be

represented by a size of 2 MB, 5.2 MB, 10.4 MB 16.8 MB in

the case of 0.25 MobileNet, 0.5 MobileNet, 0.75 MobileNet,

and 1 MobileNet, respectively.

V. RESULTS AND DISCUSSION

In this section, we evaluate the performance of URLLC and

distributed AI in our coexistence scenario. Besides evaluating

the impact of # , we study =-synch on the coexistence scenario

from two different perspectives:

• Eval1: We compare cases with the same # , while

changing [ from 0.4 to 1, to address the impact of

tightening the requirements for a global update at the

master node.

• Eval2: We compare cases with the same =(=[×#), im-

plying that the global model is aggregated from the same

number of local models. Here, we evaluate the impact

of #−= extra devices available to reduce sensitivity to

straggling devices.

Besides, we use (#, [) after a specific Eval to refer to #

and [ in a specific evaluation. For example, Eval2(50,0.6)

refers to #=50 and [=0.6 for an Eval2 experiment.

Fig. 2 illustrates the impact of introducing distributed AI

workflow on URLLC service performance. Fig. 2a and Fig. 2b

assume 0.25 MobileNet and 1 MobileNet [8], respectively.

These figures show the median and the 1st percentile availabil-

ity of the URLLC devices, while having different number of

AI devices, # , and for different reception requirement, [. The

dotted horizontal line represents U
req

8
in (6), where we assumed

it is identical for all URLLC devices (i.e., U
req

8
=Ureq

=0.95 for

∀8 ∈ M). We assumed W=0.01, hence, if the first percentile

availability is higher than the dotted line, the availability

requirement in (6) is fulfilled. There is no notable difference

observed between 0.25 MobileNet of Fig. 2a and 1 MobileNet

of Fig. 2b. As both figures confirm, introducing the AI traffic

causes a minimum of 0.037 decrease in the 1st percentile

URLLC availability. This is shocking as our deployment

supports two nines availability in the URLLC-only scenario,

whilst it barely fulfills availability of 0.96 in the coexistence

scenario. This significant availability reduction highlights the
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Fig. 2: Median (square) and 1st percentile (line) availability of URLLC, when training (a) 0.25 MobileNet, and (b) 1 MobileNet, both with 32 bits quantization.

importance of intelligent user selection or slicing approaches

to control the effect of AI traffic-induced interference on

URLLC service. Moreover, Fig. 2 shows that the availability

of URLLC devices declines as we increase the number of

AI participants. Generally, a higher number of distributed

AI participants increases the interference, resulting in higher

(i) packet error ratio and (ii) URLLC packet delays (since

the scheduler requires to select lower modulation and coding

scheme indices to cope with the higher interference). Con-

sequently, the URLLC service does not meet its availability

requirement, i.e., 0.95, when #≥30.

Fig. 3 depicts the distribution of per-iteration delay of

distributed AI, 3AI
:

formulated in (7), for different # and

[ with 0.25 MobileNet (Fig. 3a), 0.5 MobileNet (Fig. 3b),

0.75 MobileNet (Fig. 3c), and 1 MobileNet (Fig. 3d). Each

box represents the minimum, 25th percentile, median, 75th

percentile and maximum observed training delay (refer to the

example box in Fig. 3a). In general, the distributed AI training

delay rises with the number of distributed AI participants.

On Eval1, Fig. 3 shows that higher [ results in higher

training delay. As [ grows, the master node should wait for a

larger portion of participating devices in which it is more likely

to include stragglers in poor channel condition, thus leading to

higher training delay. This higher training delay could explain

the improvement in availability in Fig. 2 for Eval1 case. For

example, Fig. 3d shows that the median training delay for

Eval1(60,1) increases 22% from Eval1(60,0.4) to 55.6 s.

Hence, it is much more likely for AI devices in Eval1(60,1)

to wait for the global model from master node, while the

master node itself is waiting to receive the local models from

stragglers. Such excessive pause in training leads to 2.7%

improvement in 1st percentile availability for Eval1(60,1)

compared to Eval1(60,0.4) in Fig. 3d. However, from con-

vergence perspective, for a given U, increasing [ results in

a lower variance for the gradient noise, potentially decreasing

the number of iterations required to converge [12].

For Eval2, our results in Fig. 2 and Fig. 3 demonstrate that

using extra devices to leverage diversity, and thus alleviating

the stragglers’ problem, can lead to contradicting outcome

(i.e., it could reduce the 1st percentile availability by several

percents and increase the training delay by tens of seconds).

For example, in Fig. 2b, the Eval2(50,0.6)’s 1st percentile

availability is down to 0.922 from 0.937 in Eval2(30,1).

Not to mention Fig. 3d, where the median of the training

delay for Eval2(50,0.6) is 43.5, 1.5x the median training

delay for Eval2(30,1). It seems that (i) high load, which

is due to the transmission of large local and global models,

and (ii) limited bandwidth on our system contributed to this

contradictory outcome, thus overweighting the diversity gain.

The results in [8] on the ImageNet dataset (a substantial

visual database intended for use in the research on visual

object recognition) show that 0.25 MobileNet, 0.5 MobileNet,

0.75 MobileNet, and 1 MobileNet could achieve an accuracy of

50.6%, 63.7%, 68.4%, and 70.6%, respectively. From Fig. 3,

the higher accuracy of bigger models comes at the price of a

higher distributed AI training delay per global update iteration.

This higher per-iteration complexity, together with the need

for having more iterations for bigger models to converge

result in a much higher convergence time. Furthermore, on

the one hand, the accuracy of distributed AI rises with the

number of participating AI devices. However, as the number

of participating AI devices continues to grow, the rate of such

increase decelerates [7]. On the other hand, our results in Fig. 2

and Fig. 3 reveal that the number of participating AI devices

(#) heavily affects U8 and 3AI
:

. These trade-offs highlight

the significance of efficient user selection in implementing

distributed AI techniques on future cellular networks.

VI. CONCLUSIONS

In this paper, we studied the trade-offs between the avail-

ability of URLLC service and the convergence time of dis-

tributed training. We leveraged the already existing 5G-NR

QoS handling to separate the traffic of the two services. Using

our near-product 3GPP-compliant simulations, we showed that

the introduction of AI traffic has a considerable side effect

on URLLC availability, which declines with the number of

participating AI devices. Although an increase in the number

of AI devices can improve the training accuracy of the

distributed AI, we showed that the cost could be an intolerable

increase in training delay, thanks to the 5G-NR scheduler.

As for future directions, we note that user-selection al-

gorithms that jointly consider distributed AI’s performance



Example

Fig. 3: The distribution of the distributed AI training delay, 3AI
:

, for different [ and # . Each box plot represents the minimum, 25th percentile, median, 75th
percentile, and maximum of the observed training delay samples per iteration (as shown via the example in (a) with green box) for a specific [ and # .

and the coexisting URLLC service are of crucial importance.

Besides, new dynamic slicing approaches that optimize band-

width allocation for AI slice and URLLC slice can improve

the coexistence performance.
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