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Abstract—The objective of this paper is to develop simple tech-
niques to bound the optimal uplink sum-rate of multi-user RIS-
aided wireless systems. Specifically, we develop a novel technique
called channel separation which provides a new understanding as
to how the RIS phases affect the sum-rate. Leveraging channel
separation, we derive upper and lower bounds on the optimal
sum-rate. In addition, we propose a low-complexity alternating
optimization algorithm to obtain near-optimal sum-rate results.
Numerical results demonstrate the tightness of the bounds and
show that the alternating optimization approach delivers sum-
rate values similar to the results of a full numerical optimization
procedure. Furthermore, in practical scenarios where hardware
limitations cause the RIS phases to be quantized, our lower bound
can still be applied and shows that the sum-rate is robust to
quantization, even with low resolution.

I. INTRODUCTION

Reconfigurable Intelligent Surface (RIS) technology is de-
signed to manipulate the channel between users (UEs) and
base station (BS) via the RIS in a wireless system [1].
Assuming that channel state information (CSI) is known,
then it is possible to intelligently configure the RIS phases
to enhance performance metrics (e.g. energy efficiency [2]).
However, it has become apparent that the unit modulus con-
straint introduced by the RIS phases leads to difficult, non-
convex optimization problems for most system metrics [3].

A very common optimization problem for wireless commu-
nication systems is to maximum the sum-rate among multiple
users [3]–[6]. In [4] an iterative algorithm is proposed to
maximize the sum-rate in the absence of a direct channel
between the BS and users. Specifically, the DL sum-rate is
maximized subject to discrete phases at the RIS and ZF
beamforming at the BS given a maximum power threshold.
The results presented show that good sum-rate performance
can be achieved by a RIS of appropriate size along with low
resolution for the RIS phases. Practically, it is difficult to
implement continuous phase control for the RIS, so achieving
near optimal performance with low phase resolution is impor-
tant. The work in [5] is similar to that of [4] but considers a
cell-free environment with multiple RIS deployed to aid trans-
mission from a single BS. In [6] the sum-rate is maximized
for an UL non-orthogonal multiple access (NOMA) system
while successive interference cancellation (SIC) is performed
at the single antenna BS in the absence of a UE-BS channel.
To find the sub-optimal RIS phases, the authors reformulate
the sum-rate maximization problem into the maximization of

a quadratic form. The CVX package is then utilized to solve
the related semi-definite-relaxation (SDR) problem. In multi-
cell environments, [3] maximizes the weighted sum-rate of all
users through a joint optimization of the precoding matrices
at the BSs and of the RIS phases. The authors propose the
use of Majorization-Minimization (MM) and Complex Circle
Manifold (CCM) methods to optimize the RIS phases whilst
keeping the precoding matrices fixed.

Due to the passive nature of the RIS, causing the unit
modulus constraint, methods to compute sum-rate are usually
algorithmic rather than closed form. Hence, in this paper, we
make the following contributions:
• We introduce a novel technique called channel separation

which creates an equivalent channel matrix separated into
two parts; one part is independent of the RIS and another
part consists of a single row directly impacted by the RIS.
Channel separation is designed for scenarios where the
RIS-BS channel has a strong LOS component.

• Leveraging channel separation, the problem of computing
the optimal uplink (UL) sum-rate is reformulated to
maximizing a simple quadratic form which leads to tight
upper and lower bounds on the optimal sum-rate.

• We propose a very low-complexity alternating optimiza-
tion (AO) algorithm to obtain near optimum results.

• Numerical results demonstrate the effectiveness of our
techniques whilst showing that quantization of the RIS
phases leads to little sum-rate degradation even with low
resolution for the RIS phases.

Notation: ‖·‖1 denotes the `1 norm. The transpose and
Hermitian transpose are denoted as (·)T and (·)H respectively.
The angle of a complex number, z, is denoted ∠z. The
Kronecker product is denoted ⊗. U(a, b) denotes a uniform
random variable taking on values between a and b, N (µ, σ2)
denotes a Normal distribution with mean µ and variance σ2

and L(1/σ) denotes a Laplacian distribution with standard
deviation parameter σ.

II. CHANNEL AND SYSTEM MODEL

As shown in Fig. 1, we examine a RIS-aided wireless
system where a RIS with N reflective elements supports UL
transmission between K single antenna UEs and a BS with
M antennas.

Let Hd ∈ CM×K , Hru ∈ CN×K , Hbr ∈ CM×N be the
UE-BS, UE-RIS, RIS-BS channels, respectively. The diagonal
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Fig. 1: System model.

matrix Φ ∈ CN×N , where Φrr = ejφr for r = 1, 2, . . . , N ,
contains the reflection coefficients for each RIS element. Given
these matrices, the global UL channel is given by,

H = Hd + HbrΦHru. (1)
In the channel model, we adopt a LOS version of the clustered,
ray-based model in [7] for Hd,Hru:

Hd = ηdALOS
d B

1/2
d + ζd

Cd∑
c=1

Sd∑
s=1

ASC
d,c,s,

Hru = ηruALOS
ru B1/2

ru + ζru

Cru∑
c=1

Sru∑
s=1

ASC
ru,c,s,

(2)

with

ηd =

√
κd

1 + κd
, ζd =

√
1

1 + κd
,

ηru =

√
κru

1 + κru
, ζru =

√
1

1 + κru
,

where Cd, Cru are the number of clusters in the UE-BS,
UE-RIS channels and Sd, Sru are the number of sub-rays
per cluster in the UE-BS and UE-RIS channels. In (2), κd
and κru are the equivalent of Ricean K-factors for the UE-
BS and UE-RIS channels respectively, controlling the relative
power of the scattered (ray-based) components and the LOS
ray. For simplicity, we assume that each user has the same
K-factor, but this can easily be generalized. Bd,Bru are
diagonal matrices containing the path gains between UE-BS
and UE-RIS respectively, which are modeled by log-normal
shadowing. In particular

(Bd)kk = PXd,kd
−γd
d,k , (Bru)kk = PXru,kd

−γru
ru,k , (3)

where dd,k and dru,k are the distances between the kth UE and
the BS and the kth UE and the RIS respectively, γd and γru
are the pathloss exponents, Xd,k and Xru,k model the effects
of shadow fading and are taken from a log-normal distribution
with zero mean and variances σ2

d,sf and σ2
ru,sf respectively. P

is the received power at a reference distance of 1m.
ALOS

d and ALOS
ru are the LOS components for the UE-BS

and UE-RIS channels respectively. The kth columns of the
LOS components for Hd and Hru are given by

aLOS
d,k = ab(θ

(k)
d , φ

(k)
d ), aLOS

ru,k = ar(θ
(k)
ru , φ

(k)
ru ), (4)

where θ(k)d , θ(k)ru are the elevation angles of arrival (AOAs) for
the kth UE and φ(k)d , φ(k)ru are the azimuth AOAs for the kth

UE. Note that the steering vectors at the BS, ab(·, ·), and at
the RIS, ar(·, ·), are topology dependent. Further details are
given in Sec. V.

ASC
d,s,c and ASC

ru,s,c are the scattered components due to the
s-th subray in the c-th cluster which are modeled as in [7]. The
kth columns of ASC

d,s,c and ASC
ru,s,c are given by the weighted

steering vectors,
aSC
d,s,c,k = γ

(k)
d,c,sab(θ

(k)
d,c,s, φ

(k)
d,c,s),

aSC
ru,s,c,k = γ(k)ru,c,sar(θ

(k)
ru,c,s, φ

(k)
ru,c,s),

(5)

where θ(k)d,c,s, θ
(k)
ru,c,s are the elevation AOAs and φ(k)d,c,s, φ

(k)
ru,c,s

are the azimuth AOAs experienced by the kth UE. The
elevation AOAs are calculated by θ

(k)
d,c,s = θ

(k)
d,c + δ

(k)
d,c,s and

θ
(k)
ru,c,s = θ

(k)
ru,c + δ

(k)
ru,c,s where θ(k)d,c , θ

(k)
ru,c are the central angles

for the subrays in cluster c and the deviations of the subrays
from the central angle are δ(k)d,c,s, δ

(k)
ru,c,s. The azimuth AOAs for

each ray are φ(k)d,c,s = φ
(k)
d,c+∆

(k)
d,c,s and φ(k)ru,c,s = φ

(k)
ru,c+∆

(k)
ru,c,s

where φ
(k)
d,c, φ

(k)
ru,c are the central angles for the subrays in

cluster c and the deviations of the subrays from the cen-
tral angle are ∆

(k)
d,c,s,∆

(k)
ru,c,s. γ

(k)
d,c,s = β

(k)1/2
d,c,s ejψ

(k)
d,c,s and

γ
(k)
ru,c,s = β

(k)1/2
ru,c,s e

jψ(k)
ru,c,s are the ray coefficients where the

random phases satisfy ψ
(k)
d,c,s, ψ

(k)
ru,c,s ∼ U(0, 2π) and the ray

powers β(k)
d,c,s and β

(k)
ru,c,s are selected to satisfy (Bd)kk =∑Cd

c=1

∑Sd

s=1 β
(k)
d,c,s and (Bru)kk =

∑Cru

c=1

∑Sru

s=1 β
(k)
ru,c,s.

The majority of the results in this paper are for a pur LOS
RIS-BS channel. However, we also show numerically that the
results can be applied to scenarios where Hbr has a smaller
scattered component and a dominant LOS path. Hence, we
consider the following channel models:

1) Hbr is pure LOS:
Hbr =

√
βbrA

LOS
br , (6)

with
ALOS

br = ab(θbr,A, φbr,A)aHr (θbr,D, φbr,D), (7)
where θbr,A, φbr,A are the elevation and azimuth angles of
arrival (AOAs) and θbr,D, φbr,D are the elevation and azimuth
angles of departure (AODs), βbr is the link gain between RIS
and BS. Here, Hbr is rank-1 and the path gain is βbr = d−2br ,
where dbr is the distance between RIS-BS.

2) Hbr is dominant LOS:

Hbr = ηbr
√
βbrA

LOS
br + ζbr

Cbr∑
c=1

Sbr∑
s=1

ASC
br,c,s, (8)

such that ηbr >> ζbr, with

ηbr =

√
κbr

1 + κbr
, ζbr =

√
1

1 + κbr
,

where βbr is the path gain between RIS-BS given by βbr =
d−2br /η

2
br and ALOS

br is given by (7). The ASC
br,c,s matrices

contain the scattered rays and are calculated in the same
manner as for the other channels. κbr is the Ricean K-factor
for the RIS-BS channel. In scenarios where the BS and RIS
are located in close proximity, it is reasonable to assume that
the RIS-BS channel is dominated by its LOS component [8].

Using (1) and the channels described above, the received



signal at the BS is,
r = Hs + n, (9)

where s is a K × 1 vector of transmitted symbols, each with
a power of E

{
|sk|2

}
= Es and n ∼ CN (0, σ2IM ). For our

results, we will assume that Es = 1 and σ2 = 1.

III. CHANNEL SEPARATION

The optimal UL sum-rate, Ropt
sum, for the system in (9) is

obtained by maximizing the traditional sum-rate expression for
an UL MU-MIMO channel [9] over the possible RIS phases
in Φ. Hence, we have

Ropt
sum = max

Φ
log2

∣∣IK + HHH
∣∣ . (10)

Finding the optimal RIS phases to maximize the sum-rate is
the associated design problem given by

Φopt = argmax
Φ

log2

∣∣IK + HHH
∣∣ , (P.1)

where the maximization is constrained over the unit amplitude
diagonal entries in Φ. The difficulty in finding Φopt is largely
due to the fact that Φ affects every element of H. Hence, the
log-determinant to be maximized is a very complex function
of Φ. However, when the RIS-BS link is LOS then Hbr is
rank 1 and the RIS phases only affect a rank 1 component
of H. Motivated by this observation, we seek to separate out
this RIS-dependent, rank 1 component from the rest of the
channel. We refer to this method as channel separation and
in this section, we assume that the RIS-BS link is pure LOS.

Channel separation is achieved via a unitary transformation
of H. For any N × N unitary matrix, U, we can define
H̃ = UHH and H̃HH̃ = HHH. Hence, the sum-rate for
channel H̃ is identical to the sum-rate with H. Substituting
the expression for Hbr in (6) into H̃, we obtain

H̃ = UHHd +
√
βbrU

HabaHr ΦHru. (11)
Note that ab and ar are used as simplified notation for the
steering vectors in (7) for the Hbr channel. Since aHr ΦHru is
a row vector, we can confine the effects of Φ to one row of
H̃ by selecting U to satisfy

UHab =
1√
N

[1, 0, . . . , 0]T . (12)

The unitary matrix satisfying (12) is the matrix of left singular
vectors of Hbr as shown below.

Define the singular value decomposition (SVD) of Hbr as
Hbr = UDVH , where U = [u1, . . .uM ] is the matrix of left
singular vectors, D is the diagonal matrix of singular values
and V = [v1, . . .vN ] is the matrix of right singular vectors.
Since Hbr is rank-1, then only one non-zero singular value,
d1, exists and Hbr = d1u1v

H
1 where u1 = ab/

√
M , v1 =

ar/
√
N and d1 =

√
MNβbr. Using this value of U, we have

H̃ = UHHd +


aHb /
√
M

uH2
...

uHM

√βbrabaHr ΦHru

=


uH1 Hd +

√
Mβbra

H
r ΦHru

uH2 Hd
...

uHMHd


,

[
wH

H1

]
. (13)

Channel separation is observed in (13) where wH , the first
row of H̃, is the only row affected by Φ.

Using (13), we can express the desired determinant as∣∣IK + HHH
∣∣ =

∣∣∣IK + H̃HH̃
∣∣∣

=
∣∣IK + HH

1 H1 + wwH
∣∣

,
∣∣Q + wwH

∣∣
= |Q|

(
1 + wHQ−1w

)
, (14)

where (14) follows from the matrix determinant lemma.
In deriving (14), the SVD of the M ×N matrix Hbr was

used. However, the final solution can be written in terms of
the channels only, making it computationally trivial involving
only a K × K determinant and a K × K inverse. This is
achieved by writing U = [u1U2], so that UUH = IM =
u1u

H
1 + U2U

H
2 . Using this result gives Q = IK + HH

1 H1 =
IK + HH

d U2U
H
2 Hd = IK + HH

d (IM − u1u
H
1 )Hd.

Using (14) and noting that Q is Hermitian, an equivalent
statement of the maximization problem in (P.1) is

argmax
Φ

wHQ−1w

s.t. |Φii| = 1 for i = 1, . . . , N.
(P.2)

The benefit of channel separation is clearly seen in (P.2) where
maximization is now over a simple scalar quadratic form.
Furthermore, substituting u1 = ab/

√
M into Q and w gives

Q = IK + HH
d

(
IM −

abaHb
M

)
Hd, (15)

w = HH
d ab/

√
M +

√
MβbrH

H
ruΦHar, (16)

so that all terms in the objective of (P.2) are simple functions
of the channels.

IV. SUM-RATE MAXIMIZATION

In this section, we consider several low-complexity ap-
proaches to obtain sub-optimal solutions to the maximization
problem (P.2) as well as lower and upper bounds to the optimal
sum-rate. Expanding the quadratic form and using (16) we
have

wHQ−1w

= wH
1 Q−1w1 + xHZ′Q−1Z′Hx + 2<{xHZ′Q−1w1},

(17)
where w1 = HH

d ab/
√
M , Z′ =

√
Mβbrdiag

{
aHr
}

Hru and
x = [exp (−jφ1), exp (−jφ2), . . . , exp (−jφN )]T is the vec-
tor containing, for ease of exposition, the conjugates of the RIS
phase values. Note that the first two terms in (17) are quadratic
and dominate the third term. This is further accentuated by any
maximizing of the terms over the RIS phases. Hence, as an
approximation, we maximize the dominating terms leading to



the maximization of xHZx with Z = Z′Q−1Z′
H . Hence, the

approximate optimization problem is formulated as
argmax

x
xHZx

s.t. |xi| = 1 for i = 1, . . . , N.
(P.3)

Problem (P.3) is a concise statement of the new understanding
arising from channel separation. The transformation of the
channel in (13) resulted in a single row containing the RIS
phases. Using (14) and (17) this rank-1 component of the
channel led to the scalar term xHZx which dominates the
effect of the RIS phases on sum-rate. Hence, we see that
effective RIS phases must align strongly with Z.

Notice that if the constraint in (P.3) is relaxed to xHx = N ,
then the optimum solution, x?, is proportional to the maximal
eigenvector of Z. Direct computation of x? requires the
eigenvalue decomposition of a N ×N matrix. Alternatively, a
low complexity approach to computing x? can be derived as

x? ∝ Z′x′
?
, (18)

where x′
? is the maximal eigenvector of αIK + Q−1Z′

H
Z′.

The problem has been reduced from an N × N to a K ×
K eigenvalue decomposition, a considerable saving especially
when considering large RIS sizes.

A. Lower bound on the optimal sum-rate

Due to (P.3) being non-convex, it is very difficult to obtain
an exact optimal solution in closed form. As such, we will
consider an alternative optimization problem, which is to
obtain an approximate solution x̂ to (P.3). Specifically, we
minimize the `1-norm of the residuals between x? in (18), the
solution to the relaxed version of (P.3), and the approximate
solution. Mathematically, the alternative optimization problem
is

min ‖x? − x̂‖1 = |x?1 − x̂1| + . . .+ |x?N − x̂N |
s.t. |x̂i| = 1 for i = 1, . . . , N.

(P.4)

Problem (P.4) can be solved by minimizing each residual
separately. It is straightforward to show that this is achieved
by setting x̂i = ej∠x

?
i and the approximate solution to (P.3) is

x̂ = [ej∠x
?
1 , . . . , ej∠x

?
N ]. (19)

Using the phases in (19) at the RIS provides a lower bound
on (10).

B. Efficient alternating optimization algorithm

Here, we propose a low-complexity AO algorithm to find
the RIS phases which maximize the sum-rate. The algorithm
iteratively maximizes the nth RIS reflecting coefficient while
keeping the other N − 1 coefficients fixed. We define the
following vectors: x(−n) , [x1, . . . , xn−1, 0, xn+1, . . . , xN ]T

and en , [0, . . . , 0, xn, 0, . . . , 0]T . Let B = Z′Q−1Z′H ,
w2 = Z′Q−1w1, then by expressing (17) in terms of the
nth reflecting coefficient, we have
wHQ−1w

=
(
wH

1 +
(
xH(−n) + eHn

)
Z′
)

Q−1
(
w1 + Z′H

(
x(−n) + en

))
= T1 + 2<{eHn Bx(−n) + eHn w2},
= T1 + 2<{x∗n(bHn x(−n) + w2n)}, (20)

where T1 contains the terms not including en, w2n is the n-th
element of w2 and bn is the n-th column of B.

Since the quadratic form in (20) is positive, it is maximized
over xn by maximizing 2<{x∗n(bHn x(−n) +w2n)}. Hence, in
order to optimize the nth reflecting coefficient while the others
coefficients are fixed, we can set

xupdate
n = ej∠(bH

n x(−n)+w2n). (21)
The computations involved in (21) are trivial as B and w2 are
one-off calculations requiring only a K×K matrix inverse and
matrix multiplications. Using (21) as the updating equation for
each iteration in the algorithm, the AO algorithm is given in
Algorithm 1.

Algorithm 1: Sum-Rate AO Algorithm
Result: RIS reflection coefficients, x?

Set algorithm precision threshold ε > 0
Set initial RIS coefficients to x = 1N
Calculate initial w using (16) where Φ = diag {x}
Set T = 0
while (wHQ−1w − T ) ≥ ε do

Calculate T = wHQ−1w
for n = 1 : N do

Update nth RIS coefficient using (21)
end
Calculate w using (16) where Φ = diag {x}

end
Return x? = x.

C. Upper bound on the optimal sum-rate

Leveraging channel separation, we can also derive an upper
bound on the sum-rate when the RIS-BS channel is LOS.
Substituting (17) into (14), along with the Cauchy–Schwarz
inequality to bound the elements of the second and third terms
in (17), we have
Rsum ≤ log2 (|Q|)

+ log2

(
wH

1 Q−1w1 +

N∑
n=1

N∑
r=1

|Bnr| + 2

N∑
r=1

|pn| + 1

)
,

(22)

where B = Z′Q−1Z′
H and p = Z′Q−1w1.

V. RESULTS

We now demonstrate the effectiveness of the different
techniques presented in Sec. IV. Users were randomly located
in a cell with a radius of 50m, outside an exclusion radius
of 5m around the BS and RIS. As stated in Sec. II, the
steering vectors used in the channels are topology dependent.
We assume an M -element vertical uniform rectangular array
in the y − z plane [7] with equal spacing in both dimensions
at both the BS and RIS. The y and z components of a generic
steering vector at the BS for a given elevation angle, θ, and
azimuth angle, φ, are given by,

ab,y (θ, φ) = [1, . . . , ej2π(My−1)db sin(θ) sin(φ)]T ,

ab,z (θ, φ) = [1, . . . , ej2π(My−1)db cos(θ)]T ,



respectively, where M = MyMz with My,Mz being the
number of antenna columns, rows at the BS and db = 0.5
is the antenna separation in wavelength units. Similarly at the
RIS, we have

ar,y (θ, φ) = [1, . . . , ej2π(My−1)dr sin(θ) sin(φ)]T ,

ar,z (θ, φ) = [1, . . . , ej2π(My−1)dr cos(θ)]T ,

respectively where N = NyNz with Ny, Nz being the number
of columns, rows of RIS elements, dr = 0.2 is the RIS element
separation in wavelength units. The generic steering vectors at
the BS and RIS are then given by,

ab (θ, φ) = ab,y (θ, φ)⊗ ab,z (θ, φ) ,

ar (θ, φ) = ar,y (θ, φ)⊗ ar,z (θ, φ) .
(23)

Note that (23) can be used to generate all of the channels
in Sec. II by substituting the relevant elevation and azimuth
angles. For the LOS components in channels Hd and Hru,
the elevation and azimuth AOAs for the kth UE are generated
using θ

(k)
d , θ

(k)
ru ∼ U(0, π), φ(k)d , φ

(k)
ru ∼ U(−π/2, π/2). For

the LOS component of Hbr, we assume that the elevation
and azimuth angles are selected based on the following
geometry representing a range of LOS links with less ele-
vation variation than azimuth variation: θD ∼ U [70o, 90o],
φD ∼ U [−30o, 30o], θA = 180o − θD, φA ∼ U [−30o, 30o].

For the rays in the scattered components, we model
all central and deviation elevation angles by [7]: θ(k)E,c ∼
L(1/σ̂E,c), δ

(k)
E,c,s ∼ L(1/σ̂E,s) and the central and devi-

ation azimuth angles by φ
(k)
E,c ∼ N (µE,c, σ

2
E,c),∆

(k)
E,c,s ∼

L(1/σE,s). The subscript E ∈ {d, ru,br} represents the
different channels. We assume that the parameter values for
generating the subrays for each cluster are identical for both
Hd and Hru, and represent a broad spread of rays, as given
in [7]. For channel Hbr, we assume that the rays are narrowly
spread, for which the parameter values are also given in [7].
Specifically, the system parameter values are given in Table I
for all results unless otherwise specified.

Parameter Values
Cell Radius 50 m

Exclusion Radius 5 m
BS Antennas 32

Channels Hd,Hru

Cd = Cru 20
Sd = Sru 20

µd,c = µru,c, 0◦

σ2
d,c = σ2

ru,c, σ
2
d,s = σ2

ru,s 31.64◦, 24.25◦

σ̂2
d,c = σ̂2

ru,c, σ̂
2
d,s = σ̂2

ru,s 6.12◦, 1.84◦

Channel Hbr

Cbr, Sbr 3, 16
µbr,c 0◦

σ2
br,c, σ

2
br,s, σ̂

2
br,c, σ̂

2
br,s 14.4◦, 6.24◦, 1.9◦, 1.37◦

TABLE I: System parameter values

The path gain parameter, P , in (3) is selected such that
the average total channel power for a single user is 0dB for
a baseline case where M = 64, N = 100, κd = κru = 0

and Hbr is pure LOS. This gives P = 45dB. The results for
all simulations are averaged over 104 user locations and their
associated path gains.

First, in Fig. 2, we demonstrate the effectiveness of the
optimization techniques presented in Sec. IV for varying RIS
sizes. Here, we show the lower bound (19), a 2-bit quantization
of the lower bound, the AO algorithm shown in Alg. 1 and the
upper bound given in (22). These expressions are computed
for scenarios where κru = κd = 1 and κbr =∞ to represent a
pure LOS RIS-BS channel The number of UEs is K ∈ {2, 5}.
We compare these results against two benchmark cases:
• the optimal sum-rate computed by built-in numerical

optimization software using the interior point algorithm;
• the sum-rate achieved by a random set of RIS phases

selected from U(0, 2π).
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Fig. 2: Average sum-rate bounds and approximations for
varying N and κru = κd = 1, κbr =∞, K ∈ {2, 5}.

As can be seen in Fig. 2, the gain in sum-rate relative to
random phases increases with N . The extremely simple upper
and lower bounds derived via channel separation are shown
to be very tight for all N . The simple AO approach gives
results just below the interior point algorithm, possibly due
to incomplete convergence or local maxima. However, the
AO method remains efficient for large RIS sizes where run-
time is a problem for the interior point algorithm. Note that
quantizing the lower bound RIS design in (19) provides a
lower bound on the sum-rate achievable by a quantized RIS,
which is demonstrated in Fig. 2 for 2-bit RIS phases.

As the lower bound in (19) and the AO approach are based
an actual RIS designs assuming pure LOS for the Hbr channel,
applying these solutions to any other channel also results in
lower bounds, although they may be less tight. To study the
robustness of the lower bound and the AO algorithm, we
compare the sum-rate against a varying number of UEs for
systems where κd = κru = 1, κbr ∈ {∞, 1}, N ∈ {64, 144}
and the results are shown in Fig. 3. As expected, since channel
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Fig. 3: Average sum-rate using numerical optimzation, the AO
algorithm and the lower bound for varying numbers of UEs,
N ∈ {64, 144}, κd = κru = 1, κbr ∈ {∞, 1}.

separation is designed for LOS RIS-BS channels, we see
sub-optimal performance using the lower bound and the AO
algorithm for increasing UEs and RIS sizes while the pure
LOS channels give extremely accurate results. However, even
with κbr = 1 (where the LOS and scattered powers are
equal), the lower bounds are still reasonable. Hence, the simple
bounds are still useful for RIS-BS channels which contain
some scattering but have a dominant LOS component.

In Fig. 4, we demonstrate the average efficiency of the AO
algorithm by plotting the average sum-rates achieved at various
iterations of the algorithm. Results are presented for systems
with K = 2 and K = 4 UEs both with N ∈ {100, 121, 144}.
The channel parameters are κd = κru = 1 and κru = ∞.
Even for large RIS sizes and increasing numbers of UEs,
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Fig. 4: Convergence of AO Algorithm for systems with K = 2
and K = 4 UEs, both with N ∈ {100, 121, 144} RIS sizes.

Fig. 3 shows that the algorithm converges very quickly. This
is the property which enables rapid AO results to be obtained
for large N , while numerical optimization becomes extremely
slow.

VI. CONCLUSION

In this paper, we have presented a channel separation
technique which allows for a new understanding on the effects
of RIS phases on the sum-rate. Specifically, channel separation
creates an equivalent channel matrix separated into two parts;
one part is independent of the RIS and another part consists
of a single row directly impacted by the RIS. Leveraging
this technique, we derive extremely simple upper and lower
bounds on the optimal sum-rate. In addition, we propose a
low-complexity AO algorithm to obtain sub-optimal sum-rate
results. Numerical results demonstrate the effectiveness of the
presented techniques. Despite their simplicity, the bounds are
shown to be very tight and the AO algorithm converges very
quickly even for systems with large RIS sizes. In scenar-
ios where hardware limitations are present, quantizing our
proposed solutions leads to tight lower bounds on the sum-
rate achievable with quantized RIS designs and the resulting
quantization degradation is shown to be minor. Although
channel separation is designed for scenarios where the RIS-BS
channel is LOS, the resulting lower bounds are demonstrated
to be robust when the RIS-BS channel contains a weaker
scattered component.
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