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Abstract—Spectrum map is of crucial importance for realizing
efficient spectrum management in the sixth-generation (6G) wire-
less communication networks. However, the existing spectrum
map construction schemes mainly depend on spatial interpolation
and cannot construct the spectrum map when the measurement
data of the target frequency are not obtained. In order to
overcome this challenge, an accurate spectrum map construction
scheme is proposed by using an intelligent frequency-spatial
reasoning approach. The frequency correlation among different
spectrum maps at different frequencies is fully exploited to
construct the highly accurate spectrum maps of the frequencies
without spectrum data. A novel autoencoder adapting to the
three-dimensional (3D) spectrum data is proposed. Simulation
results demonstrate that our proposed scheme is superior to
the benchmark schemes in terms of the construction accuracy.
Moreover, it is shown that our proposed autoencoder network
has a fast convergence speed.

Index Terms—Spectrum map, frequency correlation,
frequency-spatial reasoning, autoencoder.

I. INTRODUCTION

W ITH the proliferation of intelligent terminals and the
emergence of diverse ultra-wideband services, the

spectrum scarcity and low utilization problems have been the
major challenges for the sixth-generation (6G) wireless com-
munication networks [1]. In order to tackle those challenges,
intelligent spectrum management based on spectrum map was
envisioned to be promising [1], [2]. Spectrum map is the
projection of the received signal strength to the corresponding
geographical coordinates in a region of interest for character-
izing the spatial distribution of the received signal strength.
It can provide the occupation and utilization situation of the
spectrum resources and the activity distribution of the signal
sources in an electromagnetic environment [1], [3]. Thus, how
to accurately construct spectrum map is of crucial importance,
and has received an increasing attention from both academia
and industry.

The related works can be mainly categorized into the
spatial-correlation-based schemes [1]-[4], [6]-[12] and the
joint frequency-spatial-correlation-based schemes [5], [13]-
[15]. They construct the spectrum map based on the correlation
among spectrum data. The spatial-correlation-based schemes
mainly have the model-based methods and the crowdsourcing-
based methods [2]. The model-based methods generally rely

on the priori assumptions of the propagation environments [1]-
[4]. The accuracy of the spectrum maps achieved by using the
model-based methods was poor due to the lack of flexibilities
in the radio propagation. In contrast, the crowdsourcing-based
methods constructed the spectrum maps more accurately via
regression techniques or machine learning [5], such as matrix
recovery [6], Kriging interpolation [7], the inverse distance
weighted (IDW) interpolation [8], kernel-based learning [9],
[10] and some data-driven methods proposed to further im-
prove the accuracy [11], [12]. However, the spatial-correlation-
based schemes only use spatial interpolation and cannot obtain
the spectrum maps when there is no signal information about
the target frequency.

Recently, the joint frequency-spatial-correlation-based
schemes were proposed to tackle the above-mentioned
problem by jointly considering the frequency and spatial
correlation [5], [13]-[15]. Among the state-of-the-art works,
the authors in [13] mentioned the concept of a spectrum
map structure across different frequencies. However, they
claimed that the propagation phenomena were similar at
the neighbouring frequencies and the structure was directly
separated across frequencies into various single-frequency
spectrum maps, which ignored their frequency fading
difference. The authors in [14] considered the spectrum map
problem over several frequencies while the interfrequency
relationship was not considered. Besides, a joint space-
frequency interpolation scheme was proposed in [5] and
[15]. Nevertheless, they simply used the values obtained over
other frequencies as those over the frequency without signal
information. In this case, the accuracy of the spectrum map is
still not high, especially when the spectrum data of the target
frequency are not obtained.

Note that the above-mentioned joint frequency-spatial-
correlation-based works ignored the interfrequency fading
difference during the radio propagation and simply used the
frequency correlation, which limits the construction accuracy.
Thus, it is infeasible for them to accurately construct the
spectrum maps when the measurement data of the target
frequency are not obtained. In practice, it is impossible that
there are always available measurement data over the frequen-
cies of interest since the amount of the measurement data is
extremely large and the deployment cost of the sensors is



Fig. 1: The overview of our propsoed scheme.

unaffordable when all frequencies within an ultra-wideband
are considered. Moreover, more and more high frequency
bands are licensed to be used for meeting the user connectivity
and high data rate frequency. In this case, the measurement
data of many frequencies in an ultra-wide frequency band may
be not collected, which results in a significant challenge for
accurately constructing spectrum map. Thus, it is practical and
important to study how to accurately construct the spectrum
maps of the target frequencies when their spectrum data are
not obtained.

In this paper, in order to tackle the above-mentioned chal-
lenge and accurately construct spectrum map, considering the
fact that the radio fading phenomena are different among
various frequencies, an accurate spectrum map construction
scheme is proposed by using an intelligent frequency-spatial
reasoning approach. The frequency correlation among different
spectrum maps at different frequencies is completely exploited
to reason and estimate the target spectrum map by using our
proposed novel autoencoder. Simulation results demonstrate
that our proposed scheme can obtain the highly accurate
spectrum maps of the frequencies without available spectrum
data compared with the benchmark schemes. It is also shown
that our proposed autoencoder network has a fast convergence
speed, which benefits for the practical implementation.

The remainder of this paper is organized as follows. Section
II formulates the spectrum map construction problem and
Section III proposes our novel spectrum map construction
scheme. In Section IV, simulation results are given. The paper
is concluded in Section V.

II. PROBLEM FORMULATION

A general scenario is considered that M transmitters are
arbitrarily located in a target region of size W ×W m and
transmit signals on K + 1 frequencies. Let the finite signal
frequency set be denoted as F = {f1, f2, · · · , fK , ftarget}.
Note that the order in the set does not represent the numerical
relationship among frequencies. The sensors are randomly
deployed at the geographical locations in the region in order to
collect the received signal information over various frequen-
cies. Then, the received signal data collected by the sensors
together with the related parameters, such as the received

Fig. 2: The illustration of the frequency correlation establish-
ing.

locations and the signal frequencies, are transmitted to a base
station or a cloud computing platform. Those data are used to
infer the spectrum information about the target frequency and
construct a complete spectrum map.

In order to construct the spectrum map, the geographical
region is first uniformly discretized into N×N grids by using
the grid quantization method [13], with the grid interval ∆d.
Let χ denote the discretized geographical region. Let the grid
point I = (i, j), i, j = 0, 1, · · · , N − 1 denote the actual
geographical location xi,j = ((i+ 0.5)∆d, (j + .)∆d). It
is assumed that the signal strength in a grid is consistent
with that at the corresponding grid point. This assumption is
reasonable since the signal strength changes a little when the
grid is not large [13].

The received signal strength at the frequency fk of the
grid I = (i, j) is defined as P (fk,xi,j), k = 1, 2, · · · ,K,
i, j = 0, 1, · · · , N − 1. Then, a sparse spectrum map at
the frequency fk consisting of finite measurement data is
expressed as a two-order tensor P̃k ∈ RN×N . If the grid
represented by I = (i, j) includes a sensor, the (i, j)th element[
P̃k
]
i,j

is given by the measurement result; otherwise, let[
P̃k
]
i,j

= 0, indicating that the spectrum data at the grid do

not exist. When multiple sensors exist in the same grid, these
measurements are averaged. Similarly, a true spectrum map
at the frequency fk is represented as a tensor Pk ∈ RN×N ,
where

[
Pk
]
i,j

= P (fk,xi,j). And an estimated spectrum map
at the frequency fk is represented as a tensor P̂k ∈ RN×N .

In this paper, a practical and important problem is consid-
ered. Specifically, when the signal information about the target
frequency is not obtained, how to accurately construct the
target spectrum map tensor, i.e., P̂target ∈ RN×N , is studied
by using the obtained sparse spectrum map tensors of other

frequencies, i.e.,
{
P̃k ∈ RN×N

}M

k=1
.

III. OUR PROPOSED ACCURATE SPECTRUM MAP
CONSTRUCTION SCHEME

In this section, the overview of our proposed accurate
spectrum map construction scheme including three steps is
first presented. Then, the joint frequency-spatial spectrum
representation model in the first step is stated. Finally, a novel



Fig. 3: Our proposed autoencoder structure. k, s and p respectively denote the size, stride and padding of the convolution
layer, and C0, C1 and C2 are the channel number of the output feature maps.

autoencoder structure used in the second and third steps is
proposed.

A. The Overview of Our Proposed Scheme

For accurately constructing a spectrum map when the spec-
trum data of the target frequency are not obtained, the key is to
fully exploit the frequency correlation among diverse spectrum
maps. The overview of our proposed scheme is shown in Fig.
1. It has three steps stated as follows.

Firstly, the spectrum maps under the same radio propaga-
tion scenario while at different signal frequencies are stacked
along the third dimension based on the numerical relationship
among frequencies, as illustrated in Fig. 2. In this way, these
single spectrum maps are effectively correlated over the fre-
quency domain, and the frequency characteristics of the radio
propagation phenomena can be learned in a three-dimensional
(3D) structure. This operation is the crucial prerequisites for
the following intelligent frequency-spatial reasoning about the
data distribution of the spectrum maps.

Secondly, a method based on our novel autoencoder net-
work is proposed to learn the frequency and spatial charac-
teristics of the radio propagation phenomena, which benefits
for inferring the target spectrum map. The novel autoencoder
network is designed to use the sparse defective spectrum
representation samples P̃ ∈ R(K+1)×N×N as the input and
output the complete spectrum representation results P̂ ∈
R(K+1)×N×N . Let the mapping rule of the neural network
be defined as a function fθ, then, fθ

(
P̃
)
= P̂.

The model learns the characteristics of the radio propa-
gation phenomena by training over the simulative training
sets

{
P̃,P

}
. Specifically, the model is trained to learn the

frequency fading characteristics in the frequency dimension

and the spatial fading characteristics in the other geographical
dimensions. The goal of training is to make the output of our
proposed autoencoder network close to the true distribution
of the spectrum data in the datasets. Therefore, the training
objective is defined as

min
θ

1

L (K + 1)NN

L∑
l=1

∥∥∥fθ (P̃l

)
−Pl

∥∥∥2
F
, (1)

where L represents the number of the training samples, l
represents the lth training sample, and (K + 1) × N × N is
the size of each 3D spectrum representation sample. ‖·‖F is
the Frobenius norm of a tensor [13].

Thirdly, the well-trained model with reasoning capability is
deployed to realize the intelligent frequency-spatial reasoning
about the data distribution of the spectrum maps. Specifically,
the finite sparse spectrum data obtained over other frequencies
by measurement campaigns are sent to the well-trained model
as the input for accurately inferring the complete spectrum
representation tensor.

While the output of the network is the joint frequency-
spatial spectrum representation model consisting of multiple
frequencies. In order to obtain the spectrum map of the target
frequency, the output of the network requires reprocessing.
Specifically, the slice corresponding to the target frequency is
searched and extracted from the joint spectrum representation
model to obtain the target spectrum map P̂target ∈ RN×N .

B. Joint Frequency-Spatial Spectrum Representation Model
and Problem Reformulation

Specifically, the K + 1 sparse spectrum map tensors at
different frequencies are stacked along the frequency dimen-
sion based on the order from the low frequency to the high



frequency, and merged into a 3D structure. Note that the
spectrum map of the target frequency is a blank one without
any measurement data, namely, P̃target is a zero tensor, while
the others are the sparse spectrum maps containing finite
measurement data. Let a three-order tensor P̃ ∈ R(K+1)×N×N

denote the sparse 3D spectrum representation. Similarly, let a
three-order tensor P̂ ∈ R(K+1)×N×N denote the estimated
3D spectrum representation and a three-order tensor P ∈
R(K+1)×N×N denote the true 3D spectrum representation.
Through this operation, the separate spectrum maps are cor-
related over the frequency domain in the 3D spectrum repre-
sentation model and the spectrum map construction problem
is reformulatd as the one based on the 3D shape.

It is worth noting that our proposed 3D spectrum representa-
tion model is a joint frequency-spatial spectrum representation,
which is very different from a conventional 3D spectrum map
model considering only the single spatial domain. That is, the
third dimension of our proposed 3D spectrum representation
model is the frequency dimension, while that of a conventional
one is the height dimension and is still in the geographical
aspects.

C. Novel Low-Complexity Autoencoder Suitable for Three-
Dimensional Data

The autoencoder neural network is a kind of deep neu-
ral networks based on a pixel-level semantic segmentation
structure named U-Net [16]. Its structure is divided into
two parts, namely, the contraction path (i.e., encoder εθ)
and the expansion path (i.e., decoder δθ). In this paper, a
novel autoencoder based on the U-Net structure is proposed
for the intelligent frequency-spatial reasoning by taking our
proposed 3D spectrum representation samples as its input.
Firstly, the encoder is implemented to extract the distribution
characteristics of the samples both in the frequency and spatial
dimensions, depending mainly on the improved 3D convo-
lution layers. Then, the decoder is implemented to recover
the complete 3D spectrum representation samples, depending
mainly on the improved 3D transposed convolution layers. Our
proposed autoencoder network structure is shown in Fig. 3 and
its mapping function is expressed as

fθ

(
P̃
)
= δθ

(
εθ

(
P̃
))

, (2)

where δθ denotes the decoder and εθ denotes the encoder.
Noting that the conventional U-Net structure tailored to the

2D data processing is not respectably suitable for our proposed
3D data structure due to the inevitable problems arising from
the excessive parameters of the 3D data. Specifically, both
of the training complexity and the over-fitting risk increase
with the number of data dimensions if the conventional U-
Net structure is used. Therefore, a novel U-Net structure is
designed for processing 3D data. The details of our proposed
autoencoder structure are stated as follows.

1) The novel autoencoder network is composed of six
layers. It greatly decreases the number of the neural
network layers compared to the conventional U-Net deep
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Fig. 4: The training loss curves of the proposed 3D-data-
adapted autoencoder network in various circumstances.

neural network structure. The parameter load is allevi-
ated and the training complexity is reduced accordingly
by decreasing the depth of the neural network.

2) The core components of our network are the improved
3D convolution layer and 3D transposed convolution
layer suitable for processing 3D data. The parameters
of the convolution kernel are set as k = 4, s = 2
and p = 1, which are different from the common
settings of a convolution layer, i.e., k = 3, s = 1 and
p = 1. It is obvious that our convolution layer is capable
of compressing the size of the feature maps while
increasing the channel number. In this way, the layers
routinely following the convolution operation are no
longer required, such as the pooling and down-sampling
layers. This design reduces the depth of the network and
alleviates the training complexity consequently.

3) In order to avoid overfitting caused by overextracting
the features of the datasets, the double-convolution-layer
combination in the conventional U-Nets is replaced with
a single convolution layer.

4) Finally, the decoder obtains the feature maps from the
corresponding layers in the encoder and merges them
in the channel dimension. The high-resolution feature
maps from the encoder provide the decoder with more
fine features and improve the construction capability of
our network.

IV. SIMULATION RESULTS

In this section, the simulation details including the parame-
ter settings and dataset generation are first presented. Then, the
simulation results are given to demonstrate the superiority of
our proposed scheme compared with the benchmark schemes.

A. Parameter Setting and Dataset Generation

The parameter settings are present as follows based on
those used in [5] and [13]. χ is a discretized square region
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Fig. 5: The visualization results of the estimated spectrum maps under different schemes. (a) The results of a single-signal-
source case; (b) The results of a double-signal-source case.
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Fig. 6: The construction performance versus the sampling ratio
under different schemes.

of 36 × 36 grids representing an actual geographical region
of side 100 m. The propagation pass loss coefficients of the
environment over the frequency and distance are 20 and 1,
respectively. The transmitters are deployed randomly and the
signal frequency set F is set to F = {900, 1500, 1800, 2100}
MHz, of which any one can be set as a target frequency.
Two cases are considered. One case has a single signal source
while the other one has multiple signal sources. While the
numbers of the sensors are determined by the sampling ratios
range from 15% to 45% with a step of 10%, and the locations
are randomly generated. For each setting, a separate dataset

consisting of over 3 × 104 samples are generated according
to our radio propagation model given as follows and divided
into a training set and a testing set in the fixed proportion.

Remark 1: For the radio propagation model, it is considered
that a transmitter sends a signal at the frequency fk, and the
large-scale fading during the propagation is taken into account
since the effects of the small-scale fading can be averaged out
when dealing with the average received signal strength [13].
Then, the received signal strength at the location xi,j from the
transmitter is modeled as

P (fk,xi,j) = PTx − nf log10 (fk)− 10ndlog10 (d)− LC ,
(3)

where PTx represents the transmitting power of the signal
source (dBm). nf and nd represent the path loss coefficients
over the frequency and distance, respectively. LC is the free-
space propagation loss which remains constant over time. d is
the distance between the transmitter and the receiver.

In order to show the measurement error in the actual mea-
surement campaign, the additive zero-mean Gaussian noise
is added to each simulative measurement as a random noise
disturbance. It enables the model to extract the true distribution
of the spectrum data from the ‘dirty’ defective data. In this
case, the generalization ability of the model is improved.

Data preprocessing (i.e., data normalization) is carried out
before feeding the datasets into our autoencoder network, for
the sake of learning better the distribution characteristics of the
samples and reaching more ideal results during the backward
gradient propagation and model weight update. The received
signal strength at each grid point is normalized as

P =
P0 − Pmin

Pmax − Pmin
, (4)



where Pmax and Pmin represent the maximum and minimum
of the received signal strength in the datasets, respectively.
Through data normalization, the inputs of our network are
reshaped with one more channel. Thus, the dimensions of the
inputs become 1× (K + 1)×N ×N and the value range is
[0, 1].

B. Performance Evaluation

The neural network is developed and trained in PyTorch
platform by an Adam optimizer with an initial learning rate
of 0.0005 for 35 epochs. The mini-batch training strategy is
utilized. Whenever a batch of training is finished, a backward
gradient propagation pass is conducted to update the trainable
parameters of the network.

Fig. 4 shows the training loss curves of our proposed
autoencoder network achieved under different numbers of
sources with diverse sampling ratios. It is shown that our
network has a fast convergence speed in all settings. Moreover,
the training loss decreases to a very low level within 5 epochs
and achieves convergence within 10 epochs in all settings.
This demonstrates the efficiency of our proposed autoencoder
network.

To intuitively compare the construction results of different
schemes, Fig. 5 shows the visualization results of the spectrum
maps obtained by our proposed scheme and those achieved
by using different interpolation methods including the space-
frequency-interpolated Kriging [5] and the inverse distance
weighted (IDW) interpolation [8]. It is realized by mapping
the normalized signal strength of each geographical grid to the
corresponding color of a colorbar. Fig. 5(a) shows the results
of a single-source scenario while Fig. 5(b) shows those of
a double-source scenario, both presenting the true spectrum
map, the spectrum map constructed by our proposed scheme,
the space-frequency-interpolated Kriging and the IDW interpo-
lation in sequence. It is obvious that our scheme outperforms
the benchmark schemes in terms of the accuracy. Moreover,
it can characterize the overall distribution of spectrum usage
and the locations of the signal sources.

In order to further demonstrate the superiority of our
proposed scheme, Fig. 6 compares the construction perfor-
mance of our proposed scheme with those of the benchmark
schemes. The abscissa and ordinate represent the sampling
ratio (%) and the construction error (dB), respectively. It
can be observed that our scheme is significantly superior to
the benchmark schemes. Taking the single-source scenario
as an example, its construction error is about 2.53 dB at
the 15% sampling ratio, which is about 3% lower than that
of the space-frequency-interpolated Kriging method and 9%
lower than that of the IDW interpolation method. And its
construction error reaches about 0.76 dB at the 45% sampling
ratio, which is approximately 61% lower than that of the space-
frequency-interpolated Kriging method and 72% lower than
that of the IDW interpolation method. Moreover, it is seen
that the construction accuracy of our scheme increases with the
sampling ratio. The reason is that the model is provided with

more effective information from the spectrum data for learning
the distribution when the datasets contain more sampling data.

V. CONCLUSION

An accurate spectrum map construction scheme was pro-
posed by using an intelligent frequency-spatial reasoning ap-
proach. The frequency correlation among different spectrum
maps at different frequencies was fully exploited to accurately
estimate the spectrum maps of the frequencies without data
samples. A novel autoencoder suitable for processing 3D data
was proposed to learn and utilize the frequency and spatial
characteristics of the radio propagation. Simulation results
demonstrated the superiority of our proposed scheme in terms
of the construction accuracy and the convergence speed of our
network compared with the benchmark schemes.
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