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Abstract—The global Information and Communications Tech-
nology (ICT) supply chain is a complex network consisting of all
types of participants. It is often formulated as a Social Network
to discuss the supply chain network’s relations, properties, and
development in supply chain management. Information sharing
plays a crucial role in improving the efficiency of the supply chain,
and datasheets are the most common data format to describe
e-component commodities in the ICT supply chain because of
human readability. However, with the surging number of electronic
documents, it has been far beyond the capacity of human readers,
and it is also challenging to process tabular data automatically
because of the complex table structures and heterogeneous layouts.
Table Structure Recognition (TSR) aims to represent tables with
complex structures in a machine-interpretable format so that the
tabular data can be processed automatically. In this paper, we
formulate TSR as an object detection problem and propose to
generate an intuitive representation of a complex table structure to
enable structuring of the tabular data related to the commodities.
To cope with border-less and small layouts, we propose a cost-
sensitive loss function by considering the detection difficulty of
each class. Besides, we propose a novel anchor generation method
using the character of tables that columns in a table should share
an identical height, and rows in a table should share the same
width. We implement our proposed method based on Faster-
RCNN and achieve 94.79% on mean Average Precision (AP), and
consistently improve more than 1.5% AP for different benchmark
models.

Index Terms—Table Structure Recognition, Tabular Informa-
tion Extraction, Object Detection for Tabular Data

I. INTRODUCTION

The global Information and Communications Technology
(ICT) supply chain is a complex network consisting of in-
dividuals, organizations, countries, suppliers, consumers, and
other participants. This complex supply chain network is of-
ten formulated as a Social Network and analyzed by Social
Network Analysis tools in the supply chain management and
optimization [[1]. Information sharing plays a critical role in the
ICT supply chain optimization [2]], and datasheets have been
widely used to describe e-component commodities and to share
information across different participants because of their user-
friendliness to human readers. Besides, tables are also widely
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Fig. 1: Figure (a) shows a sample output of EasyOCR, in
which all the detected areas all content-focused, some cells are
recognized as multiple cells, and some cells are not detected.
Figure (b) shows the defined four types of objects in this paper.

used in these datasheets to summarize and present important
information.

Even though tables in datasheets are compact and convenient
for human readers, it is impractical for human readers to deal
with the vast number of electronic documents. Therefore, it
becomes critical to detect and process the tables in datasheets
automatically so as to extract, organize and share information in
the supply chain network efficiently. This is still a challenging
task because tables in datasheets are not structured, and the



appearance of these tables varies. Figure[I|shows a table sample
from PubTablesIM [3] dataset, which does not have explicit
vertical lines among tables columns but contains spanning cells
across multiple columns and rows, making it challenging to
identify and locate the table cell precisely. Since datasheets
cannot provide enough meta-data to extract and interpret tables
and can be easily converted into document images, we focus
on document images in this study, which is also the dominant
problem assumption in recent studies. Most of the related
studies [4], [S] use the margin among characters to determine
whether they belong to an identical word or sentence. As
a result, the detected results of these solutions suffer from
recognizing the content in a single table cell as several cells, and
the bounding boxes are content-focused, and cannot deal with
empty cells, which can not reflect the complex table structures.
Figure [La shows an example output of EasyOCR [4]], in which
all the bounding boxes are content-focused, some cells are
broken into multiple different parts, and many cells are missed.
In contrast, in this paper, following the design of the study
in [3], we locate the table rows and columns instead of table
cells and use the intersection of rows and columns to infer the
location of table cells. As shown in Figure [Tb] table columns
and table rows can help identify the contents in an identical
column and row, respectively, and the intersection area of table
columns and table rows can be inferred as table cells. Besides,
to deal with complex table structures, table spanning cell is
defined so that some cell areas can be merged to recover the
original table structure.

On the other hand, object detection models, such as Faster-
RCNN [6], Mask-RCNN [7], have also been applied to the
Table Detection (TD) and table cell detection problems in many
studies. Typically, these two-stage object detection methods
need to generate a set of region proposals by the Region
Proposal Network (RPN) and then classify and reduce the
number of region proposals by combining the classification and
regression tasks. Since objects in an image can have different
sizes, one common weakness of such methods is that small
objects usually cannot be detected as accurately as large objects.
Besides, the number of samples in each category is usually
imbalanced. FigureE]shows the statistics of the PubTable 1M [3|]
dataset, which is a large scale dataset used in Section @ The
distribution of each class’s samples and the average size of each
class’s bounding boxes are extremely imbalanced. Therefore, in
this study, we define the detection difficulty of each class by
considering the sample amount and the average bounding box
size of each class and propose a detection difficulty based cost-
sensitive loss to balance each class to be detected in both the
classification task and the regression task in the two-stage object
detection models. Moreover, it is straightforward to observe that
all columns in a table share an identical height, and all rows
in a table have an identical width in our problem definition.
Based on this observation, we propose a new anchor generation
method that generates a series of fixed height bounding boxes
for columns and a series of fixed width boxes for rows and
sampling the region proposals with an imbalanced policy giving
small objects higher priorities.

At last, even though there have been studies discussing the
TSR problem, most of them only use some small-scale datasets.
PubTablelM [3] is a large dataset containing 758K tables with
the annotation of columns and rows. In this study, we use this
large dataset to conduct experiments and further analyze the
impact of different number of training samples. To sum up, the
contribution of this work can be three folds:

1) Following the definition of study [3|], we define four
types of objects in a table and propose a top-down ap-
proach to represent the complex table structure, make the
unstructured tables structured and machine-interpretable,
and conduct experiments in a large scale, further analysis
the impact of different training samples. We hypothesize
that this proposed method will improve the information
sharing efficiency in the context of ICT supply chain
Social Network of commodities.

2) We propose a detection difficulty based cost-sensitive loss
function that can guide the model to learn more features
from the classes which are hard to be predicted and
located.

3) We propose a new anchor generation method based on
the observation that all the columns in a table have a
fixed height and all the rows in a table share a fixed
width in our problem definition. Our experimental results
demonstrate that our proposed method can consistently
improve the benchmark models by around 1.5% Aver-
age Precision (AP), and our trained Faster-RCNN based
model can achieve 94.79% AP.

The rest of this paper is organized as follows: Section
discusses related studies, including studies in TD and TSR
problems. Section [IT] presents the problem definition, and the
proposed method. Section shows the experimental results
and discusses the design aspects of the proposed method.
At last, we draw our conclusion and possible directions in
section [V]

II. RELATED WORK

As discussed in section [, the global ICT supply chain
network can be formulated as a complex Social Network, and
tabular data has been the de facto standard for information shar-
ing among the participants in the ICT supply chain community
network. In this section, we discuss related studies on the TSR
problem, which can be adopted to process tabular data in ICT
supply chain, and some typical solutions to the data imbalance
problem in the context of TSR.

A. Table Detection and Table Structure Recognition

TD and TSR problems have been widely discussed recently.
Typically, TD problem is defined as a objection detection
problem, and two-stage object detection models, such as Faster-
RCNN [6], Mask-RCNN [7] and their variations, are more
popular than one-stage methods to be adopted in this problem
because two-stage models usually can achieve higher perfor-
mance. Many design aspects, including backbone network,
model architecture, and transfer learning method, augmentation
methods can influence the performance of two-stage object



detection models. CascadeTabNet [8|] is a variation of Mask-
RNN, which uses HRNetV2p [9] as the backbone and proposes
an iterative transferring method in order to make the model can
be adapted to small datasets. TableDet [[10] uses a proposed
augmentation method named Table Aware Cutout (TAC), which
is implemented by cutting out some tables in the document
images randomly. The TAC method is applied to popular two-
stage detection models and achieved promising results.

Table Structure Recognition (TSR) problem aims at repre-
senting the complex table structure with a machine-interpretable
format and converting the unstructured tabular data into a
structured format. In general, popular methods for the TSR
problem can be roughly categorized into two groups: top-
down approaches and bottom-up approaches. Typically, top-
down approaches define the TSR problem by detecting the
table columns and table rows directly. DeepDeSRT [11]] is a
typical top-down approach that uses a segmentation method
to segment table columns and table rows directly, which can
be implemented by Fully Convolution Networks. Meanwhile,
other studies [3]], [[10] also utilized object detection method
to detect table columns and table rows. Study [3] evaluates
the two-stage object detection model and transformer based
detection model and sets up new benchmarks on a new dataset.
In contrast, bottom-up approaches [12], [13] use table cells
as the basic units in a table and use a graph to represent the
complex structure. More specifically, in bottom-up approaches,
table cells are represented by the graph nodes, and three types
of cell associations including "No Connection”, “Horizontal
Connection” and ~Vertical Connection” are defined to build the
relations among cells, which can be represented by the edges
in a graph. GraphTSR [13] is a typical bottom-up approach that
proposes a graph attention model to build the relation among
table cells with the assumption that all the cells’ bounding
boxes are known.

B. Data Imbalance and Hard example mining

Dataset imbalance is a common problem when applying
machine learning algorithms in many scenarios. Cost-sensitive
learning and hard example mining methods are widely used to
alleviate the dataset imbalance problem. Study [14] propose a
deep model cost-sensitive model that can learn robust features
from both minority and majority samples by training the class-
dependent cost and model parameters jointly. In object detec-
tion problems, the imbalance problem can also have adverse
effects on the model performance. The hard example sampling
method is a common method when training RPN network to
generate balanced positive and negative samples considering
the difficulty of samples, and the detection difficulty is often
modeled by the confidence score or the IoU score. Study [15]
proposes an Online Hard Example Mining (OHEM) consider-
ing the loss values of positive and negative samplings during
training. Libra R-CNN [16] discusses the imbalance problem at
the sample level, feature level, and objective level and proposes
using balance losses using the IoU as the measurement of
sample hardness. Study [17] categorizes the imbalance problem
into four groups, including class imbalance, scale imbalance,

spatial imbalance, and objective imbalance, and further dis-
cusses various solutions to these groups of imbalance problems
in the object detectors.

III. PROPOSED METHOD

In the global ICT supply chain network, crucial information,
especially for e-component commodities, is often summarized
and presented by tables in the datasheets. However, these
tabular data is unstructured and not machine-readable, and the
volume of data has been far beyond the capacity of human
readers. In this section, we present the formal problem defini-
tion and our proposed method to transform these unstructured
tabular into structured, machine readable format by solving
the TSR problem to form ICT supplier communities from
unstructured data with minimum human intervention.

A. Problem Definition

In this study, we formulate the TSR problem as an ob-
ject detection problem. Given a training set Dy.qin =
{x;,y™, b Y |, where N is the number of samples in the
training set, x; is the 4th image sample, b]* is the mth
bounding box of the ith image and y;" is the corresponding
object class of b;". We define four classes of objects in our
TSR problem, namely table, table column, table row, table
spanning cell, each of which can be denoted by a number,
namely, ¥y € {0,1,2,3}. The target of the problem is to
train a model that can predict the defined objects’ bound-
ing boxes in a image and their classes, which means that
Py {7 = B}C”, yp' = yi'|zx}. Notably, a bounding box can be
denoted by a coordinate, a height, and a width, meaning that
b = {a, y™, width!", height!"}. Tt is a regression problem
to predict the correct bounding boxes, and it is a classification
problem to predict the type of the object in each bounding box.

B. Structure Aware Anchor Generation

In popular two-stage detectors, such as Faster-RCNN and
Mask-RCNN, RPN plays a key role in generating region
proposals that should be able to cover ground-truth objects
as accurate as possible, as shown in Figure [2] Observing that
all the columns in a table share the same height and all the
rows in a table have an identical width, as shown in Figure
we generate anchors for the columns and rows separately in
the step of anchor generation. For the column anchors, we fix
the heights for each level of feature pyramids and generate a
series of bounding boxes with different aspect ratios, while the
generation of row anchors shares a similar process but fixes the
width. Notably, anchors for tables and spanning cells can be
covered in generating anchors for columns and rows. Figure [3]
shows a sample of anchor generation when height is 32, and
aspect ratio is [0.5, 1, 2].

C. Cost-sensitive loss

Figure [2] shows a generalized architecture of Faster R-CNN,
which mainly contains three components, including a Feature
Pyramid Network (FPN), a RPN, and a ROIHead. The FPN is
used to extract image features usually implemented by a deep
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Fig. 2: Overall architecture of generalized Faster R-CNN.

CNN network, and the generated features are fed into RPN
to generate region proposals. Then the generated features and
the region proposals are fed into the ROIHead to fulfill the
classification and regression tasks. Our proposed cost-sensitive
loss is used in the ROIHead because the generated region
proposals are usually imbalanced. Smooth L1 loss L, which
is defined by Equation [T} is widely used in many two-stage
detectors for the regression task. L is an extension of L1 loss,
smoothing the L1 loss when x is close to 0. However, L1 loss
and Smooth L1 loss are sensitive to the size of the bounding
box, and it can be beneficial to promote the importance of
small objects. Therefore, we further define a cost-sensitive L1
loss L., which is defined in Equation ] and [2] in which A is a
hyper-parameter used to balance the importance of the number
of bounding boxes and the size of bounding boxes, « is hyper-
parameter to consider other factors influencing the detection
difficulty of each class, which can be set to 0 when other factors
influencing the detection difficulty are ignored. m; and n; in
Equation [2] are the number and size of ith class’s bounding
boxes in a mini-batch during training, and C' in Equation [4] are
the total number of classes. At last, we use a weighted sum
of each class’s smooth L1 loss, in which harder classes are
assigned more weights.

E iflel < 8 "
° |z| — 0.58 otherwise
m; n;
L=1-N=——+ = +aq (2)
Zj m; >k Tk
exp(—li)
Wi == 13 3)
> exp(=1y)
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Fig. 3: Comparison of typical anchor generation and fixed
height anchor generation.

Similarly, for the classification task in the ROIHead, the
most popular loss function is cross-entropy, which is often
implemented with a parameter to re-weight the importance of
each class. Therefore, we set the weight parameter of cross
entropy with the weights as shown in Equation [3}

For the TSR problem, as defined in Section [[II-A] there are
four types of objects, including table, table column, table row,
and table spanning cell, as shown in Figure [Tb] In the defined
four types of classes, table spanning cell is usually the hardest
type to be detected because spanning cells are the smallest
objects and relatively small number of samples.

IV. EXPERIMENTS AND ANALYSIS
A. Experimental settings and results

PubTablelM [3] is a large-scale dataset providing four types
of structural units of tables, including table, table column,
table row, and table spanning cell, as shown in Figure [I] The
dataset consists of a training set, validation set, and testing set,
each of which contains 758849, 94959, and 93834 samples,
respectively. We use the entire training set for training and the
validation set to tune parameters and select the model with the
best validation score as the best model. All the models are
implemented with detectron2 [18]], the MAX_ITER is set to
180000, and IMS_PER_BATCH is set to 16. ResNet50 [19]
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and ResNetlO1 [19], both of which are pre-trained with
ImageNet [20] dataset, are used as the backbone network.
Following the popular evaluation metrics in object detection,
Average Precision (AP) with different IoU threshold, as defined
in Equation [5] and Equation [ are used as the evaluation
metric. The experimental results regarding Average Precision
with different ToU threshold are shown in Table[l, and Table
shows the AP on each class. More specifically, AP in Table [I
and Table [l means the average over 10 IoU levels from 0.5
to 0.95 with a step size of 0.05, AP50 and AP75 means the
IoU threshold is set as 0.5 and 0.75, respectively. APg, APjs
and APy represent the results on small, medium and large
objects respectively, as defined in Equation [/| Notably, we do
not include the results in study [3]] because of the different
experimental settings.

|AN B
IoU = —— 5
Y T1AUB| ©)
TruePositive
Precision = 6
recsion TruePositive + FalsePositive ©)
small if area >32% px
object = { medium if 322 <area <642 pX 7
large otherwise

The experimental results show that it is more difficult for
detectors to detect table rows and table spanning cells for the
original version of Faster-RCNN, but our proposed method can
improve the performance of detectors on table rows and table
spanning cells consistently, as shown in Table [I[I Meanwhile,
Figure [3] shows a prediction sample whose input table image
does not contain any explicit borderlines, and the trained model
can detect all the classes correctly.

B. Discussion and Analysis

1) The impact of batch size: Since the proposed cost-
sensitive loss is based on the samples in a mini-batch, batch
size can influence the performance of the proposed method.

TABLE I: Experimental results on PubTablelM dataset. * and
1 mean that the model is trained with original version of Faster-
RCNN and our proposed method, respectively. The batch size
is set to 16 for all models in this table.

Backbone AP AP50 | AP75 | APg | APy | APy
ResNet50® | 89.03 | 94.72 | 92.56 | 71.17 | 87.80 | 87.83
ResNet101* | 93.02 | 96.01 | 95.03 | 81.21 | 92.93 | 92.26
ResNet50T | 90.87 | 95.80 | 94.05 | 70.66 | 88.82 | 90.44
ResNet101T | 94.79 | 97.46 | 96.42 | 82.55 | 94.20 | 94.53

TABLE II: Class specific experimental results on PubTablelM
datasets. T, TC, TR, and TSC are short for table, table column,
table row, and table spanning cell, respectively. * and { mean
that the model is trained with the original version of Faster-
RCNN and our proposed method, respectively. The batch size
is set as 16 for all models in this table.

Model T TC TR TSC
ResNet50* | 98.88 | 97.32 | 87.78 | 73.98
ResNet101* | 99.01 | 98.51 | 90.99 | 83.56
ResNet50T | 98.89 | 97.38 | 93.15 | 74.05
ResNet101T | 99.01 | 98.53 | 95.81 | 85.81

In this section, we fixed other parameters and set the batch
size to 8, 16, and 32, to analyze the impact of batch size.
The experimental results in Table [[TI] and Table [[V] show that
increasing the number of batch size can be helpful to improve
the model performance.

TABLE III: Experimental results on PubTablelM dataset with
different batch size.

Batch Size AP AP50 AP75 APg AP s APr,
8 90.00 95.41 93.49 67.92 86.93 89.49
16 90.87 95.80 94.05 70.66 88.82 90.44
32 91.51 | 96.30 | 94.61 | 72.92 | 89.44 | 91.03

TABLE IV: Class specific experimental results on PubTable1M
datasets with different batch sizes.

Batch Size T TC TR TSC
8 98.88 97.04 92.69 71.39
16 98.89 | 97.38 93.15 74.05
32 98.88 | 97.49 | 94.00 | 75.65

2) The impact of the number of training samples: As dis-
cussed in Section [[V] the PubTablM dataset contains 758849
images as the training set. However, the images are all from
PMCOA corpus, meaning that there is only one data source, and
the difference of tables’ appearance can be limited. Therefore,
we train multiple models using different numbers of training
images sampled from the training set randomly to explore
whether it is necessary to use such a large training set. The
experimental results show that using 1/5 and 1/10 of training
samples does not lead to performance degradation significantly
for our Faster-RCNN based model. This can be an open issue
of how many samples can be enough for different models.

V. CONCLUSION AND FUTURE WORK

The ICT supply chain is often formulated as a complex So-
cial (Community) Network in the field of supply management,
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with different backbones by more than 1.5% consistently. Even
though we train and evaluate the model on a large scale, the
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the model in more domains can be a direction for future work.
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Fig. 5: A sample output of the trained Faster-RCNN based
model. Notably, red, blue, green, and black bounding boxes
denote the table spanning cell, respectively, and the original
table does not contain any borderlines.

TABLE V: Experimental results on PubTablelM dataset with
different number of training samples.

Samples AP AP50 AP75 APg AP APp,

758849 | 90.87 | 95.80 94.05 | 70.66 | 88.82 | 90.44
151811 90.79 | 95.95 | 94.17 | 69.32 87.87 90.27
76223 90.67 95.88 94.09 67.42 87.78 90.17

TABLE VI: Class specific experimental results on PubTable 1M
datasets with different number of training samples.

Samples T TC TR TSC

758849 | 98.89 | 97.38 | 93.15 | 74.05
151811 98.88 | 97.11 | 93.49 | 73.67
76223 98.88 | 97.10 | 93.46 | 73.25

and the relations of participants in the network can be very
complex and consists of different interconnections, such as sub-
suppliers, suppliers, manufacturers and consumers [21]]. In this
study, we focus on the data sharing problem in the complex
supply chain network, and propose a solution that can transform
unstructured tabular data of components into a structured format
to alleviate the problem that the wide usage of tabular data in
extremely large volumes exceeds the capacity of human readers.
Besides, the proposed method can be helpful in the context of
sharing crucial e-component commodities information, because
in the ICT supply chain these data are usually summarized and
represented within the tables of datasheets. In the proposed
solution, we formulate the problem as an object detection
problem and build two benchmark models on the PubTablM
dataset. We further define a new low function based on smooth
L1 loss considering the number of bounding boxes and the
mean size of bounding boxes in every mini-batch during the
training process, guiding the detector learn more discriminated
features from the hard examples, and propose a new anchor
generation method based on the observation that the rows in a
table share the same width and the columns in a table share
an identical height. The experimental results show that the
proposed method can increase the AP of Faster-RCNN models
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