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Abstract—This paper studies distributed Bayesian learning in
a setting encompassing a central server and multiple workers by
focusing on the problem of mitigating the impact of stragglers. The
standard one-shot, or embarrassingly parallel, Bayesian learning
protocol known as consensus Monte Carlo (CMC) is generalized
by proposing two straggler-resilient solutions based on grouping
and coding. Two main challenges in designing straggler-resilient
algorithms for CMC are the need to estimate the statistics of
the workers’ outputs across multiple shots, and the joint non-
linear post-processing of the outputs of the workers carried
out at the server. This is in stark contrast to other distributed
settings like gradient coding, which only require the per-shot
sum of the workers’ outputs. The proposed methods, referred
to as Group-based CMC (G-CMC) and Coded CMC (C-CMC),
leverage redundant computing at the workers in order to enable
the estimation of global posterior samples at the server based on
partial outputs from the workers. Simulation results show that
C-CMC may outperform G-CMC for a small number of workers,
while G-CMC is generally preferable for a larger number of
workers.

Index Terms—Distributed Bayesian learning, stragglers, Con-
sensus Monte Carlo, grouping, coded computing

I. INTRODUCTION

One of the main problems in distributed computing systems
[1]–[4] is the presence of stragglers – i.e., working machines
whose random computing time is much larger than other
machines [5]. The effect of stragglers may be mitigated by
leveraging redundant storage and computing at the workers,
whereby each worker is allocated, and computes over, multi-
ple data shards. State-of-the-art techniques leverage grouping,
whereby groups of workers are assigned the same shards and
compute the same output, and/or coding, whereby computed
outputs are coded at the workers and jointly decoded at the
server [6]–[8].

Existing work on grouping and coded distributed computing
for machine learning applications focuses on frequentist learn-
ing. In frequentist learning, the goal is to identify a single model
parameter vector that approximately minimizes the training
loss, e.g., via gradient descent [6]–[8]. Frequentist learning is
limited in its ability to quantify uncertainty, incorporate prior
knowledge, guide active learning, and enable continual learning.
Bayesian learning provides a principled approach to address all
these limitations, at the cost of an increase in computational
complexity [9]–[13].

Scalable implementations of Bayesian learning are based
on either variational inference (VI) – replacing integration
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Fig. 1. Distributed Bayesian learning via Consensus Monte Carlo (CMC).

with optimization over an approximate posterior distributions
– or Monte Carlo (MC) sampling – replacing integration with
sampling from the posterior distribution [11]. VI-based proto-
cols for distributed Bayesian learning follow the same general
principles of standard distributed frequentist learning (e.g., [14]
and references therein). Distributed MC sampling protocols are
either one-shot, i.e., embarrassingly parallel [15]–[17]; or else
based on iterative gradient-based methods [18], [19] .

In this paper, we focus on the standard one-shot protocol
known as Consensus Monte Carlo (CMC) [15]. CMC aims at
obtaining samples from the global posterior distribution based
on local sampling at the workers and aggregation at the server
(see Fig. 1). CMC assumes that all workers respond to the server
by delivering their local samples before a global sample can be
produced by the server. This paper considers, for the first time,
the problem of stragglers for CMC.

Two extensions of CMC are proposed that obtain resilience to
stragglers based on grouping and coding. The first protocol, re-
ferred to as Group-based CMC (G-CMC), requires the partition
of workers into groups, with each group being responsible for
the computation of local samples for a given subset of shards. In
contrast to grouping methods proposed for frequentist learning
and distributed computing [7], [20], a novel feature of G-CMC
scheme is that all the computed samples can be eventually
utilized, even if produced by straggling workers. The second
protocol, Coded-CMC (C-CMC) applies an erasure correcting
code to the produced samples, in a manner similar to gradient
coding [6]. Unlike gradient coding, C-CMC requires the design
of a novel pre-processing step of the local samples in order to
enable CMC-based aggregation at the server.
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II. SYSTEM MODEL
This paper considers the problem of drawing samples from a

posterior distribution on a large training data set to implement
Bayesian learning via Monte Carlo (MC) sampling. Let Z =
{zn}Nn=1 represents the training data and θ ∈ Rd represents
the model parameter vector. The global posterior distribution is
given as

(Global Posterior) p(θ|Z) ∝ p(θ)p(Z|θ), (1)

where p(θ) is the prior distribution and p(Z|θ) is the likelihood.
We assume that the data points are conditionally independent
and identically distributed (i.i.d.), given the model parameter
vector θ, i.e., p(Z|θ) =

∏N
n=1 p(zn|θ). The goal is to draw L

samples {θl}Ll=1 from the global posterior p(θ|Z).
We adopt a data center computing platform that consists of

a server and K workers, as shown in Fig. 1. The training data
Z is partitioned into K disjoint shards Z = {Zs}Ks=1, each of
size N/K where K assumed to be an integer divisor of N , and
allocated to the workers by following a data allocation scheme.
We allow for a redundant shard allocation, so that each shard is
allocated to r workers, where r ∈ [K] , {1, ...,K} is referred
to as the redundancy parameter. Each worker k has a set Sk ⊆
[K] of |Sk| = r shards, which are denoted as ZSk = {Zs}s∈Sk ,
with per worker storage capacity Nr/K. Following CMC, we
assume that the sampling from each subposterior,

(Subposterior) p̃(θ|Zs) ∝ p(θ)
1/K

p(Zs|θ), (2)

is tractable, where p(Zs|θ) =
∏

z∈Zs
p(z|θ) represents the

local likelihood function for the s-th shard. In (2), the prior is
underweighted as p(θ)1/K in order to preserve the total prior,
so that the global posterior (1) can be expressed as the product
of subposteriors p(θ|Z) ∝

∏K
s=1 p̃(θ|Zs).

Each worker k computes in parallel r samples θlk,s ∼ p̃(θ|Zs)
for all the r allocated shards Zs: s∈Sk , where index l ∈
{1, 2, · · · } runs over the generated samples. We refer to the
collection of such samples as Θl

k = {θlk,s}s∈Sk . The produced
samples may be processed at the worker, and the outcome of this
calculation is sent to the server. The server uses this information
to produce global samples θl, that are approximately distributed
according to the global posterior distribution (1).

We assume that the wall-clock time ∆T lk required to compute
any l-th batch Θl

k of r local samples from the subposteriors
(2) of the shards allocated to each worker k is random with
mean ηr, for some η > 0. The computing times {∆T lk}k∈[K]

are i.i.d. across the workers and across index l [2], [6], [7].
An example distribution of the computing time is Pareto with
scale-shape parameters (ηr(β−1)/β, β), which gives mean ηr,
with η > 0, β > 1 as constants [7].

For any continuous time t, define as L(t) the number of
global samples produced at the server based on the information
received so far from the workers. Following the prior works
[16], [21], we evaluate the error of a CMC algorithm by fixing a
test function f(·), and comparing the empirical average obtained
with the produced global samples, {θl}L(t)l=1 , available at time
t with the corresponding ensemble average Ep(θ|Z)[f(θ)] with
respect to the true posterior distribution p(θ|Z) in (1). This can

be written as

err(t) =

∣∣∣ 1
L(t)

∑L(t)
l=1 f(θl)− Ep(θ|Z)[f(θ)]

∣∣∣
Ep(θ|Z)[f(θ)]

. (3)

Fig. 2. An illustration of computing times at K = 3 workers and at the
server. As an example, at time instant T 2, the server has access to L1(T 2) =
3, L2(T 2) = 2, L3(T 2) = 2 local samples from the respective workers, and
hence it can aggregate such sets of local samples, producing L(T 2) = 2 global
samples.

III. CMC WITH STRAGGLERS

In this section, we describe the standard CMC protocol in
the context of the system under study with random computing
times. The purpose of this novel formulation is to study
the effect of stragglers in the CMC protocol [15]. Following
[15], we focus here on the standard case with no computing
redundancy, i.e., r = 1, and we let each data shard, Zs, be
allocated only to worker k = s. Throughout this section, we
accordingly simplify the notation by writing θlk for the sample
θlk,k generated at worker k for the k-th shard Zk. Note also that
we have Θl

k = {θlk,k} = {θlk}.
Each worker k communicates a generated sample θlk to the

server as soon as it is produced, where index l ∈ {1, 2, · · · }
runs over the samples. Given the model described in Section II,
we denote as Lk(t) the number of samples {θlk}

Lk(t)
l=1 received

by the server up to time t from worker k, which is given by

Lk(t) = max

{
l :

l∑
l′=1

∆T l
′

k ≤ t

}
. (4)

As soon as all the K local samples {θlk}Kk=1 are received, a
global sample θl can be computed at the server by aggregating
the corresponding local samples {θlk}Kk=1. Therefore, at time
t, the number of global samples aggregated at the server is
L(t) = mink∈[K] Lk(t). An illustration of the computing times
of each worker and the server are shown in Fig 2, with K = 3
workers. The computing time of global samples at the server is
limited by the computing time of worker 3.

CMC makes the working assumption that the local samples
θlk are Gaussian N (µk, Ck) with mean µk and covariance Ck.
Under this condition, which is practically and approximately



valid only as N/K → ∞, the optimal aggregation function is
[15]

θl =

K∑
k=1

Wkθ
l
k, (5)

with weight matrices

Wk =

(
K∑
k=1

C−1k

)−1
C−1k . (6)

The weight matrices in (6) are not directly computable, since
the parameters {µk, Ck}Kk=1 are unknown. However, at time t,
the server can estimate the mean µk(t) and covariance Ck(t) of
the subposterior p̃(θ|Zk) by using the Lk(t) samples {θlk}

Lk(t)
l=1

received from the worker k up to time t as

µ̂k(t) =
1

Lk(t)

Lk(t)∑
l=1

θlk, and (7a)

Ĉk(t) = σ2I +
1

Lk(t)

Lk(t)∑
l=1

(θlk − µ̂k(t))
(
θlk − µ̂k(t)

)T
, (7b)

respectively, where σ2 is a regularization parameter. Using these
estimates CMC approximates the weight matrices in (6) and
obtain an estimate of the global sample θl, for each l ∈ [L(t)],
at time t, using (5), as

θl(t) =

K∑
k=1

(
K∑
k=1

(Ĉk(t))−1

)−1
(Ĉk(t))−1 θlk. (8)

At any time T l at which the sever has received a new set
of local samples {θlk}k∈[K], the server computes all global
samples {θl′(T l)}ll′=1 using (8), with the updated estimates
of covariance matrices, {Ĉk(T l)}k∈[K], calculated using (7b).
CMC is summarized in Algorithm 1.

Algorithm 1 CMC with straggling workers
1: Input: Number of workers K, data shards {Zk}Kk=1

2: Data allocation:
3: for each k ∈ [K] do
4: Allocate shard Zk to worker k
5: end for
6: At worker k: set l = 1
7: repeat
8: compute l-th sample θlk ∼ p̃(θ|Zk)

9: when completed, i.e., at time
∑l
l′=1 ∆T l

′

k , send
sample θlk to the server

10: end repeat
11: At the server: set l = 1
12: repeat
13: when receiving all l-th local samples {θlk}k∈[K], i.e.,

at time T l = max
k∈[K]

(
l∑

l′=1

∆T l
′

k ), compute the covariance

matrices {Ĉk(T l)}k∈[K] using (7),

14: for each l′ ∈ [l] compute θl
′
(T l) using (8) with

covariance matrices {Ĉk(T l)}k∈[K]

15: end repeat

IV. GROUP-BASED CMC (G-CMC)

In this section, we propose a protocol named G-CMC that
aims at leveraging the redundancy in data allocation to mitigate
the effect of stragglers on the performance of CMC. The
approach clusters all the workers into groups, similar to [7],
[20], [22], [23], and allocates the same set of r shards to all
the workers in a group. In this way, in order to generate the
l-th global sample θl, the server must only wait to receive one
batch of r local samples from the fastest worker in each group.

To elaborate, G-CMC partitions the set of K shards,
{Zs}s∈[K], into G disjoint groups {Zg}g∈[G] each having r
shards, and the set of workers, [K], into G disjoint groups
{Kg}g∈[G] each having r workers. Accordingly, we have K =
Gr. For any g ∈ [G], the group of shards Zg is allocated
exclusively to all the workers in group Kg , i.e., ZSk = Zg
for all k ∈ Kg . Therefore, each data shard is available at r
workers, and each worker has access to exactly r shards. For
r = 1, we get K = G, i.e., each group has exactly one user,
and G-CMC is equivalent to CMC (see Section III).

The main idea underlying G-CMC is to treat each group as a
“super-worker”, and apply the CMC protocol presented in Sec-
tion III accross the G “super-workers”. The l-th batch of r local
samples received from the g-th group Kg is Θl

Kg
= {θlKg,s

∼
p̃(θ|Zs)}s: Zs∈Zg

. We denote as LKg
(t) =

∑
k∈Kg

Lk(t), for
g ∈ [G], the number of batches of samples received from
the group Kg up to time t, where Lk(t) is the number (4) of
batches of samples generated by the user k ∈ Kg up to time t.
The LKg(t) batches of samples {Θl

Kg
}l∈[LKg(t)] are received at

the server from the group Kg at time instants {T lKg
}l∈[LKg(t)]

respectively, where T lKg
is the l-th order statistic, i.e., the l-th

smallest value, of the variables {{
∑i
l′=1 ∆T l

′

k }i∈[Lk(t)]}k∈Kg
.

As soon as all the l-th batches of samples, {Θl
Kg
}g∈[G],

with each batch having r local samples are received at the
server from all the G groups {Kg}g∈[G], a global sample θl

is computed at the server by aggregating the corresponding
K = Gr local samples

⋃
g∈[G] Θl

Kg
, and hence G-CMC is

resilient to G(r− 1) stragglers, as long as K is a multiple of r
(see also Section VI). Therefore, at time t, the number of global
samples aggregated at the server is L(t) = ming∈[G] LKg

(t). To
this end, the server estimates the mean µs(t) and covariance
Cs(t) of the subposterior p̃(θ|Zs), for Zs ∈ Zg , by using
the LKg

(t) samples {θlKg,s
∈ Θl

Kg
}l∈[LKg (t)]

received from the
group Kg up to time t as

µ̂s(t) =
1

LKg (t)

LKg (t)∑
l=1

θlKg,s
, and (9a)

Ĉs(t) = σ2I +
1

LKg (t)

LKg (t)∑
l=1

(θlKg,s
− µ̂s(t))(θ

l
Kg,s

− µ̂s(t))
T , (9b)

respectively, where σ2 is a regularization parameter. Using these
estimates, the weight matrices in (6) are approximated to obtain
the global sample θl, for each l ∈ [L(t)], at time t, using (5),
as

θl(t) =

K∑
s=1

(
K∑

s=1

(Ĉs(t))
−1

)−1

(Ĉs(t))
−1 θlKg,s. (10)



At any time T l at which the sever has received a new set of
batches of samples {Θl

Kg
}g∈[G], the server computes all global

samples {θl′(T l)}ll′=1 using (10) with the updated estimates
of covariance matrices, {Ĉs(T l)}s∈[K], calculated using (9b).
G-CMC is summarized in Algorithm 2.

Algorithm 2 Group-based CMC (G-CMC)
1: Input: Partition the set of workers [K] into G groups
{Kg}g∈[G] each having r workers, Partition the set of shards
{Zs}Ks=1 into G groups {Zg}g∈[G] each having r shards,
where r = K

G is the redundancy parameter
2: Data allocation:
3: for each g ∈ [G] do
4: allocate all r shards in the group Zg to all r workers in

group Kg , i.e., ZSk = Zg for all k ∈ Kg
5: end for
6: At the group of workers Kg: set l = 1
7: repeat
8: l-th batch of r local samples Θl

Kg
= {θlKg,s

∼
p̃(θ|Zs)}Zs∈Zg , is computed at any of the worker in the
group Kg

9: when completed, i.e., at time T lg , send Θl
Kg

to the server,
where T lg denote the l-th order statistic of the variables
{{
∑l
l′=1 ∆T l

′

k }l∈[Lk(t)]}k∈Kg

10: end repeat
11: At the server: set l = 1
12: repeat
13: when receiving all the l-th batches of samples
{Θl

Kg
}g∈[G], at time T l = maxg∈[G] T

l
g , compute the

covariance matrices {Ĉs(T l)}s∈[K] using (9)
14: for each l′ ∈ [l] compute θl

′
(T l) using (8) with

covariance matrices {Ĉs(T l)}s∈[K]

15: end repeat

V. CODED CMC (C-CMC)

In this section, we introduce C-CMC. To start, we fix a K×K
encoding matrix B and a F×K decoding matrix A that define a
gradient coding scheme [6] robust to r−1 stragglers, with F =(

K
K−r+1

)
. Accordingly, matrices A and B satisfy the equality

AB = 1, where 1 is the F ×K all-1 matrix. The shards are
allocated to the workers according to the non-zero entries of the
encoding matrix B, i.e., a shard Zs is allocated to the worker k
if the (k, s)-th entry of B is not equal to zero. The row weight
and column weight of B are all equal to r, accounting for the
facts that each shard is available to r workers and that each
worker has access to exactly r shards.

We assume that workers share common randomness, i.e.,
common random seeds, so that two workers k and k′ assigned
the same shard Zs produce the same l-th sample θlk,s = θlk′,s.
Accordingly, we henceforth write θlk,s = θlk′,s = θls. Note
that common randomness is a requirement for C-CMC and not
for G-CMC, which assumes the independence of the samples
{θlk,s}k: s∈Sk produced by all workers that are assigned the
same shard Zs (see Section IV).

Worker k estimates the mean µk,s(t) and covariance Ck,s(t)
of the subposterior p̃(θ|Zs), with s ∈ Sk, by using Lk(t)
batches of samples computed by it up to time t as

µ̂k,s(t) =
1

Lk(t)

Lk(t)∑
l′=1

θl
′
s , and (11a)

Ĉk,s(t) = σ2I +
1

Lk(t)

Lk(t)∑
l′=1

(θl
′
s − µ̂k,s(t))(θ

l′
s − µ̂k,s(t))

T (11b)

respectively, where σ2 is a regularization parameter. This is
in contrast to CMC and G-CMC, where the mean vector and
covariance matrix of the subposterior are estimated at the server.

At time t = T lk =
∑l
l′=1 ∆T l

′

k , worker k computes the l-
th batch of samples Θl

k = {θls}s∈[Sk]. Then, it updates the
covariance matrices Ĉk,s(t) using (11) for all s ∈ Sk. Given
the assumption of common random seeds described above, the
estimates Ĉk,s(t) and Ĉk′,s(t′) evaluated at any two workers k
and k′, with s ∈ Sk, s ∈ Sk′ and Lk(t) = Lk′(t

′), are equal.
Let bk be the 1 × K row vector of the encoding matrix

B corresponding to the worker k. Let Θl
k = {θlsi}i∈[r], with

si ∈ Sk for each i ∈ [r], be the l-th batch of r samples
computed at the worker k. Each sample θlsi is pre-processed
as (Ĉk,si(T

l
k))−1θlsi and the resulting processed samples are

encoded using the encoding vector bk as

θ̃lk = [(Ĉk,s1(T lk))−1θls1 · · · (Ĉk,sr (T lk))−1θlsr ](b̃k)T , (12)

with b̃k being the 1 × r row vector given as
[bk(s1) bk(s2) · · · bk(sr)], where bk(si) is the si-th
element of bk.

The server waits until it receives transmissions corresponding
to l-th samples from at least K − r + 1 workers, and proceeds
to decoding to finally compute the l-th global sample θl. This
occurs at time T l equal to the (K−r+1)-th order statistic, i.e.,
the (K−r+1)-th smallest value, of the variables {T lk}k∈[K], and
hence C-CMC is resilient to r−1 stragglers. Let the set of K−
r+1 non-stragglers for the l-th sample be indexed by an integer
j ∈ [

(
K

K−r+1

)
] and aj be the corresponding 1×K row vector of

the decoding matrix A. Let Klj = {kl1, kl2, · · · , klK−r+1} ⊆ [K]
be the corresponding subset of K − r + 1 non-stragglers. The
server decodes the sum of the processed l-th samples, by using
the transmissions from the workers in Klj , as

[θ̃lkl1
θ̃lkl2

· · · θ̃lklK−r+1
](ãj)

T =

K∑
s=1

(Ĉls)
−1θls = φl. (13)

with ãj being the 1 × (K − r + 1) row vector given by
[aj(k

l
1) aj(k

l
2) · · · aj(klK−r+1)], where aj(k

l
i) is the kli-th

element of the 1×K row vector aj for any i ∈ [K−r+1]. The
matrix Ĉls is the empirical covariance matrix of the subposterior
p̃(θ|Zs) computed using the first l samples, computed at any
worker in Klj , and is equal to Ĉl

kli,s
(T l
kli

) for any i ∈ [K−r+1].
In order to compute the l-th global sample θl in (8) the server

has to pre-multiply the decoded sample φl in (13) with the
matrix (

∑K
s=1(Ĉls)

−1)−1. We propose that the server estimates
the matrix

∑K
s=1(Ĉls)

−1 as the empirical covariance of the l
decoded samples φl

′
for l′ ∈ [l], i.e., as the matrix



D̂l =
1

l

l∑
l′=1

(φl
′
− φ)(φl

′
− φ)T ≈

K∑
s=1

C−1s (14)

with φ = 1
l

∑l
l′=1 φ

l′ . The approximate equality in (14) can
be seen to be exact when l→∞. Accordingly the final global
sample is θl = (σ2I + D̂l)−1φl, where σ2 is a regularization
parameter. The overall algorithm is summarized in Algorithm
3. The rationale for the proposed estimate (14) is provided in
the Appendix.

Algorithm 3 Coded CMC (C-CMC)
1: Input: Number of workers K, Maximum number of strag-

glers r − 1, Data shards {Zs}Ks=1

2: Consider two matrices A,B such that it forms a GC scheme
robust to r − 1 stragglers [6]

3: Data allocation:
4: for each k, s ∈ [K] do
5: if B(k, s) 6= 0 then
6: Allocate shard Zs to worker k
7: end if
8: end for
9: At worker k: set l = 1

10: repeat
11: computes the l-th batch of samples Θl

k = {θls}s∈[Sk]

12: when completed, i.e., at time T lk =
l∑

l′=1

∆T l
′

k , worker

k estimates the covariance matrices {Ĉls}s∈Sk of the sub-
posteriors {p̃(θ|Zs)}s∈Sk using the l batches of samples
{Θl′

k }l′∈[l] computed at the worker k.

13: worker k transmits θ̃lk using (12)
14: end repeat
15: At the server: set l = 1
16: repeat
17: using the transmissions from K − r+ 1 non-stragglers,

compute
∑K
s=1(Ĉls)

−1θls using (13) at time T l being equal
to (K− r+ 1)-th order statistic of the variables {T lk}k∈[K]

18: Estimate
∑K
s=1(Ĉls)

−1 using (14) and compute global
sample θl using (8).

19: end repeat

VI. EXPERIMENTS

In this section, we evaluate the performance of the considered
CMC schemes in the presence of stragglers. We present two
experiments on distributed computing systems with K = 5 and
K = 40 workers1. In both experiments, we assume that the
subposterior p̃(θ|Zs) for each shard Zs where s ∈ [K] to be a
5-dimensional multivariate Gaussian distribution N (0, Cs) with
a symmetric Toeplitz covariance matrix Cs using first column
[1 ρs ρ

2
s ρ

3
s ρ

4
s]
T with ρs = (s−1)/K [21]. As in [16], [21], we

calculate the error in (3) for multiple test functions, with each
test function fi,j(θ) = θ[i]θ[j] being an element in the outer

1We have carried out all experiments on a laptop with i7 pro-
cessor and 16 GB RAM by using MATLAB. Code is available at
<https://github.com/kclip/Straggler-resilient-CMC>.

Fig. 3. Average test error versus time with K = 5 workers and r = 2. C-CMC
is resilient to 1 straggler. As K/r is not an integer, we apply G-CMC on a
group of 4 workers, with the last group having one worker. As a result, G-CMC
is not resilient to stragglers, from the last group.

Fig. 4. Average test error versus time with K = 40 workers. For r = 2, C-
CMC and G-CMC are resilient to 1 and 20 stragglers respectively. For r = 4,
C-CMC and G-CMC are resilient to 3 and 30 stragglers respectively.

product matrix θθT for i, j ∈ [d], and average them to obtain
the final error. We consider Pareto distribution with η = 0.1 and
shape parameter β = 1.2, which corresponds to scale parameter
r/60 and mean 0.1r (see Section II), for the computing time
∆T lk at the workers (see, e.g., [7]).

In Fig. 3 and Fig. 4, we plot the test error averaged over
50 random realizations of computing times, as a function of
time, at K = 5 and K = 40 workers respectively, following
a Pareto distribution with η = 0.1 and shape parameter β =
1.2, which corresponds to scale parameter r/60, for the Pareto
distribution with mean 0.1r. The curve represents the average
error, and shaded region represents the error bars corresponding
to 0.15 times the standards deviation of the error across the
realizations. We plot the curves for CMC, C-CMC and G-CMC.
For K = 5, as K/r is not an integer, G-CMC is applied to
three groups with one of the groups having a single worker. If



the straggler is from the group containing a single worker, this
delays the computation of global sample at the server, which
in turn degrades the performance of G-CMC for smaller K.
Note that C-CMC can be directly applied as there is no such
restriction on r in C-CMC. From Fig. 3 and Fig. 4, we can
conclude that G-CMC is more efficient for straggler mitigation
for large values of K, where as C-CMC is efficient for smaller
values of K.

VII. CONCLUSIONS

In this paper, we have considered, for the first time, the
problem of stragglers in Consensus Monte Carlo (CMC) for
distributed Bayesian learning. We studied the effect of stragglers
in the standard CMC protocol, and proposed two schemes,
Group-based CMC (G-CMC) and Coded CMC (C-CMC) that
effectively leverage the redundancy in data allocation.

APPENDIX

In this Appendix, we detail the approximation in (14). To
this end, we write the empirical covariance of the l decoded
samples φl

′
, for l′ ∈ [l], as

D̂l =
1

l

l∑
l′=1

(
φl′(φl′)T

)
− φ(φ)T

=
1

l

l∑
l′=1

[(
K∑

s=1

(Ĉl′
s )
−1θl

′
s

)(
K∑

m=1

(θl
′
m)T (Ĉl′

m)−1

)]

−

(
1

l

l∑
l′=1

K∑
s=1

(Ĉl′
s )
−1θl

′
s

)(
1

l

l∑
l′=1

K∑
m=1

(θl
′
m)T (Ĉl′

m)−1

)
(a)
≈ 1

l

l∑
l′=1

[(
K∑

s=1

C−1
s θl

′
s

)(
K∑

m=1

(θl
′
m)TC−1

m

)]

−

(
1

l

l∑
l′=1

K∑
s=1

C−1
s θl

′
s

)(
1

l

l∑
l′=1

K∑
m=1

(θl
′
m)TC−1

m

)
where, the approximation in (a) is justified by the fact that, as
l→∞, the covariance matrix Ĉls converges to the ground-truth
covariance matrix Cs. Letting µls = 1

l

∑l
l′=1 θ

l′

s be the mean
of first l samples of p̃(θ|Zs), we can write D̂l as

D̂l ≈ 1

l

l∑
l′=1

[(
K∑

s=1

C−1
s θl

′
s

)(
K∑

m=1

(θl
′
m)TC−1

m

)]

− 1

l

l∑
l′=1

[(
K∑

s=1

C−1
s µl

s

)(
K∑

m=1

(µl
m)TC−1

m

)]

=
1

l

l∑
l′=1

K∑
s=1

[
C−1

s θl
′
s (θ

l′
s )

TC−1
s − C−1

s µl
s(µ

l
s)

TC−1
s

]
+

1

l

l∑
l′=1

K∑
s,m=1
s 6=m

[
C−1

s θl
′
s (θ

l′
m)TC−1

m − C−1
s µl

s(µ
l
m)TC−1

m

]
(b)
≈

K∑
s=1

C−1
s E[θl

′
s (θ

l′
s )

T − µl
s(µ

l
s)

T ]C−1
s

+

K∑
s,m=1
s 6=m

C−1
s E[θl

′
s (θ

l′
m)T − µl

s(µ
l
m)T ]C−1

m

=

K∑
s=1

C−1
s CsC

−1
s +

K∑
s,m=1
s 6=m

C−1
s (0)C−1

m =

K∑
s=1

C−1
s ,

where the approximation (b) is exact as l→∞.
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