
On the Design of Communication-Efficient
Federated Learning for Health Monitoring

Dong Chu, Wael Jaafar, and Halim Yanikomeroglu

Abstract—With the booming deployment of Internet of Things,
health monitoring applications have gradually prospered. Within
the recent COVID-19 pandemic situation, interest in permanent
remote health monitoring solutions has raised, targeting to reduce
contact and preserve the limited medical resources. Among the
technological methods to realize efficient remote health monitor-
ing, federated learning (FL) has drawn particular attention due
to its robustness in preserving data privacy. However, FL can
yield to high communication costs, due to frequent transmissions
between the FL server and clients. To tackle this problem,
we propose in this paper a communication-efficient federated
learning (CEFL) framework that involves clients clustering and
transfer learning. First, we propose to group clients through the
calculation of similarity factors, based on the neural networks
characteristics. Then, a representative client in each cluster is
selected to be the leader of the cluster. Differently from the
conventional FL, our method performs FL training only among
the cluster leaders. Subsequently, transfer learning is adopted
by the leader to update its cluster members with the trained
FL model. Finally, each member fine-tunes the received model
with its own data. To further reduce the communication costs,
we opt for a partial-layer FL aggregation approach. This method
suggests partially updating the neural network model rather than
fully. Through experiments, we show that CEFL can save up to to
98.45% in communication costs while conceding less than 3% in
accuracy loss, when compared to the conventional FL. Finally,
CEFL demonstrates a high accuracy for clients with small or
unbalanced datasets.

Index Terms—Federated learning, health monitoring, commu-
nication cost.

I. INTRODUCTION

Internet of Things (IoT) technology has raised in recent
years allowing its application in several areas such as e-health
wearable devices, smart homes, autonomous cars, etc. IoT
technology has been constantly improving our lives, and one of
the most rapidly developing IoT services is health monitoring.
Indeed, IoT sensors can be used to observe a patient’s con-
dition, detect early an illness, or alert the medical staff about
a critical health condition [1]. Within a pandemic situation
where the medical staff is constantly under pressure, remote
health monitoring has been rapidly developing to partially
alleviate this burden. Supported by IoT devices, remote health
systems can reliably ensure self-treatment at home, detect and
monitor emergency situations such as a heart attack or falling

D. Chu is with the School of Information and Communication Engineering
of the University of Electronic Science and Technology of China, Chengdu,
China, email: dong.chu.uestc@gmail.com. W. Jaafar is with the Software and
Information Technology Engineering department of École de Technologie
Supérieure, QC, Canada, email: wael.jaafar@etsmtl.ca. H. Yanikomeroglu
is with the Systems and Computer Engineering department of Carleton
University, ON, Canada, email: halim@sce.carleton.ca.

of an elderly, and automatically calling for assistance from the
adequate first responder staff [2].

In order for these services to be efficient, data need to
be collected from IoT devices, filtered, and processed. For
instance, to predict a falling event, motion data need to
be analyzed, while electroencephalography (EEG) signal and
heart rate history data can serve to synthesize an in-depth
report and pre-diagnose an illness. Data processing would
typically rely on cloud computing platforms [3]. To make
remote health monitoring more accurate, large-scale machine
learning (ML) approaches can be leveraged. However, the
associated centralized data and model training process bring
serious data security and privacy concerns.

Rather than learning from centrally collected user data
and being exposed to the risk of privacy leakage, federated
learning (FL) can address this problem using a collaborative
model through the communication of only the training model,
while keeping the training process and data at the local level,
i.e., close to patients. However, FL raises other concerns,
such as high communication costs and systems heterogeneity
[4]. Indeed, frequent communications can rapidly become the
bottleneck of the FL development. This is caused mainly by
the important number of communication rounds between the
server and clients and the size of transmitted data.

In this context, we aim here to reduce the communication
costs of FL, applied for a specific health monitoring service
example, i.e., patients activity detection. To do so, we pro-
pose the integration of graph clustering and transfer learning
techniques into FL, which would drastically reduce the data
exchange rounds. Specifically, FL is realized among only a
fraction of the available clients with highly significant data
features, and with limited data exchange. To the best of our
knowledge, this work is among the first ones that combines
such techniques in order to reduce the communication costs
of FL. Subsequently, the main contributions of this paper can
be summarized as follows:

• We propose to cluster FL clients based on their mutual
similarity, measured from their neural network weights,
then we select a cluster leader for each one of them.

• Next, we propose to perform federated learning among
only a fraction of the clients, i.e., cluster leaders, thus
cutting down the number of clients participating in FL.

• To further reduce the communication costs, we opt for
partial-layer FL aggregation, where we select the weights
representing the most interesting FL features only.

• Through experiments, we demonstrate the efficiency of
our FL method in drastically reducing the communication

ar
X

iv
:2

21
1.

16
95

2v
1

 [
cs

.L
G

]
 3

0
N

ov
 2

02
2

costs at the expense of a slight loss in FL accuracy,
compared to the conventional FL approach.

The rest of the paper is organized as follows. Section II
reviews related works. Section III describes the conventional
FL system. Section IV presents the proposed FL framework.
In Section V, experimental results are provided to evaluate the
performances of our FL approach and validate its efficiency
from both the accuracy and communication cost perspectives.
Finally, Section VI concludes the paper.

II. RELATED WORKS

There is a growing need for health monitoring to be cost-
efficient, reliable, and accessible. Thus, federated learning, as
a subdivision of machine learning that guarantees data privacy,
is suitable for healthcare applications.

For electronic health records, Liu et al. proposed federated-
autonomous deep learning to train different parts of the FL
model using all or specific data sources [5]. To cope with the
unbalanced distributed datasets in the edge computing system,
Duan et al. built a self-balancing FL framework that uses
data augmentation and multi-client rescheduling [6]. Similarly,
a cloud-edge based FedHome framework was proposed by
Wu et al. to handle the unbalanced and non-independent and
identically distributed data via the generative convolutional
autoencoder, thus realizing accurate and personalized health
monitoring [7]. Moreover, an efficient activity recognition
application based on FL has been developed in [8]. FL was
used to mitigate the privacy violation problem and to reduce
data collection costs for centralized training, while Fang et
al. proposed in [9] privacy preservation and communication
costs reduction through the use of a lightweight encryption
protocol. Focusing on the FL communication efficiency only,
researchers proposed compression-based methods to reduce
the size of the communicated model. For instance, Konečný
et al. proposed to reduce the size of the uplink data through
structured and sketched updates, where an update is learned
from a restricted parameterized space and compressed prior to
upload [10]. Also, sparse ternary compression was proposed
in [11], which is proved to be more robust and converge faster
than the federated averaging benchmark. Other communication
cost reduction approaches include FedPAQ [12] that allows
only partial device participation and periodic server averag-
ing for quantized message uploads, and CMFL [13], which
reduces the number of updates by eliminating irrelevant ones
to the global model improvement tendency.

III. FL PRELIMINARIES

In the conventional federated learning, users train a global
neural network model collaboratively without having to share
their local data. FL aims to realize an empirical global op-
timization through the iterative global aggregation and edge
model update. For a system with N clients, let Dn be the
dataset of client n and fi(w) the loss minimization objective
of sample i. The objective is to minimize the training loss
function Fn(w) for client n, where

Fn(w) =
1

|Dn|
∑
i∈Dn

fi(w), (1)

Fig. 1. The CEFL framework.

where |Dn| is the number of data samples in Dn. In each FL
training round t, participating clients get from the FL server
the latest global neural network model ω(t). Then, each client
executes a number of local training episodes ε based on its
local data. At the end of ε episodes, each client sends its
local model ω(t+ 1) to the server, and the latter aggregates
all received local models into its own global model as follows:

F (w) =

N∑
n=1

|Dn|
|D| Fn(w), (2)

where |D| denotes the number of data samples from all
clients. This process describes one global FL round, where
the conventional optimization objective of FL is given by (2).

Unlike conventional FL, we present next our proposed
method for communication costs reduction in FL, called
communication-efficient FL (CEFL).

IV. PROPOSED CEFL FRAMEWORK

The CEFL is depicted in Fig. 1 where we distinguish be-
tween two training sessions, namely FL and transfer learning,
which are detailed below.

A. Federated Learning Session

Before running FL rounds, four steps need to be executed:
• Step 1 (Building the clients’ similarity graph): We be-

gin by quantifying the clients’ mutual similarity. First, we
train the local models for a small number of episodes and
extract their neural network weights. Then, to evaluate the
similarity factor of two clients i and j, denoted dij , we
calculate the Euclidean distances between their weights
corresponding to the same network layer, and sum them
over all layers:

dij =

L∑
l=1

∥∥∥ωl
i − ωl

j

∥∥∥ , (3)

where L is the number of neural network layers for the
clients’ model, ωl

i is the set of neural network weights at
the lth layer of client i’s model, and || · || is the Euclidean
distance operator. Consequently a graph G(V,E) can
be built, where vertices V and edges E represent the
clients and similarity factors, respectively. For accurate

representation within the graph, we assign the weights
Sij to the edges rather than dij , where

Sij = −dij + dmin + dmax, (4)

and dmin and dmax are the minimum and maximum
values of dij , ∀i,∀j, respectively. Hence, a large Sij

refers to high similarity and small Sij to low similarity.
In Fig. 2.a, a similarly graph example is illustrated.

• Step 2 (Clients clustering): Given the similarity graph,
we adopt the Louvain algorithm to detect community
structures, i.e., clients with strong similarities, within
G(V,E) [14]. Our choice of clustering algorithm is moti-
vated by its fast convergence, implementation simplicity,
and customizability. The Louvain algorithm is a greedy
approach that allows to optimize the modularity as it runs.
The modularity score (between -0.5 and 1) measures the
relative density of edges inside communities with respect
to those outside communities. When using the Louvain
algorithm, the number of clusters needs to be specified
according to the demand for cluster sizes. In Figs. 2.b
and 2.c, we depict the graph clustering step.

• Step 3 (Leader selection): Following step 2, we des-
ignate one client to be the leader of the cluster. Its
responsibility consists on participating in the FL session.
The leader is selected as the one sharing the highest
similarity with the clients of its cluster. In other words,
a client ck is the leader of cluster k only if

ck = arg max
i

∑
j∈Ck;j 6=i

Sij , (5)

where Ck is the set of clients in cluster k. The above steps
lay the foundation for FL among the cluster leaders.

• Step 4 (Partial-layer FL aggregation): Instead of the
conventional FL that updates the whole neural network
model weights, we opt here for a partial aggregation
strategy, aiming to preserve more distinctive cluster fea-
tures. The partial aggregation strategy assumes that neural
networks are divided into base layers and personalized
layers to combat statistical heterogeneity [15]. When
performing FL among cluster leaders, each leader uploads
all or only a part of the trained weights to the server, while
they receive only the updated weights for the base layers.
Let B and (L − B) be the number of base layers and
personalized layers, respectively. Since base layers are
typically the first ones in the neural network model, the
weight update in the (t+1)th training round is given by:

ωgl(t+ 1) =

K∑
k=1

akωck (t), (6)

where K is the number of cluster leaders participating
in the FL round, ak ∈ [0, 1] is the weight factor of
cluster leader ck in the global aggregation such that∑K

k=1 ak = 1, and ωgl (resp. ωck) represents the updated
global (resp. local) neural network weights (resp. of
leader ck, ∀k = 1, . . . ,K) of base layers. Once the
global neural network model is updated, the FL server

broadcasts the aggregation outcome for the B base layers
to the cluster leaders. The latter update their base layers
weights as follows:

ωl
ck (t+ 1) = ωl

gl(t+ 1), ∀l ∈ [1, B], k = 1, . . . ,K. (7)

The above process is repeated for T FL training rounds,
as described in Algorithm 1, and where the function
Louvain is the clustering algorithm.

Algorithm 1 Federated Learning Session
Input: Nbr. of clients N , nbr. of clusters K, nbr. of FL rounds T .

Initialization :
1: Get ωi, ∀i = 1, . . . , N after a short local training

Clients clustering:
2: for i← 1 to N − 1 do
3: for j ← i+ 1 to N do
4: Update similarity graph G(V,E) using eq.(4)
5: end for
6: end for
7: Get {c1, . . . , cK} ← Louvain(G(V,E),K)

Federated learning :
8: while t < T do
9: Update the global neural network model based on eq.(6)

10: Broadcast ωgl(t+ 1) to cluster leaders
11: for k ← 1 to K do
12: Update local model’s base layers using eq.(7)
13: Train local model for ε episodes
14: end for
15: end while
Output: Cluster leaders’ neural network models.

B. Transfer Learning Session

After the T rounds of FL, ck’s neural network weights
ωck(T) include weights of base layers, trained through FL,
and weights of personalized layers, trained only with the
local data. Transfer learning consists on sending the pre-
trained model weights of each leader to the members of its
cluster. Consequently, members’ models are initialized with
the leader’s model weights as follows:

ωj = ωck (T), ∀j ∈ Ck. (8)

Subsequently, each cluster model (other than the leader) starts
training its model using its own dataset for at most η episodes
or until convergence. This training process is equivalent to
individual training and does not require any further commu-
nication among clients and/or FL server.
C. Communication Cost

Communication cost of CEFL is decomposed into 4 parts:
1) The upload of neural network weights of all clients at the

short initial individual training to initialize clustering.
2) The upload of base layers weights of leaders to the

server in each FL round.
3) The broadcast of base layers’ weights from the server

to leaders in each FL round.
4) The transmission of all model weights from each leader

to its cluster members in the transfer learning session.
Let δl be the data size (in bits) of the weights in layer l

of the neural network model of any client/server. Hence, the

(a) Similarity graph (b) Similarity graph prior to clus-
tering

(c) Clustering result

Fig. 2. Clustering clients based on similarity: (a) Building the similarity graph among clients. Each client is represented with its neural network model. The
edges’ values are the similarity factors calculated with eq.(4). (b) A different representation of the similarity graph prior to clustering. Each node is a client.
(c) Clustering outcome. Nodes with different colors represent clients clustered together.

total amount of data transiting in the FL system, denoted by
∆, is given by

∆ = N

L∑
l=1

δl +KT

B∑
l=1

δl + T

B∑
l=1

δl +K

L∑
l=1

δl

= (N +K)

L∑
l=1

δl + T (K + 1)

B∑
l=1

δl (bits). (9)

Assuming that each bit has a unitary cost, then the communi-
cation cost is equal to ∆.

V. EXPERIMENTAL EVALUATION

A. Dataset and Preprocessing

The FL experiments conducted on this work are related to
a health monitoring application, where collected data from
patients is analyzed to identify their activities. Specifically,
we relied on the public dataset MobiAct [16]. MobiAct is a
dataset for activity recognition, where data from 67 patients,
between the ages of 20 and 47, is obtained and labelled. Data
is collected using the patients’ smartphones when they are
performing different activities. The application focuses on four
types of fall activities and nine types of daily activities. For
the sake of simplicity, we decide to focus only on activities
that indicate possible upcoming falling, thus reducing the
number of recognizable classes to eight types only, namely
the initial fall activity classes, i.e., forward-lying, front-knees-
lying, sideward-lying, and sack-sitting-chair, three fall-like
activity classes, i.e., sit chair, car step in, car step out, and one
daily activity class including all of standing, walking, jogging,
jumping, stairs up and stairs down types.

We opt here for the data preprocessing method proposed
in [17], which samples 3-axial accelerations and angular
velocities data using sliding windows and converts them into
the bitmap format. Given a subject’s 3-axial sampled signal of
one activity, a sliding window with a given slide interval Itype
that moves along the entire signal is used to capture signal
features1. Data captured by each sliding window is used to

1The slide interval refers to the number of sampling points between the
starting points of two successive windows.

construct a red-green-blue (RGB) bitmap image, where data
of accelerations and angular velocities from one axis are taken
as pixel RGB values. For efficiency purposes, we optimize the
slide interval size between windows. Indeed, in the MobiAct
dataset, different types of activities are recorded for different
time durations, denoted ttype. Since all fall activities are
sampled for 10 seconds, we empirically initialize the reference
sliding interval I0 to be 40. However, some activities, such
as walking, are recorded for up to 10 minutes. In order to
avoid making processed dataset more unbalanced, we propose
to adjust the sliding intervals for different activities, called
Itype, to their recorded duration. Let t0 = 10 seconds be the
reference duration, then, the slide interval for each activity
should be customized according to

Itype = I0
ttype
t0

. (10)

B. Experimental Setup

The neural network model used in this paper is the fall
detection convolutional neural network (FD-CNN) proposed
in [17]. FD-CNN takes as input the 3-channel 20 × 20 RGB
bitmap image. It is composed of 2 convolutional layers, 2
subsampling layers, and 2 fully-connected layers. The filter
size of the 2 convolutional layers is 5 × 5, while the filter
numbers are 3 and 32, respectively. A 2 × 2 max-pooling
layer follows each of the convolutional layers, while the
fully connected layers include 512 and 8 units, respectively.
FD-CNN adopts ReLU as the activation function, while the
softmax function is used in the last fully-connected layer to
normalize the output to a probability distribution. The learning
rate is set to 10−4. The neural network is trained by the Adam
optimizer with a batch size of 32, and the cross-entropy loss
function is adopted to measure the classification performance.
Finally, we set ak = 1/K, ∀k = 1, . . . ,K.

For our experiments, we compare the performance of CEFL
with the following baselines:

Fig. 3. CEFL accuracy vs. nbr. of rounds (different K).

• Regular FL: It is the conventional federated learning
between the server and all clients, where FD-CNN is the
same training model for the server and clients.

• FedPer: It is a federated learning approach with base lay-
ers and personalized layers that combats the degradation
from statistical heterogeneity [15]. The neural network
model for the server and clients is FD-CNN.

• Individual Training: Training is conducted by the clients
themselves without any data exchange or model commu-
nication. The neural network of each client is FD-CNN.

C. Results and Discussion

First, in the proposed CEFL framework, the number of
clusters K is an important parameter to determine. Its choice
might influence how representative the chosen leaders are.
To clarify its impact, we evaluate in Fig. 3 the FL accuracy
performance, calculated as the average clients’ accuracy, for
different K values. When K grows from 2 to 20, accuracy
gradually reduces from 88.2% to 86.81%, making K = 2 the
optimal number of clusters in CEFL. Consequently, we fix
K = 2 for the remaining experiments.

In Table I, we compare the proposed CEFL to the afore-
mentioned baselines in terms of complexity (number of train-
ing/aggregation rounds/episodes), accuracy, and communica-
tion cost (in megabytes - MB). Although Regular FL presents
the best accuracy, its communication cost is the highest due
to frequent model updates between the server and clients.
Through partial-FL aggregation, FedPer reduces the commu-
nication cost by 0.5% only compared to Regular FL, while
the accuracy drops from 91.07% to 88.78%, which is not
consistent with the performance illustrated in [15]. This out-
come might result from the dataset type and applied changes
in the preprocessing step. Both Regular FL and FedPer run
for 350 × 8 = 2800 training episodes. In contrast, Individual
training requires no communications, however, it reaches a
low accuracy of 84.86% due to the limited scale of local
datasets. In terms of complexity, it runs the lowest number
of episodes equal to 350. Finally, the proposed CEFL cuts the
communication cost down from 79730 MB to 1231 MB when
compared to Regular FL, which is a 98.45% in cost savings.
This significant reduction comes at the price of a slightly

Fig. 4. Accuracy vs. nbr. of rounds (different training methods).

lower accuracy of 88.2%, which is comparable to the FedPer
performance, but still at a fraction of the communication cost.
Also, CEFL runs for 100 × 8 + 350 = 1150 episodes that is
60% lower than the one for Regular FL and FedPer.

The convergence behaviour of the aforementioned methods
is depicted in Fig. 4. Regular FL converges the fastest due
to the continuous participation of all clients in the training
process. Our method CEFL converges also fast due to transfer
learning between leaders and cluster members. In contrast,
FedPer converges slowly since there is no information shar-
ing for the personalized layers. Finally, Individual Training
converges the slowest due to the independent operation of
clients. The shaded areas around curves indicate the standard
deviation of accuracy. As it can be seen, CEFL and Regular
FL demonstrate the most stable performance behaviour, while
the remaining two methods have a higher deviation, which
indicates an unstable convergence trend.

To study the impact of dataset heterogeneity, we evaluate
the accuracy performances of 3 clients with different dataset
features in Fig. 5. Specifically, we select clients 4, 31, and 50
characterized as follows: Client 4 owns 831 training samples
that are representative of all 8 activity classes; Client 31 has
only 101 training samples that are from the four types of fall
activities only; and Client 50 has 570 training samples, with
a predominance of 431 samples from a single activity class
(daily activity). From Fig. 5, we notice that the accuracy of
Client 4 is the highest compared to others. This is expected
since it has the highest number and most representative data
distribution among the targeted classes. In contrast, the ac-
curacy of Client 31 is the worst due to its small-sized and
unbalanced dataset. Although Client 50 has a relatively large-
sized dataset, its unbalance significantly impacts the accuracy
performance. Nevertheless, the accuracy of the different meth-
ods are almost the same for Client 50, while a significant gap
is present for Client 31. Consequently, we conclude that our
method has a similar performance to Regular FL when the
client’s dataset is small or highly unbalanced, while for clients
with large or relatively balanced datasets, a slight performance
gap can be noticed as in Fig. 3.

TABLE I
COMPARISON OF DIFFERENT TRAINING MODELS

Method
Training Rounds

Accuracy (%) Communication
Cost (MB)Federated Learning Local

episodesbAggregation
rounds

Local episodes
per aggregation

Regular FL 350 8 – 91.07 79730
FedPer 350 8 – 88.78 79357
Individual Training – a – 350 84.86 0
CEFL 100 8 350 88.20 1231
a – means not applicable. b Local training occurs outside from the FL process.

(a) Client 4 (b) Client 31 (c) Client 50

Fig. 5. Accuracy convergence for three clients with different dataset distributions.

VI. CONCLUSION

This paper proposes CEFL for health monitoring. CEFL
consists of two steps: FL among cluster leaders and transfer
learning from leaders to cluster members. Our method CEFL
can reduce communication costs due to its small-scale FL
among only selected leaders, selected through graph clus-
tering and based on clients’ mutual similarity. By inherit-
ing trained models from the corresponding leader, cluster
members can rapidly achieve an acceptable accuracy on their
own datasets. Compared to baselines, CEFL achieves a great
balance between communication and accuracy. Specifically,
the communication cost can be reduced up to 98.45% at the
expense of less than 3% accuracy degradation, compared to
the best baseline. Moreover, for clients with small or highly
imbalanced datasets, CEFL yields as high accuracy as the best
baseline with at a fraction of the communication cost.

ACKNOWLEDGMENT

This research is supported by the Natural Sciences and Engineer-
ing Research Council of Canada, Huawei Canada, and a MITACS
Globalink scholarship.

REFERENCES

[1] S. Selvaraj and S. Sundaravaradhan, “Challenges and opportunities in
IoT healthcare systems: a systematic review,” SN Appl. Sci., vol. 2, no. 1,
pp. 1–8, Jan. 2020.

[2] M. S. Rahman, N. C. Peeri, N. Shrestha, R. Zaki, U. Haque, and
S. H. Ab Hamid, “Defending against the novel coronavirus (COVID-
19) outbreak: How can the internet of things (IoT) help to save the
world?” Health Policy Technol., vol. 9, no. 2, p. 136, Jun. 2020.

[3] P. Verma, S. K. Sood, and S. Kalra, “Cloud-centric IoT based student
healthcare monitoring framework,” J. Ambient Intelli. Humanized Com-
put., vol. 9, no. 5, pp. 1293–1309, Jan. 2018.

[4] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Sig. Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[5] D. Liu, T. Miller, R. Sayeed, and K. D. Mandl, “FADL: Federated-
autonomous deep learning for distributed electronic health record,” arXiv
preprint arXiv:1811.11400, 2018.

[6] M. Duan, D. Liu, X. Chen, Y. Tan, J. Ren, L. Qiao, and L. Liang,
“Astraea: Self-balancing federated learning for improving classification
accuracy of mobile deep learning applications,” in Proc. IEEE Int. Conf.
Comp. Design (ICCD), 2019, pp. 246–254.

[7] Q. Wu, X. Chen, Z. Zhou, and J. Zhang, “FedHome: Cloud-edge based
personalized federated learning for in-home health monitoring,” IEEE
Trans. Mob. Comput. (Early Access), pp. 1–1, 2020.

[8] K. Sozinov, V. Vlassov, and S. Girdzijauskas, “Human activity recogni-
tion using federated learning,” in Proc. IEEE Int. Conf. Parallel & Dist.
Process. Apps. (ISPA), 2018, pp. 1103–1111.

[9] C. Fang, Y. Guo, N. Wang, and A. Ju, “Highly efficient federated learn-
ing with strong privacy preservation in cloud computing,” Computers &
Security, vol. 96, p. 101889, Sep. 2020.

[10] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[11] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-IID data,” IEEE
Trans. Neural Nets. Learn. Syst., vol. 31, no. 9, pp. 3400–3413, Sep.
2019.

[12] R. Amirhossein, M. Aryan, H. Hamed, J. Ali, and P. Ramtin, “FedPAQ:
A communication-efficient federated learning method with periodic
averaging and quantization,” arXiv preprint arXiv:1909.13014, 2020.

[13] W. Luping, W. Wei, and L. Bo, “Cmfl: Mitigating communication
overhead for federated learning,” in Proc. IEEE Int. Conf. Dist. Comput.
Syst. (ICDCS), 2019, pp. 954–964.

[14] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mechanics: Theory
and Experiment, vol. 2008, no. 10, p. P10008, Oct. 2008.

[15] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choud-
hary, “Federated learning with personalization layers,” arXiv preprint
arXiv:1912.00818, 2019.

[16] G. Vavoulas, C. Chatzaki, T. Malliotakis, M. Pediaditis, and M. Tsik-
nakis, “The mobiact dataset: Recognition of activities of daily living

using smartphones,” in Proc. Int. Conf. Info. Commun. Technol. Ageing
Well and e-Health, vol. 2, 2016, pp. 143–151.

[17] J. He, Z. Zhang, X. Wang, and S. Yang, “A low power fall sensing
technology based on FD-CNN,” IEEE Sensors J., vol. 19, no. 13, pp.
5110–5118, Jul. 2019.

	I Introduction
	II Related Works
	III FL Preliminaries
	IV Proposed CEFL Framework
	IV-A Federated Learning Session
	IV-B Transfer Learning Session
	IV-C Communication Cost

	V Experimental Evaluation
	V-A Dataset and Preprocessing
	V-B Experimental Setup
	V-C Results and Discussion

	VI Conclusion
	References

