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Abstract

The widespread adoption of distributed energy resources, and the advent of smart grid technologies, have allowed traditionally
passive power system users to become actively involved in energy trading. Recognizing the fact that the traditional centralized
grid-driven energy markets offer minimal profitability to these users, recent research has shifted focus towards decentralized
peer-to-peer (P2P) energy markets. In these markets, users trade energy with each other, with higher benefits than buying or
selling to the grid. However, most researches in P2P energy trading largely overlook the user perception in the trading process,
assuming constant availability, participation, and full compliance. As a result, these approaches may result in negative attitudes and
reduced engagement over time. In this paper, we design an automated P2P energy market that takes user perception into account.
We employ prospect theory to model the user perception and formulate an optimization framework to maximize the buyer’s
perception while matching demand and production. Given the non-linear and non-convex nature of the optimization problem, we
propose Differential Evolution-based Algorithm for Trading Energy called DEbATE. Additionally, we introduce a risk-sensitive
Q-learning algorithm, named Pricing mechanism with Q-learning and Risk-sensitivity (PQR), which learns the optimal price for
sellers considering their perceived utility. Results based on real traces of energy consumption and production, as well as realistic
prospect theory functions, show that our approach achieves a 26% higher perceived value for buyers and generates 7% more
reward for sellers, compared to a recent state of the art approach.

Index Terms

Peer-to-peer energy trading, differential evolution, dynamic pricing, prosumer, prospect theory, Q-learning.

I. INTRODUCTION

Distributed Energy Resources (DER), such as rooftop solar and wind turbine, have seen widespread proliferation among
consumers in recent years [1]. In addition, the advent of Smart Grid (SG) technologies, Advanced Metering Infrastructures
(AMI), and home energy management systems, have added flexibility in energy generation/consumption for consumers. This,
in turn, has allowed traditionally passive consumers to become actively involved in energy trading by sharing the excess energy
generated at their premise to either grid or other buyers [2], [3]. These active consumers with energy production capabilities
have been referred to as prosumers [3], as a portmanteau of “producers” and “consumers”. The role of prosumers in energy
market has been recognized to some extent with the adoption of incentive schemes like Feed-in-Tariff (FiT) mechanism [4], [5].
FiT allows prosumers to sell excess energy to the grid and buy from grid when required [5]. However, existing energy trading
modalities offer limited benefits to participating prosumers. This is due to the minimal prices at which energy is purchased by
grid, as well as the low limits on the amount of energy that can be purchased [3]–[5].

A. Literature Review and Motivation

Peer-to-peer (P2P) energy trading is a recently proposed decentralized modality for energy sharing aiming at solving
limitations of centralized techniques. This modality has been gaining significant traction recently [4], [5]. Specifically, P2P
energy trading allows prosumers to trade energy among each other at a negotiated price with or without the involvement
of the grid [4]. It generates better monetary incentives for prosumers compared to existing mechanisms while also reducing
their grid dependency [5]. Additionally, increased local energy generation/consumption resulting from P2P trading leads to
the minimization of overall system energy loss while providing an effective way to achieve demand side management [6].
Benefits extend also to the grid operator, by providing savings in investments that would have been otherwise required to
develop/maintain transmission infrastructure in a centralized power distribution architecture [3], [4].

P2P energy trading has received attention from the research community in recent years. The works in [7], [8] present game
theoretic approaches in a P2P setting, while a greedy rule-based P2P mechanism to assign energy among prosumers is proposed
in [9] that includes mid-market pricing. Similarly, the physical aspects of P2P energy trading, such as power loss minimization
and voltage regulation, have been explored in [10], [11]. These works, however, largely overlook the user behavior in designing
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their solutions. As established in [2], [3], [5], accommodating the user behavioral modeling in P2P energy trading ensures
sustained participation from prosumers while incentivizing their contribution. In fact, the papers [7], [8] consider prosumers
to be actively involved and fully compliant with the system as rational decision-makers. First concern with this assumption
is that the continuous online presence of participating prosumers with the system might not always be possible in real-world
application. Secondly, research on user behavioral models and decision making [12], [13] have found users to have bounded
rationality. Therefore, requiring constant active participation overwhelms the users and incentivizes non-rational decisions [14].
In the worst case, it might even result in users opting to terminate their participation altogether [2], [13]. In that light, the works
in [2], [15] incorporates bounded rationality and user preferences into P2P energy trading. However, it requires continuous
human participation and assumes a simplistic linear model for user perception. Conversely, the authors of [5] limit their focus
on coalition formation in game theoretic setting and do not explicitly consider user behavioral modeling.

As a result, a prosumer-centric P2P energy trading model, that effectively incorporates the prosumers’ decision-making
behavior and their perceived loss/gain value from trading, is still lacking in the existing literature. Such a trading modality is
expected to require minimal active participation from users while also ensuring their sustained involvement through the adoption
of user behavioral modeling. To this end, the framework of Prospect Theory (PT) [16] can be used to model the non-rational
user behavior in the face of uncertain decision-making. It is often regarded as fairly accurate mathematical representation of
human behavior [16]–[18].

Recently, there has been few efforts in integrating PT in energy related applications as well to capture the irrationality of
users [18]–[21]. In relation to P2P energy trading, the authors in [21] have proposed a PT-based distributed energy trading
model to optimize trading decisions for prosumers in a competitive market. Although these papers model the user behavior
in some ways, they require active participation from users and also assume that such behavior (e.g., the parameters of PT)
is homogeneous for all the users. Social science studies, such as the one conducted in Italy [22] to investigate the social
acceptance of nuclear energy using an online survey, show that users exhibit significant heterogeneity in their preferences for
the sources of energy. Neuroscience studies have also stressed the heterogeneity of humans in reference to PT parameters [23].
Not capturing such heterogeneity provides little benefits in terms of user behavioral modeling.

B. Paper Contributions

In this paper, we design a PT-based optimization framework for prosumer-centric P2P energy trading as shown in Fig. 1.
The framework aims at matching energy production and consumption (step 1 in Fig. 1) to maximize the perceived utility
of individual buyers while taking into account the intrinsic heterogeneity of human perception. Given that the optimization
problem is non-linear and non-convex, we further devise a Differential Evolution-based [24] metaheuristic algorithm called
DEbATE to solve the problem (energy allocation, step 2). In order to ensure minimal active participation of prosumers,
we employ a Reinforcement Learning (RL) framework, called PQR, in tandem with DEbATE to automate the pricing
mechanism for sellers (pricing mechanism, step 3). In doing so, PQR learns the selling price for each sellers using a PT-based
risk-sensitive Q-learning algorithm [25]. The output of the algorithms is then returned to the prosumers for executing the
physical energy transactions (step 4). Using real datasets for energy production and consumption, paired with recent survey
data for PT perception modeling, results show that DEbATE performs 25% higher in buyer’s perception and 7% higher in
seller’s reward compared to state-of-the-art approach.

The major contributions of the paper are the following:
• We develop a PT-inspired optimization framework for P2P energy trading;
• We design a metaheuristic algorithm DEbATE to solve the non-linear energy allocation problem;
• We design dynamic pricing mechanism with PQR algorithm using risk-sensitive Q-learning approach;
• Experiments using real data show the superiority of proposed approach compared to the state-of-the-art;

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a P2P energy trading system as shown in Fig. 1. The system consists of prosumers that can exchange energy
among each other through an existing distribution network. The grid serves as backup for prosumers to either buy or sell
energy, if the local energy trading is insufficient or not possible. Let P be the set of all prosumers participating in the P2P
energy market. We refer to Bt ⊂ P as the set of Buyers, i.e. the set of prosumers that have higher self-consumption than
generation at a timeslot t, and consumers without energy generation capabilities. Similarly, St ⊂ P is the set of Sellers, i.e.,
prosumers that have excess generation at a timeslot t. For simplicity of notation, we drop the subscript t in the following.

We model the perceived loss and gain of prosumers using the prospect theory (PT) value function to capture user perception
on gains and losses. Specifically, consider the excess energy generation of seller i ∈ S be ri and demand of buyer j ∈ B be
wj . Then, let xij ∈ [0, 1] represent the fraction of wj that a buyer j is willing to buy from seller i at ρi price per kWh amount
of energy. There is an energy loss during the physical energy transfer through wires [6], which depends on the wire-length
between i and j and directly proportional to the amount of energy exchanged. The loss is modeled as a fraction lij ∈ [0, 1]
of the energy exchanged. Assume ρgs, ρgb be the energy selling and purchasing prices from the grid. We adopt a modified



Pre-
pri

nt
Fig. 1. P2P Energy Trading System Overview.

PT value function to model realistic user perception in an energy market [16]. The function quantifies perceived utility of
humans towards gain and loss based on degree of deviation from a reference point. Particularly, in our problem, it captures
the difference of total actual buying cost yj from the buyer’s desired total reference cost ρjwj where ρj is the reference price
of buyer j for purchasing energy. This utility function is formulated as

v(yj) =

{
k+,j(ρjwj − yj)ζ+,j , yj < ρjwj

−k−,j(yj − ρjwj)ζ−,j , yj ≥ ρjwj
(1)

where k+,., k−., ζ+,., ζ−,. are the parameters that control the degree of loss-aversion and risk-sensitivity. These parameters
are found to be highly heterogeneous and vary from person to person based on factors like gender and age group [26], [27].
yj is the total actual cost of buying energy for jth buyer s.t.

yj =
∑
i∈S

ρixijwj + ρgs(1−
∑
i

xij)wj

Note that, similar to the PT value function in [16], the utility function in Eq. (1) is concave in the gain domain (i.e. case
yj < ρjwj) while convex in loss domain (i.e. case yj ≥ ρjwj).



Pre-
pri

nt
The problem of matching demand and production of heterogeneous prosumers is formalized as follows.

maximize f(y) :
∑
j∈B

v(yj) (2)

s.t.
∑
j∈B

(1 + lij)xijwj ≤ ri, ∀i (2a)∑
i∈S

xij ≤ 1, ∀j (2b)

xij = 0, if lij ≥ lmax, ∀i (2c)
ρgb ≤ ρi, ρj ≤ ρgs, ∀i (2d)
xij ∈ [0, 1], ∀i, j (2e)

The problem maximizes the sum of perceived utility for buyers in Eq. (2). Constraint in Eq. (2a) prevents the problem from
exceeding the amount of energy being sold by each sellers while incorporating the losses in electric lines. The constraint in
Eq. (2b) ensures that the energy demand for each buyers is not exceeded, while constraint (2c) limits the loss between sellers
and buyers to be within the loss threshold lmax. Finally, the constraint (2d) limits upper and lower bound for energy price to
the selling and buying price of the grid.

It is to be noted that the problem in Eq. (2) is non-linear, non-convex optimization problem. Hence, we propose a heuristic
based on Differential Evolution Algorithm (DEA) [24] described in the following section. Additionally, in the above problem,
the selling price is considered as a fixed amount for a trading period. However, the reference price ρj of buyer j is a personal
value which may under- or over-estimate the competitiveness of market. In order to maximize the sellers’ perceived objectives
through prospect theory, we resort to the risk-sensitive Q-learning algorithm [25].

Algorithm 1: DEbATE
Input : set of buyers B, sellers S, fitness function f(.), max iterations Gmax, population size NP , crossover probability CR, differential weight F
Output: best identified feasible solution x∗

1 Update set of buyers B and sellers S, count = 0;
2 Generate initial population X = {xk| k = 1, . . . , NP};
3 while count < Gmax do
4 for each xk ∈ X do
5 Choose 3 different vectors {xa,xb,xc} ∈ X at random and R ∼ U(1, |S| × |B|);
6 Create mutated solution x̄k = xk;

/* Mutation and Crossover */
7 for each i ∈ |S|, j ∈ |B| do
8 Select u ∼ U(0, 1) ;
9 if u < CR||(i× j) == R then

10 x̄
(k)
ij = x

(a)
ij + F × (x

(b)
ij − x

(c)
ij );

11 x̄
(k)
ij = min(1,max(0, x̄

(k)
ij ))

12 end
/* Check Constraints */

13 ∀i, j, if lij ≥ lmax then x̄ij = 0;
14 ∀i, if

∑
j(1 + lij)x̄ijwj > ri then x̄ij =

x̄ijri∑
ĵ

(̄1+l
iĵ

)x̄
iĵ

w
ĵ

;

15 ∀j, if
∑

i x̄ij > 1 then x̄ij =
x̄ij∑
î
x̄
îj

;

/* Compare fitness */
16 if f(x̄k) > f(xk) then X = (X \ {xk}) ∪ {x̄k};
17 end
18 count = count++;
19 end

/* Find the best solution to execute trading */
20 Let x∗ = arg max

xk∈X
f(xk);

21 Execute transactions for each prosumers to x∗ ;

III. THE DEBATE AND PQR HEURISTICS

In this section, we describe the Differential Evolution-based Algorithm for Trading Energy (DEbATE) (Alg. 1), designed
for the problem presented in Section II, and the Pricing mechanism with Q-learning and Risk-sensitivity (PQR), designed to
dynamically adjust the sellers’ prices.
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A. DEbATE

DEbATE is executed at each trading period (e.g., 12 hours) to solve the non-linear optimization problem in Eq. (2).
It uses differential evolution to determine an optimal amount of energy to be traded between prosumers that maximizes the
perceived utility of buyers. DEbATE initially updates the list of buyers (B) and sellers (S) based on the expected production and
consumption for current trading period. These can be predicted accurately with recent approaches [28], [29]. The differential
evolution-based optimization begins on line 2 where an initial population X is generated with population size of NP . An
element xk ∈ X , with k = 1, 2, . . . , NP is a candidate solution vector of variables xij representing the amount of energy to
be traded between each seller i and buyer j . These variables correspond to the decision variables of our optimization problem.

The while−loop (line 3− 19) is the differential evolution loop that aims at finding solution to the non-linear optimization
problem with Eq. (2) as the fitness function. The loop is executed for Gmax iterations. At each iteration, for each candidate
solution xk ∈ X , the algorithm creates a mutated solution x̄k. Initially, x̄k = xk. The mutated solution is subsequently updated
through mutation and crossover with 3 random candidates xa,xb,xc ∈ X (line 5). A value R ∈ [1, |S| × |B|] is selected at
random. R will be used in the following for−loop to ensure a minimum mutation. The for loop in line 7 iterates over the
components (dimensions in evolutionary terms) of x̄k. During each iteration, a value u ∈ [0, 1] is sampled at random as
mutation probability (line 8). Subsequently, a mutation occurs for the component ij of x̄k with crossover probability CR (line
9). The mutation occurs irrespective of the probability if (i× j) = R (to ensure at least one minimum mutation). A mutation
is executed by combining the corresponding component of xa, xb, and xc with the differential weight parameter F ∈ [0, 2]

as in line 10. The mutated component x̄
(k)
ij is clipped to ensure that it falls within [0, 1] as minimum and maximum threshold

to satisfy constraint Eq. (2e) in line 11 of the algorithm.
After the mutated solution is finalized, it is checked, and adjusted if needed, to meet the constraints in Eqs. (2a)-(2c) of the

optimization problem. Specifically, line 13 ensures that no exchange occurs (i.e., x̄
(k)
ij = 0) between users having a loss higher

than lmax. Lines 14− 15 ensure that the production of a seller and the demand of each buyer are not exceeded, respectively.
Finally, in line 16, the fitness function f(.) of the mutated solution x̄k is compared against the original candidate solution xk.
If f(x̄k) > f(xk), then x̄k replaces xk in the set of candidate solutions X . At the end of the while loop, DEbATE selects
the best solution x∗ in X (line 20) and executes the transactions accordingly (line 21). In the following theorem 1, we show
that the DEbATE has polynomial complexity and hence, computationally efficient.

Theorem 1. The complexity of the DEbATE algorithm is O(Gmax ×NP × |S||B|).

Proof. The complexity is dominated by the while loop (lines 3 − 19), which is executed Gmax times. Within this loop, the
for−loop (lines 4 − 17) does |X | = NP total iterations. In each iteration, the inner for−loop (lines 7 − 12) iterates over
the sets S and B, and only contains constant operations. Similarly, checking the constraints (lines 13− 15) requires to iterate
over the same sets. Finally, calculating the function f(.) (line 16) has cost |B|. Overall, the complexity is O(Gmax ×NP ×
(|S||B|+ 3|S||B|+ |B|)) = O(Gmax ×NP × |S||B|)

Algorithm 2: PQR
/* Pricing with Risk-sensitive Q-learning */

1 Collect transaction information for each prosumers from DEbATE (Alg. 1) for current timestep t;
2 for each i ∈ S do
3 Select an action, a ∈ {+δ,−δ, 0} based on exploration and exploitation ;
4 s = ρi; snew = s+ a;Ri = (ρi + a)

∑
j∈B

xij ;

5 Update Q(s, a) as in Eq. (3);
6 ρi = snew;
7 Send information on updated price ρi to seller i;
8 end

B. PQR

After determining the solution to the energy allocation problem in DEbATE, the selling price for sellers is then updated
through the PQR algorithm. In order to learn the optimal selling price dynamically over time, we model the sellers as
independent learning agents. Note that, to preserve the privacy and avoid the conflict between prosumers, these agents do not
have access to information about other sellers or buyers. The state space in the Q-learning formulation consists of the prices
between the grid buying (ρgb) and selling (ρgs), discretized by a step size, δ, i.e., ρi ∈ {ρgb, ρgb + δ, ρgb + 2δ, ..., ρgb +(ρgs−ρgb

δ − 1
)
δ, ρgs}.

The action space consists of a price increasing action, price decreasing action, and no change action, i.e. a ∈ {+δ,−δ, 0},
where δ is the amount by which price is increased or decreased. Seller i reward function is the total revenue generated at the
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current trading period i.e. Ri = (ρi + a)

∑
j∈B xijwj . For updating Q-values, we modify the approach proposed in [25] by

considering the following Q-learning update rule that includes the PT-based perceived utility of sellers.

Q(new)(s, a) = Q(old)(s, a) + αv(yi) (3)

v(yi) =

{
k+,i(yi)

ζ+,i , yi > 0

−k−,i(−yi)ζ−,i , yi ≤ 0
(4)

where, yi = Ri+ γmaxaQ(snew, a)−Q(s, a) is the Temporal Difference (TD) error of ith seller for current iteration, and
v(yi) is transformation of TD error to capture each seller’s personalized perceived utility on loss and gain. α refers to the
learning rate for updating Q-values in Eq. (3). The action is selected based on an ε-greedy exploration-exploitation strategy
[30]. Specifically, ε refers to the probability of exploration and it is initially set to 1. It is then decreased over time using
an ε−decay value, as the system learns the optimal policy. Based on the selected action, the new selling price, reward, and
Q-value are updated as per Eqs. (3) and (4). Updated selling price is then sent to the respective seller i for next trading period.

The system runs both DEbATE and PQR sequentially at every trading period. Input of DEbATE is updated based on
the prices computed by PQR. PQR then takes as input the reward from executing energy transactions by DEbATE.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Fig. 2. Normalized objective value vs. number of iterations.

Fig. 3. Buyers’ perceived values. Fig. 4. Sellers’ cumulative reward. Fig. 5. Individual prices.

In this section, we evaluate the performance of DEbATE and PQR, hereafter jointly referred as DEbATE − PQR, against
a recent state-of-the-art approach referred to as Rule [9]. Rule allocates energy using a greedy heuristic that assigns cheapest
sellers to buyers based on their registration order in the system, while final price of each transaction follows mid-market pricing,
i.e., mid value of seller’s and buyer’s asking price. We consider a system with 40 prosumers, split evenly as buyers and sellers.
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This is considered a representative number of prosumers in a microgrid or set of houses supplied by a single distribution
transformer. We use a realistic dataset for buyers’ energy consumption obtained from [31]. Similarly, we consider sellers
equipped with 4kW rooftop solar located in Lexington, Kentucky, USA. The energy generated is estimated using NREL’s
PVWatts Calculator [32] given the solar irradiance in Lexington and size of solar panels. Losses are assigned uniformly at
random from set {1%, 2%, 3%, 4%} and maximum loss threshold Lmax = 2.5%.

We assume that prosumers complete a survey before joining the system to estimate their individual prospect theory parameters,
similar to [23], [26], [27], and use realistic prospect theory parameters determined by them. Specifically, we sample the risk-
averting parameter for gains (ζ+) ∈ [0.60, 0.88], the risk-seeking parameter for losses (ζ−) ∈ [0.52, 1.0], the loss-aversion
parameters for gain and loss (k+), (k−) ∈ [2.10, 2.61] for each individual prosumers. The grid energy buying price is set to
ρgb = $0.06 and the selling price to ρgs = $0.12. The reference price for each sellers is initially randomly sampled from
range [0.09, 0.12]. It is then updated using PQR at each iteration. The reference price for each buyer is selected in the range
[0.06, 0.10] and considered static for the duration of experiments, which is 365 days. The parameters for PQR algorithm are
set as follows: learning rate α = 10−4, step size for discretizing state space δ = $0.001, and ε−decay = 0.965.

B. Results

We consider several experimental scenarios and performance metrics, as discussed in the following.
Experimental Scenario 1: We first run experiments to study the convergence of DEbATE. We considered different system

size by scaling the number of sellers and buyers. Fig. 2 shows the normalized objective value as a function of the number of
iterations using a population size NP = 20. The plot averaged over 10 runs shows that 10, 000 iterations are sufficient for
the algorithm to converge in the considered settings. As a result, in the following scenarios we set Gmax = 10, 000 and the
population size NP = 20.

Experimental Scenario 2: In the second experimental scenario we study the performance of the considered approaches over
time. Two performance metrics are considered, namely the buyers’ objective value and the sellers’ cumulative reward. These
are represented in Figs. 3 and 4, respectively, with a moving average of 10 days. In this experiments we consider 15 buyers
and 15 sellers. The benefits of DEbATE−PQR over Rule are more prominent from April through October, when the energy
demand and production is higher. The greedy nature of Rule penalizes the quality of the resulting matching, significantly
reducing the buyers’ perceived value. Note that, the buyers’ objective values are negative because they are paying higher prices
than their reference purchase price. Therefore, transactions are seen as loss from a prospect theory perspective. Nevertheless,
our approach optimizes the energy assignment to maximize the buyers perceived value. Additionally, our approach is able to
generate higher rewards than Rule by dynamically learning the prices for sellers through the PQR algorithm. The the sellers’
reward decreases after mid-september for both the approaches due to the reduced energy production during winter.

Fig. 6. Obj. values for buyer vs. network size. Fig. 7. Total rewards for sellers vs. network size.

We further study the performance over time by considering the evolution of average and individual sellers’ prices. We
consider a smaller system of 5 sellers and 5 buyers for ease of representation of the results. Fig. 5 shows the individual prices.
DEbATE − PQR is able to learn and adjust the price over time to improve the buyers’ perceived value considering their
competitiveness. The competitiveness is a function of a buyer’s reference price, their production, and their location in the
system (e.g., loss w.r.t. sellers). As a result, our approach is able to improve the perception of both buyers and sellers while
ensuring the competitiveness of the market.
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Experimental Scenario 3: In this scenario we test the scalability with respect to the system size. Specifically, we increase

the system proportionately from 5 sellers and 5 buyers to 20 sellers and 20 buyers. Figs. 6-7 show the buyers’ total perceived
value and the sellers’ reward, respectively, over a year. By considering the loss-averse and risk-seeking PT-value functions,
DEbATE−PQR achieves an increasing advantage as the system size increases compared to Rule, for both sellers and buyers.
As a numerical example, DEbATE−PQR achieves as much as 26% increase in buyers’ perceived value while ensuring 7%
profit improvement for sellers.

V. CONCLUDING REMARKS

In this paper, we bring together the concept of perceived utility from behavioral economics and reinforcement learning into
the P2P energy trading scene. Unlike existing literature, we propose an automated and dynamic P2P energy trading problem
that maximizes the perceived value for buyers while simultaneously learning the optimal selling price. Given the non-linear and
non-convex nature of the problem, we propose a novel differential evolution-based metaheuristic algorithm, called DEbATE.
DEbATE is paired with a prospect theory enhanced Q-learning algorithm, called PQR, to adjust the selling price over time.
Results show the advantages of the proposed approaches with respect to a state of the art solution using real energy consumption
and production data.
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