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Abstract—Optimal modulation (OM) schemes for Gaussian
channels with peak and average power constraints are known to
require nonuniform probability distributions over signal points,
which presents practical challenges. An established way to map
uniform binary sources to non-uniform symbol distributions is
to assign a different number of bits to different constellation
points. Doing so, however, means that erroneous demodulation
at the receiver can lead to bit insertions or deletions that
result in significant binary error propagation. In this paper, we
introduce a light-weight variant of Guessing Random Additive
Noise Decoding (GRAND) to resolve insertion and deletion errors
at the receiver by using a simple padding scheme. Performance
evaluation demonstrates that our approach results in an overall
gain in demodulated bit-error-rate of over 2 dB Eb/N0 when
compared to 128-Quadrature Amplitude Modulation (QAM).
The GRAND-aided OM scheme outperforms coding with a low-
density parity check code of the same average rate as that induced
by our simple padding.

Index Terms—Optimal constellation design, non-uniform mod-
ulation, complex AWGN

I. INTRODUCTION

In 1971 Smith proved that the optimal channel input of

a scalar Gaussian channel under peak and average power

constraints is a set of discrete points and that the optimal

distribution over them can be determined by convex optimiza-

tion [1]. Analogous results have since been established for

other channels [2]–[6]. In the complex additive white Gaussian

(CAWGN) channel with peak and average power constraints,

it has been proved that the constellation points in the optimal

channel input are discrete in amplitude and continuous in

phase (DACP), forming concentric circles around the origin

[3]. Later, it was found that these continuous sets of points

can be discretized with negligible loss in performance [7].

Assuming uniform binary sources, modulation schemes can

be divided into two categories depending on the the frequency

of their symbol use: uniform and non-uniform. Most com-

monly deployed schemes are uniform, including QAM and

Phase Shift Keying (PSK), as used in applications including

5G, LTE, and IEEE 802.11 [8]. In contrast, Fig. 1 depicts

a non-uniform modulation scheme that is designed according

to the procedure that will be discussed in this paper. With

The project or effort depicted was or is sponsored by the Defense Advanced
Research Projects Agency under Grant number HR00112120008, the content
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Fig. 1. A non-uniform 128 point constellation identified in this paper, where
the heatmap indicates the target symbol-use probability.

the optimal channel input distributions of the CAWGN being

nonuniform, studying the methods to identify nonuniform

constellations is a worthwhile endeavour. As such, the aim

of constellation shaping literature is to obtain enhanced power

efficiency, which is achieved by nonuniform constellations.

Methods for identifying improved constellations include

dividing constellation points into sublattices and using a binary

error-correcting code on top of them [9]–[11], or through

varying the lengths of the bit sequences assigned to symbols to

approximate target symbol-use distributions [12]–[16]. When

the latter methods are used they are typically paired with an

error correction code [13]. For creating a variable length bit

mapping, Huffman shaping is one technique that yields dyadic

approximations to the desired target symbol-use probability

distribution. In [12], it is shown that this method can get

very close to the maximum possible shaping gain of 1.53
dB for unbounded Gaussian channels. Despite the core ideas

underlying the design of optimal nonuniform constellations for

peak-power constrained channels being known, they are not

widely deployed. This is due to practical problems introduced

by nonuniform distributions and the methods to identify them,

which we discuss in the next paragraph.

In contrast to QAM or PSK where every symbol demaps to

the same number of bits, the core practical challenge in using

a modulation scheme where different symbols correspond to

different numbers of bits is that it makes the demodulated

binary sequence vulnerable to insertion and deletion errors.

That is, if a symbol is erroneously demodulated to a symbol

that corresponds to more or fewer bits, the demodulated bit978-1-6654-3540-6/22 © 2022 IEEE
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sequence that follows will experience a shift that can result in

significant error propagation. As a result, protection through

coding is necessary. One approach is to add a binary forward

error correction code after the symbol mapping [17], [18].

For instance, the authors of [17] use a LDPC code for this

purpose. However, this approach comes at a cost of a large

computational overhead at the receiver due to decoding. As for

the nonuniform constellation design approach with sublattices,

one needs to design a suitable code that would yield the

channel optimal distribution. A core contribution of this paper

is a new light-weight scheme based on the recently introduced

Guessing Random Additive Noise Decoding (GRAND) [19]–

[21] that enables the translation of improved symbol error

rates to improved bit error rates through low complexity length

correction based on symbol padding. While padding schemes

have previously been proposed, e.g. [13], the one we employ is

substantially simpler and is shown to be effective in protecting

against insertion and deletions.

In this paper, to realize OM: (i) we propose a new approx-

imation for the cutting plane algorithm introduced in [22]

to facilitate the constellation design in the high signal-to-

noise (SNR) regime; (ii) we introduce a greedy algorithm for

quantizing the continuous energy levels of the optimal channel

input; (iii) we design a simple padding scheme based on

Huffman shaping with low overhead and minimal complexity;

and (iv) we introduce a new light-weight GRAND variant

that uses the padding information to correct the length of the

transmitted message if an insertion or deletion event occurs.

Crucially, the padding scheme we propose to facilitate

GRAND’s operation is not a function of the data, resulting in

significantly lower complexity operation than standard binary

error correction coding schemes. With the proposed scheme,

the padding overhead vanishes as SNR increases and the infor-

mation rate approaches one. Indeed, in the proposed padding

scheme the number of overhead symbols is significantly lower

than with previously suggested schemes. Taking the padding

overhead into account, simulation results show that, for a

128-point constellation, the system and constellation designs

presented in this paper result in significant gains in symbol

error rate (SER) and in bit error rate (BER) over QAM.

II. CHANNEL MODEL AND NOTATION

Before detailing the system design, we introduce the paper’s

notation. Let X and Y be the complex channel input and

output, respectively, and let N be a complex Gaussian random

variable, i.e. N ∼ NC(0, N0), with N0 being the noise

spectral density. The channel is modeled as Y = X + N ,

with E[|X |2] ≤ σ2
P and |X | ≤ M , where M is the peak

amplitude constraint and σ2
P is the average power constraint

on the input distribution. N is assumed to be independent of

X , and its in-phase and quadrature components are distributed

independently and identically. The channel capacity is

C = max
fX (x)

I(X ;Y ) (1)

where the maximization is over all possible distributions for

the channel input, i.e. fX(x), that satisfies the average and

peak power constraints [22]. We denote the set of distributions

that satisfies those constraints by

M = {fX(x) : EfX (x)[X
2] ≤ σ2

P , |X | ≤M}.
Let X = AXejθ and Y = AY e

jγ . The conditional distribution

of AY given AX is given in [3] as

fAY |AX
(aY |aX) = exp

(

− (a2Y + a2X)

N0

)

I0

(

2aY aX
N0

)

,

(2)

where I0(x) is the modified Bessel function of the first kind

and 0th order. With these definitions, the energy per symbol

over noise spectral density is ES/N0 = σ2
P /N0. For discrete

modulation, we need to have a discrete set of possible values

for AX and θ, which we consider in the next section.

III. CONSTELLATION DESIGN

There are two separate optimization problems when con-

structing close-to-optimal constellations. The first problem,

which we consider in section III-A is finding the probability

distribution of the amplitudes. A key result of [22] is that an

optimal fX(x) yields a distribution where the values AX or,

equivalently, the energy levels, are in a discrete set, A, while

the phases are uniformly distributed. Solving the first problem

yields a DACP distribution. The second problem, which we

consider in section III-B, is determining the number and the

phases of the quantized points at each of the amplitudes found

in section III-A in order to yield a discrete constellation.

A. Approximation to the Cutting Plane Algorithm

A cutting plane algorithm to optimize the probability distri-

bution over a fixed set of energy levels, A, was previously

proposed [22] and shown to converge considerably more

quickly than the Blahut-Arimoto algorithm. We provide a

brief overview of that algorithm as applied to our setting.

Reference [22] solves (1) using a cutting plane algorithm that,

instead of seeking directly the mutual information maximizing

distribution fX(x), uses a sequence of increasingly tight

relaxations, using approximations of the mutual information.

We define the channel sensitivity function g (fX(x), fXi
(x))

as follows

g (fX(x), fXi
(x)) = D

(

fYfX (x)
(y)||fYfXi

(x)
(y)

)

,

where D(.||.) is the notation for the Kullback-Leibler diver-

gence and fYfX (x)
(y) is the distribution of the output Y when

the input distribution is fX(x). We begin with an initializing

input distribution fX0(x) ∈ M. At each iteration n of the

algorithm we solve the following approximation to I(X ;Y )

In(fX(x), fXi
(x))

= min
0≤i<n

EfX (x) [g (fX(x), fXi
(x))] , fX(x) ∈M.

One can readily verify that In(fX(x), fXi
(x)) ≥ I(X ;Y ).

Each iteration of the algorithm can be expressed as

max c s.t. EfX (x) [In(fX(x), fXi
(x))] ≥ c,

0 ≤ i < n, fX(x) ∈ M. (3)



To apply this algorithm to a CAWGN channel, we employ

an essential modification to the procedure that [22] uses.

As N0 decreases, the exponential term in fAY |AX
(aY |aX),

plummets whereas the modified Bessel function of the first

kind increases steeply in (2), resulting in numerical issues

for high SNR designs. To resolve this issue, we propose the

following approximation for the Bessel function:

Lemma 1 ( [23]): For large |z|,

I0(z) =
ez√
2πz

(

1 +O
(

z−2
))

. (4)

Using this lemma I0(z) is replaced with ez/
√
2πz. This

provides simplifications when solving (3), and removes a nu-

merical indeterminacy in the calculation of g (fX(x), fXi
(x)).

For example, to obtain the 128-point constellation in Fig. 1,

the following parameters are used with this modified algo-

rithm, A = {x| x = 0.6 k, k = 0, . . . , 10}. The constellation

design is made for N0 = 0.01 with an average channel input

power constraint of σ2
P = 4. The choice of σP is the same

as the parameter used in [22] but the overall design SNR is

chosen to be higher than the constellations presented there by

taking N0 = 0.01. The reason for this higher SNR choice

is to target the values of engineering interest where the bit

error rate of 128-QAM is around 10−4 in the design. In the

results in the upcoming sections, we show that the proposed

constellation design technique is robust and the constellations

designed for N0 = 0.01 also perform well at lower SNRs.

B. Greedy Quantization

While our discussion in III-A describes how to obtain A,

the discrete set of amplitudes for the fX(x) that provides

the maximization in (1), the distribution is still continuous

in phase. In order to have a true constellation and associated

discrete input distribution pX(x), [7] shows how to discretize

the inputs in a way that incurs a loss in capacity that vanishes

with increasing K , the desired constellation size. The inputs

at energy level a ∈ A can be represented by ka points, where

ka =

⌊

3
√

a2pA(a)
∑

ā∈A
3
√

ā2pA(ā)
K

⌋

,

where pA(a) =
∫

|x|=a
fX(x)dx is the total probability of the

ring of amplitude a in the DACP distribution found in III-A.

Each point x on the energy level a has the same probability,

px(x) = pA(a)/ka. After determining the number of points on

the energy rings, the energy level a ∈ A is divided into ka arcs

of the same length. To determine what phase offset each cycle

should start with, a greedy algorithm is implemented. This

algorithm aims to maximize the minimum distances between

different energy levels. This is achieved by first arbitrarily

placing every ring starting from the x-axis. Then, ring i is

rotated such that the minimum distance between the points on

ring i and the ring i−1 is maximized. Fig. 1 is a non-uniform

128-point constellation designed according to this procedure.

IV. MODULATOR DESIGN

The modulator design in this paper answers the question

of how to realize the constellations discussed in section III

by using a novel simple padding scheme with the Huffman

shaping method, and a systematic way to perform varying-

length bit mappings in an attempt to decrease bit errors. The

proposed padding scheme is crucial for the GRAND-aided

demodulator that will be introduced in section V.

In Huffman coding, symbols are encoded into bits using

the paths from the root node to the leaf nodes of the optimal

binary coding tree, whereas, Huffman shaping reverses this

process by assigning symbols to bit sequences [12]. The

optimal binary coding tree is not necessarily balanced, hence

with fixed number of random bits as the modulator input, the

path formed by the final untransmitted bits in the Huffman

shaping method may not reach to a leaf node. In such cases,

the following simple scheme, which GRAND will avail of for

length correction, is applied. The input bit sequence is padded

with a sequence of a “1” and sufficiently many “0” until the

final bits are mapped to a symbol. If there is no bit in the

original bit string that is not mapped to any symbol, padding

starts at the root of the tree.

An illustration of this process is in Fig. 2. If the bit sequence

that arrived at the modulator is “1110111”, then the symbols 7

and 4 are transmitted according to Huffman shaping. The last

bit does not reach a leaf and stops at node 37 of the tree. The

proposed padding scheme dictates following the “1” branch to

node 33 and the “0” branches are followed from there, leading

to the transmission of symbol 15.

The proposed padding scheme is simple and effective when

combined with the GRAND-based demodulator. The location

of the last 1 indicates the end of the original message,

hence the padding scheme provides the length of the original

message. If the last received symbol is demodulated in error

the location of the last 1 may change, but in section V we

establish that by setting the input bit sequence length, N ,

appropriately, the padding frequency can be designed so that

this happens sufficiently infrequently.

In most communication systems, a Gray code is used for

mapping to constellation points that all have the same number

of bits. We develop a different bit mapping algorithm, suited

for OM, which identifies bit mappings of the same length

in a greedy fashion such that the closest symbols that are

represented by the same number of bits differ in only one bit.

V. DEMODULATION AND LENGTH CORRECTION

Unlike the case of uniform constellations, the demodulation

process needs to incorporate the non-uniform prior distribution

of the symbols, which can be achieved with Bayes’ theorem.

As a result of the varying bit lengths of symbols, insertions

and deletions can result from erroneous demodulation, which

lead to bit error propagation and correspondingly avoid the

large gains in the symbol error rate of using a non-uniform

constellation from being reflected to the bit error rate. The

modulation techniques that rely on these varying-length bit-

to-symbol mappings attempt to remedy this issue through



Fig. 2. Illustrative 20-point constellation design and corresponding Huffman tree.

Algorithm 1: Demodulation and Length Correction

Input: y: channel output

C: constellation points and their probabilities

f: symbol to bit mapping

N0: noise power

n: number of transmitted bits

Result: x̂: demodulated bit sequence

ŷ ← MAP demodulation

x̂ ← bit sequence corresponding to ŷ
if x̂.length 6= n then

i ← 0, r ← likelihood order of symbols in ŷ

while i < ŷ.length do
P ← set of constellation points on the same

ring and the neighboring rings

p ← likelihood order of elements in P
for j= 1 to P .length do

x̂ ← bit sequence of ŷ[r(i)] = P(p(j))
if x̂.length == n then

return x̂

end

i ← i+ 1
end

end

return bit sequence corresponding to ŷ

the use of coding techniques which inevitably yields a large

computational overhead. Our novel GRAND-based demodu-

lation corrects the bit sequence length by guessing the symbol

that caused the length change and swapping it with the most

probable length correcting symbol. Our demodulator therefore

uses the padding as a form of an error correcting code, and

can readily correct many of these length errors. The proposed

procedure is presented in Algorithm 1.

We use the term “message” to indicate the information

bit sequence and “transmitted bit sequence” to include the

padding bits. In the proposed system, the message length

is constant and known by both the transmitter and receiver.

However, the number of bits in the transmitted sequence

changes based on the number of padding bits. Having removed

the padding bits at the receiver, if the length of the remaining

bits is not equal to the agreed message length, then at least

one demodulated symbol resulted in an insertion or deletion.

Our goal in setting message lengths is to ensure that the

likelihood of having more than one insertion or deletion error

between the padded symbols is made negligible. For a given

constellation and ES/N0, the probability of an insertion or

deletion in demodulation, pindel(ES/N0), can be evaluated

with theory or through simulation. According to the channel

model presented in section II, symbol errors resulting in length

changes occur independently. Hence we can express Nl, the

number of symbols transmitted until a length changing error

occurs is distributed geometrically with pindel(ES/N0). Using

this model, we need to set the message length, Ns, such

that the probability of having more than one symbol error

that results in an insertion or deletion within this sequence

of Ns symbols, pNs
, is sufficiently small. To ensure this we

impose the following constraint and solve the inequality for the

largest Ns satisfying it: pNs
≤ a(ES/N0) pindel(ES/N0). In

this inequality a(ES/N0) is a small tunable parameter and we

choose its exact value with a search to minimize the BER of

the final binary system. All the results that will be presented

in the next section are obtained after fixing the a(ES/N0)
values. Message lengths, Ns, for the reported simulations are

presented in Table 1 for the 128-point constellation design in

Fig. 1. The message bit lengths are obtained by multiplying

the number of symbols found via the above model with the

weighted average length of the bit mappings.

TABLE I
SOME MESSAGE LENGTHS FOR 128-POINT CONSTELLATION DESIGN

Eb/N0 (dB) Ave. num. bits (Nb) Num. symbols (Ns) Rate

20.00 1594 252 0.998

18.75 771 122 0.995

17.50 177 28 0.979

16.25 56 9 0.934

In this design, message lengths increase with Es/N0, so

that the rate of the overhead decreases with increasing SNR.

As SNR goes to infinity, the overhead becomes infinitesimally

small compared to the transmitted block length and the rate

of the proposed scheme converges to one. In Table 1, the

last column illustrates this change in rate for the 128 point
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Fig. 3. Symbol error rate (SER) and bit error rate (BER) performance of 128-Point design with GRAND-based length correction and 128-QAM.

constellation. When an insertion or deletion does occur, it

is most likely that there is a single erroneous symbol which

results in shifting to a symbol on a neighboring ring, i.e. one

energy level up or down. An ability to find the symbol that is

in error and correcting it, or at least replacing it with one of

the correct length, decreases both symbol and bit error rates.

At this point, we draw inspiration from GRAND [19]–[21].

First, the demodulator estimates the transmitted symbols via

the decision regions given by Bayes’ theorem and then con-

verts the resulting symbols to a binary string. By construction,

the bit sequence of the last symbol needs to contain a one. If

there is none, then this indicates a false demodulation. An

attempt can be made to correct the error by replacing the last

symbol with the second most probable symbol for this signal.

The message length that is to be received is a constant

known by the receiver. The demodulator compares the length

of the message with this constant. If the lengths are not the

same, then demodulated symbols are listed from least reliable

to most reliable. Starting with the least reliable symbol, the

demodulator examines the length of the bit sequence by

switching the demodulated symbol to a symbol on its own ring

or a neighboring ring. If there is a bit sequence of the correct

length, then the original demodulated symbol is swapped with

the most likely alternate symbol on these specified energy

levels. If there is no bit sequence of the correct length, the

demodulator proceeds to the next least reliable demodulated

symbol. This process continues until a bit sequence of the

correct length is found or all the demodulated symbols are

exhausted. In the latter case, the original demodulated message

bits are returned without any change.

Consider the Huffman tree and the message bit sequence

introduced in the earlier example. Suppose that after de-

tection, the demodulator formed the received symbol se-

quence as 9 − 4 − 15 which corresponds to the bit sequence

“1001011110000”. After removing the padding, the remaining

bits are “10010111”. The expected message length is 7, but

the demodulator has 8 bits hence it attempts error correction.

The received symbols are ordered according to their reliability.

If symbol 9 was labelled as the least reliable symbol, the

symbols on the same and the neighboring rings are listed as

alternatives. According to Fig. 2, the list in this example is

{5, 6, 7, 8, 10, 11, 12, 13}. The elements of this list are ordered

according to their likelihoods and new bit sequences are

formed by swapping symbol 9 with the elements of this list

according to their likelihoods. When the demodulator finds a

bit sequence with length 7, it terminates its search and outputs

the resulting bit sequence. In this example swapping symbol 9

with symbol 7 yields the correct length, thus the demodulator

outputs “1110111” correctly.

VI. RESULTS

In this section, the performance of the 128-point OM

constellation design with GRAND-like length correction is

presented in comparison with 128-QAM, which is a standard

in many applications. As the number of bits used to represent

symbols may differ in the designed constellation, the conven-

tional equation to calculate the Eb/N0 does not hold. Define

Ns(Es/N0) as the average number of symbols for a message

plus padding bits. At most one symbol is used for the padding

overhead. Hence, the average energy of a single information

symbol is upper bounded by Es+Es/Ns(Es/N0). As a result

the following relation is used to obtain Eb/N0:

Es + Es/Ns(Es/N0)

N0
=

Eb

N0

K
∑

i=1

−pi log2(pi),

where pi is the probability of the constellation point i.
In Fig. 3, the SER and BER performance of the 128-point

design equipped with message padding are presented with the

blue starred line. For comparison, the performance of uncoded

128-QAM is shown by the red line with circles. While SER

improvement is to be expected with non-uniform constella-

tions, the additional error type of insertion and deletion makes

it a challenge to translate that SER benefit to BER in the final

binary system. Through light-weight padding and GRAND-

assisted length correction, both of the plots in Fig. 3 show

that the proposed scheme sees a gain of approximately 2 dB

over QAM. Crucially, this is achieved in a light-weight way

and is transparent to the data receiver.

We note that 2 dB is of the order that is typically attained

through the use of computationally involved Forward Error
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Fig. 4. BER performance comparison of the 128-point design with uncoded
128 QAM and 128-QAM with an additional LDPC code for binary error
correction. Due to the varying-length overhead in the proposed scheme, our
128-point design has different rates at different SNRs. The coded 128-QAM
results at each SNR are obtained by using LDPC codes of the same average
rate as the design at that particular SNR.

Correction codes (FEC). To further assess that observation,

we compared the BER performance of the proposed 128-

point design and 128-QAM employing Low Density Parity

Check (LDPC) codes. The choice of LDPC is due to the

large block lengths, as seen in Table 1, we use in the high

SNR regime and to given an estimate of where the proposed

scheme may stand when compared to the conventional and

wide-spread error correcting techniques. As the rate of the

proposed scheme depends on the SNR, for the QAM with

LDPC to be comparable with the proposed scheme, at each

SNR a different LDPC code that has the same rate and

the same block length as the proposed scheme is used. For

instance, at Eb/N0 = 20 dB, the LDPC code used in Fig. 4

has a message length of 1594 bits and a rate of 0.998. More

message lengths and rates can be found on Table 1. We use the

repeat-accumulate LDPC code design described in [24]. The

decoder used with these LDPC codes is the built-in normalized

min-sum LDPC decoder of MATLAB. The results displayed

in Fig. 4 confirm the earlier finding that using OM with a

simple padding scheme and GRAND-style length correction

results in final BER performance that is as good as using

computationally involved FEC schemes as an outside wrapper

to standard modulation.

VII. CONCLUSION

In this paper, we provide a system for making OM practical.

We present a design procedure to obtain non-uniform constel-

lations according to channel statistics. It was already known

in theory that optimal modulation schemes are non-uniform

in their symbol transmission distributions, and that they can

perform better in terms of capacity than the commonly used

uniform modulation schemes. The proposed design provides a

modulation and the associated demodulation schemes that can

significantly surpass the performance of commonly used mod-

ulation schemes such as QAM. While OM is expected to be

capable of providing significant SER benefits over commonly

used schemes, to translate that to BER gains requires a method

that can resolve insertion and deletion errors. Here we establish

a simple, low-overhead, and computationally light mechanism

to translate that gain to BER. Our method achieves this with

a simple padding approach and a novel light-weight GRAND

decoder, resulting in an improvement of the order of 2 dB that

is transparent in the final binary data. The proposed system

currently fixes one symbol when a length change occurs. Our

future work includes extending our framework to fix more than

one length-changing symbol errors and applying the proposed

framework to different constellation sizes.
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