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Abstract—Federated learning (FL) has recently become one
of the most acknowledged technologies in promoting the de-
velopment of intelligent edge networks with the ever-increasing
computing capability of user equipment (UE). In traditional FL
paradigm, local models are usually required to be homogeneous
for aggregation to achieve an accurate global model. Moreover,
considerable communication cost and training time may be
incurred in resource-constrained edge networks due to a large
number of UEs participating in model transmission and the large
size of transmitted models. Therefore, it is imperative to develop
effective training schemes for heterogeneous FL models, while
reducing communication cost as well as training time. In this
paper, we propose an adaptive quantization scheme based on
ensemble distillation (AQeD) for FL to facilitate personalized
quantized model training over heterogeneous local models with
different size, structure, and quantization level, etc. Specifically,
we design an augmented loss function by jointly considering
distillation loss function, quantization values and available wire-
less resources, where UEs train their local personalized machine
learning models and send the quantized models to a server.
Based on local quantized models, the server first performs global
aggregation for cluster ensembles and then sends the aggregated
model of the cluster back to the participating UEs. Numerical
results show that our proposed AQeD scheme can significantly
reduce communication cost as well as training time in comparison
with some known state-of-the-art solutions.

I. INTRODUCTION

Federated learning (FL) has been widely acknowledged as
one of the most essential enablers to bring edge intelligence
into reality, as it facilitates collaborative training of machine
learning (ML) models while preserving individual user privacy
and data security. However, FL still faces many challenges, es-
pecially when deployed at edge networks. Although the trans-
mitted models are lightweight parameters/gradients instead
of the raw data, the communication cost incurred in model
transmission could be still fairly significant and cannot be
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ignored. For example, the experimental results in [1] illustrate
that the model size of a 5-layer convolutional neural network
used for MNIST classification is approximately 4.567MB per
global iteration for images with 28×28 pixels. Therefore, it is
crucial to develop an adaptive training scheme for FL models
with different size, structure, task, etc, while reducing the
communication resource consumption for transmitting model
updates for FL in wireless edge networks.

Some prior investigations have suggested that quantization
is an effective yet efficient method to reduce communication
cost and transmission latency by transmitting quantized models
instead of the original full-precision ones while maintaining
similar learning accuracy [2]–[4]. However, the transmitted
local models could be heterogeneous in quantization level
and quantization precision, even in the size, structure, task
and numerical precision, which makes the implementation of
FL in wireless edge networks more challenging. Fortunately,
recently proposed ensemble distillation technique could be
used for facilitating the collaboration of heterogeneous models
by augmenting the local objective with a certain knowledge
distillation (KD) loss [5]–[7]. The authors of [5] proposed
a quantized and personalized FL algorithm to facilitate per-
sonalized model training by introducing ensemble KD loss
functions into the local loss function. In [6], the authors pro-
posed an ensemble distillation-based FL framework to reduce
wireless resource consumption by considering the diversity of
computing nodes. Both the authors of [5] and [6] verified the
effectiveness and efficiency of introducing ensemble distillation
into the FL framework in edge networks. However, they have
not considered the impact of wireless resources and channel
quality on quantization levels, which is an essential issue for
FL-enabled edge networks as both wireless resource constraints
and wireless channel impairments may degrade the learning
performance. Therefore, it is imperative to explore an adaptive
quantization scheme for heterogeneous FL models while tak-
ing into account both the wireless environment and learning
algorithm design.



In this paper, we propose an adaptive quantization scheme
based on ensemble distillation, called AQeD, to support FL-
enabled edge networks. The main contributions can be summa-
rized as follows: (1) We propose an AQeD scheme to allow the
UEs in different clusters to learn quantized personalized models
with different quantization levels, model structure, dimensions,
and size. (2) We propose an augmented loss function to train
an acceptable FL model that can be flexibly quantized based
on the available bandwidth resources and channel quality while
guaranteeing certain FL performance. (3) We theoretically an-
alyze the convergence property of our proposed AQeD scheme
and demonstrate its effectiveness via simulations.

In the rest of this paper, we begin with the system model
in Section II. Then we present our proposed AQeD scheme
in Section III. In Section IV, the convergence property of
our AQeD scheme is analyzed. In Section V, we present the
numerical results and conclude the paper in Section VI.

II. SYSTEM MODEL

A. FL enabled Edge Networks

We consider an FL-enabled edge network consisting of N
UEs which are grouped into U logical clusters and a central
edge server co-located with the base station (BS). The UEs in
the same cluster may have the same size, task and structure. As
shown in Fig. 1, the UEs can be regarded as local computing
nodes for local model training, while the edge server serves
as the model aggregator [8]. For a specific cluster u ∈ U ,
let Su = {n1

u, . . . , n
i
u, . . . , n

ku
u } represent the set of UEs that

have the same model in size, structure, and FL task, where niu
represents the i-th UE in the u-th cluster and ku denotes the
total number of UEs in the u-th cluster.

B. Quantization Function

Binary/uniform is the most used quantization function that
maps individual weights to the closest quantization centers,
where the derivative of the function is zero almost everywhere,
which discourages the use of gradient-based methods in opti-
mizing the objective with the quantization function. Therefore,
to solve this problem, similar to [2], [5], we use a differentiable
soft quantization (DSQ) function Qct(·) to approximate the
uniform quantizer for UE niu at time t, which is given by

Qct(w
i
u) =


l, wiu < l,

e, wiu > e,

l + ∆
(
a+

φ(wi
u)+1
2

)
, a ∈ Pa,

(1)

where wiu represents the model parameters to be quantized
of UE niu, ct means that the bit width is c at time t, and
(l, e) represents the original range of wiu which is divided
into 2c − 1 intervals Pa, a ∈ {0, 1, 2, ..., 2c − 1}. Moreover,
φ(wiu) = a tanh(k(wiu − ma)). Specifically, ma = l + (a +
0.5)∆, s = 1

tanh(0.5k∆) , and ∆ = e−l
2c−1 . In addition, k

represents the coefficient associated with the shape of φ(wiu),
where the greater k, the more φ(wiu) behaves like the desired
uniform function with multiple quantization levels [2].

C. Communication Model

The main difference between the original model (the local
model without quantization) and quantized models is the data
volume of the transmitted models. In general, the original
local model consists of the training weights that are float 32-
bit, which may be quantized to integer c-bit (1 ≤ c < 32)
quantized model [2]. Let b(Qct(wi,ru ) = (1+log2(c+1))|wi,ru |
represent the volume of the transmitted quantized model of
niu, which is a function of the size of the quantized weights
(i.e., |wi,ru |) as well as the bit width c [9]. Therefore, based on
Shannon’s theorem, the wireless bandwidth used to transmit
the local quantized model of UE niu during the r−th commu-
nication round can be given by

bi,ru (Qct(w
i,r
u ) =

b(Qct(w
i,r
u )

ti,ru log2(1 + SINRi,ru )
, (2)

where ti,ru denotes the transmission time and SINRi,ru denotes
the channel Signal-to-Interference-plus-Noise-Ratio.
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Fig. 1. FL-enabled Edge network with clusters.

D. Quantizated FL Model

1) Loss Function: Let a specific UE niu ∈ N have a local
dataset Diu with Di

u data samples, where Diu = {ximu ∈
Rd, yimu ∈ R}D

i
u

m=1. We first define fm(wiu;ximu , yimu ) as a
loss function for data sample m of UE niu to describe the
learning performance. The loss function is different for various
FL learning tasks [10]. For example, for a linear regression,
the loss function is fm(wiu;ximu , yimu ) = 1

2 (xim
T

u wiu − yimu )2.
For neural network, the loss function could be the mean
squared error (i.e., 1

n

∑N
n=1(yimu − ŷimu )) where ŷimu is the

predicted value of yimu . In this paper, to reduce communication
cost, while guaranteeing FL performance of the quantized
model, inspired by [5], we define the local loss function
f̃ iu(wiu(t), Qct(w

i
u(t))) : Rm → R for the UE niu, as

f̃ iu(wiu(t), Qct(w
i
u(t))) , f iu(wiu(t)) + f iu(Qct(w

i
u(t)))

,
1

Di
u

∑
(xim

u ,yimu )∈Di
u

fm(wiu;ximu , yimu ) +

1

Di
u

∑
(xim

u ,yimu )∈Di
u

fm(Qct(w
i
u(t));ximu , yimu ).

(3)

Moreover, based on the local loss function, we define
f̃u(wu, Qct(wu)) as the cluster loss function on all associated



distributed datasets to measure the learning performance of the
cluster, i.e.,

f̃u(wu, Qct(wu)) ,

∑ku
i=1D

i
uf̃

i
u(wiu(t), Qct(w

i
u(t)))

Du
, (4)

where wu represents the model of cluster u, Du ,
∑ku
i=1D

i
u

denotes the total number of data samples in cluster u. Further-
more, we define f̃(w, c) as the global loss function among all
clusters, i.e.,

f̃(w, c) ,

∑U
u=1Duf̃u(wu, Qct(wu))

D
, (5)

where D ,
∑U
u=1Du. The goal of the edge server is to fit

vectors ω and C for all UEs so as to minimize f̃(w, c), i.e.,
{ω, C}∗ , argw,c min f̃(w,Qct(w)).

III. ADAPTIVE QUANTIZATION BASED ON ENSEMBLE
DISTILLATION

In this section, we first define ensemble distillation loss
functions to bridge the gap between the heterogeneous model
and the global model. Then we present the proposed AQeD
scheme by combining distillation loss and quantization values.

A. Ensemble Distillation

As there is no explict expression for the original model
wiu(t), the quantized model Qct(wiu(t)) and the global model
gtu, we define two separated knowledge distillation loss fuc-
tions (i.e., fKD

u,i (w
i
u(t), gtu), fKD

u,i (Qct(w
i
u(t)), gtu)) based on

Kullback-Leibler (KL) divergence [5], [11] to respectively
represent the gap between wiu(t) and gtu as well as the gap
between Qct(wiu(t)) and gtu. Specifically, fKD

u,i (w
i
u(t), gtu) is to

ensure that the behavior of the model without quantization (i.e.,
wiu(t)) is close to the behavior of the global model (i.e., gtu),
which is given by

fKD
u,i (w

i
u(t), gtu) =

U∑
u=1

pgtu(u) log
pgtu(u)

pwi
u(t)(u)

, (6)

while fKD
u,i (Qct(w

i
u(t)), gtu) is to ensure that the behavior of

the quantized mode (i.e., Qct(wiu(t))) is close to the behavior
of the global model, given by

fKD
u,i (Qct(w

i
u(t)), gtu) =

U∑
u=1

pgtu(u) log
pgtu(u)

pct(u)
, (7)

where u ∈ U is the index of clusters and it also represents
the class across all local models. Moreover, pwi

u(t)(u) =

exp(
∑ku

i=1
fi
u(wi

u(t))

Tem )∑
u∈U exp(

∑ku
i=1

fi
u(wi

u(t))

Tem )

represents the probability of the sam-

ples that belong to class u for the original model. ct(u) =

exp(

∑ku
i=1

fi
u(Q

ct
(wi

u(t)))

Tem )∑
u∈U exp(

∑ku
i=1

fi
u(Qt

c(w
i
u(t)))

Tem )

represents the probability of the

samples that belong to class u for the quantized model.

pgtu(u)
exp(

fu(gtu)

Tem )∑
u∈U exp(

fu(gtu)

Tem )
denotes the corresponding value for

the cluster model. Note that Tem denotes a temperature. A

higher value of Tem, a softer probability distribution over
clusters.

B. Problem Formulation
In traditional FL-enabled edge networks, we always formu-

late the optimization problem to minimize the loss function un-
der the network resource and learning performance constraints,
as follows:

min
w,c

∑U
u=1

∑ku
i=1 D

i
uf̃

i
u

D
(8)

s.t. bi,ru (Qct (w
i
u(t))) ≤ Bi,r

u , ∀r × i× u ∈ R× ku × U, (8.1)
fKD
u,i(w

i
u, g

t
u) + fKD

u,i(Qct (w
i
u), g

t
u) ≤ k,∀r × i× u ∈ R× ku × U,

(8.2)

where (8.1) represents the bandwidth constraint, which means

Algorithm 1 : AQeD Algorithm.
Input: η1, η2, η3; λ1, λ2; R; τ ; c0; wiu(0); Qct(wiu(0)).
output: Quantized models QcT (wiu(T )).

1: for t = 0 to T − 1 do
2: if t mod τ 6= 0 then
3: for u = 1 to U do
4: Parallel Each UE i = 1, 2, ..., ku
5: Compute wiu(t) = ∇wi

u(t)f
i
u(wiu(t)) +

∇wi
u(t)f

i
u(Qctw

i
u(t)) +

λ1∇Qct (wi
u(t))b(Qct(w

i
u(t))) +

λ2∇wi
u(t)f

KD
u,i (w

i
u(t), gtu) +

λ2∇wi
u(t)f

KD
u,i (Qct(w

i
u(t)), gtu)) and

w̃iu(t+ 1) = w̃iu(t)− η1w
i
u(t)

6: Compute hti = ∇ctif
i
u(Qctw

i
u(t)) +

λ1∇ctib(Qct(w
i
u(t))) +λ2∇ctif

KD
u,i (Qct(w

i
u(t)), gtu)

and ct+1
i = cti − η2h

t
i

7: w̃iu(t + 1) = w̃iu(t) − η3λ2(∇wi
u(t)f

KD
u,i (w̃

i
u(t +

1), wiu(t)) +∇wi
u(t)f

KD
u,i (Qct+1(w̃iu(t+ 1), wiu(t)))

8: end for
9: if t mod τ = 0 then

10: Parallel Each UE sends Qct+1(w̃iu(t)) to the server
11: end if
12: end if
13: if t mod τ = 0 then
14: On Server do:
15: Compute gtu =

∑ku
i=1D

i
uQct+1 (w̃i

u(t))

Du

16: Compute f̃(Qtc(w
t
u), gtu)) =∑U

u=1

∑ku
i=1D

i
uf

KD
u,i (Qt

c(wi
u),gtu)

D
17: Server sends gtu to UEs
18: Server sends f̃(Qtc(w

t
u), gtu)) to UEs

19: On Each UE do:
20: Receive gtu and f̃(Qtc(w

t
u), gtu)) from the server

21: Set wiu(t+ 1) = gtu
22: Set fKDu,i (Qt+1

c (wiu(t+ 1)), gtu) = f̃(Qtc(w
t
u), gtu))

23: end if
24: end for
25: output Quantized model QcT (wiu(T )) for each UE.

that the bandwidth used for transmitting the local model of



each UE cannot exceed the maximal available bandwidth of
the BS that can be allocated to the UE. (8.2) means that some
difference between the original model, quantized model, and
distillation model is allowed to some extent. However, due to
the dynamic nature of the edge network, the computational
complexity incurred by searching the optimal quantization
level among heterogeneous FL models could be too high and
the changes of FL training (e.g., global aggregation) may
not be accurately described in training process. To solve this
problem, we propose an AQeD scheme to train a certain FL
model that can be flexibly quantized based on the available
bandwidth resources and channel quality while guaranteeing
the acceptable FL performance among heterogeneous models.
C. AQeD Scheme

We first re-write problem (8) by using the Lagrangian
method, as follows:

min
wi

u,c
F̃ (wi

u(t), Qct(w
i
u(t)), g

t
u) =∑U

u=1

∑ku
i=1D

i
u

D
{f̃ i

u(w
i
u(t), Qct(w

i
u(t)), g

t
u)+

λ1(b
i,r
u (Qct(w

i
u(t)))−Bi,r

u )+

λ2(f
KD
u,i(w

i
u(t), g

t
u) + fKD

u,i(Qct(w
i
u(t)), g

t
u)− k)}.

(9)

Note that problem (8) could be equivalent to problem
(9), as we can always find the available multipliers λ1 and
λ2 for problem (9) to approximate the optimal solution of
problem (8) [12]. In other words, we can find the optimal
solution of problem (8) via problem (9). In this paper, with
the aim to obtain an adaptive FL quantized model based
on the available bandwidth resources and channel quality
while guaranteeing learning performance among heterogeneous
models, we propose AQeD scheme based on FL to solve
problem (9) by introducing a number of local and global
iterations. According to Problem (9), we define the global
augmented loss function as F̃ (wiu(t), Qct(w

i
u(t)), gtu). From

F̃ (wiu(t), Qct(w
i
u(t)), gtu), we can obtain the local loss func-

tion as f̃ iu(wiu(t), Qct(w
i
u(t)), gtu) + λ1(bi,ru (Qct(w

i
u(t))) −

Bi,ru ) + λ2(fKD
u,i (w

i
u(t), gtu) + fKD

u,i (Qct(w
i
u(t)), gtu)− k).

In the AQeD scheme, similar to the traditional FL, a number
of local and global model update iterations are required for
minimizing the global augmented loss function and achieving
certain trained model accuracy. Here each global iteration is
called a communication round [8], which consists of local
model updating, local model quantization, local model trans-
mission, global model aggregation and global model transmis-
sion. Shown as Algorithm 1, in the local updating process,
UEs perform three stochastic gradient descent (SGD)) steps to
update the original model, quantized model, and global model
respectively. Specifically, the first SGD step is for updating the
original model wiu, given as follows:

wiu(t+ 1) = wiu(t)− η1∇wi
u(t)f

i
u(wiu(t))−

∇wi
u(t)f

i
u(Qctw

i
u(t))− λ1∇Qct (wi

u(t))b(Qct(w
i
u(t)))−

λ2∇wi
u(t)f

KD
u,i (w

i
u(t), gtu)− λ2∇wi

u(t)f
KD
u,i (Qct(w

i
u(t)), gtu)).

The second SGD step is for updating the quantization level

c, which is given by

ct+1
i = cti − η2(∇ctif

i
u(Qctw

i
u(t)) + λ1∇ctib(Qct(w

i
u(t)))+

λ2∇ctif
KD
u,i (Qct(w

i
u(t)), gtu))).

The third SGD step is for bridging the gap between
different clusters, which is given by

w̃iu(t+ 1) = w̃iu(t)− η3λ2(∇wi
u(t)f

KD
u,i (w̃

i
u(t+ 1), wiu(t))+

∇wi
u(t)f

KD
u,i (Qct+1(w̃iu(t+ 1), wiu(t))).

When t mod τ = 0, UEs quantize w̃iu(t) to Qct(w̃iu(t)) and
sends the local quantized models Qct(w̃iu(t)) to the edge server.
Then the cluster aggregation is performed at the edge server
according to gtu =

∑ku
i=1D

i
uQct (wi

u(t))

Du
and f̃(Qtc(w

t
u), gtu)) =∑U

u=1

∑ku
i=1D

i
uf

KD
u,i (Qt

c(wi
u),gtu)

D , after which the edge server send
the global model gtu and f̃(Qtc(w

t
u), gtu)) back the the UEs.

IV. CONVERGENCE ANALYSIS

To facilitate the convergence analysis, we first make the
following assumptions for the function f iu(·) and the soft
quantizer Qct(·), respectively, i.e.,
• Assumption 1: Function f iu(x) is L-smooth, twice-

continuously differentiable, and bounded: i.e., ∀x, y ∈ Rd,
||∇f iu(x)−∇f iu(y)|| ≤ L||x−y||, ||∇2f(x)|| ≤ LI, ∀x ∈ Rd,
and f iu(x) > −∞. In addition, ∇f iu(x) is bounded: ∀x ∈ Rd,
||∇f iu(x)|| ≤ G, where G < +∞.
• Assumption 2: Qct(x) is lQ1

-Lipschitz and LQ1
-smooth

with respect to x: ∀c ∈ Rm, ∀x, y ∈ Rd, ||Qct(x)−Qct(y)|| ≤
lQ1 ||x− y|| and ||∇xQct(x)−∇yQct(y)|| ≤ LQ1 ||x− y||.
• Assumption 3: Qct(x) is lQ2

-Lipschitx, LQ2
-smooth

and twice-continuously differentiable with respect to c, i.e.,
∀c, d ∈ Rm, ||Qct(x)−Qdt(x)|| ≤ lQ2

||c− d||, ||∇cQct(x)−
∇dQdt(x)|| ≤ LQ2 ||c− d||, and ||∇2

Qct
f(Qct(x))|| ≤ LQ2 .

Proposition 1. f̃ iu(x,Qct(x)) is GLQ2 + GQ2LlQ2 - smooth
with respect to c.

Proof:

||∇cf(Qct(x))−∇df(Qd(x))|| =
= ||∇Qct (x)f(Qct(x))∇cQct(x)−

∇Qct (x)f(Qct(x))∇dQd(x) +∇Qct (x)f(Qct(x))∇dQd(x)−
∇Qd(x)f(Qd(x))∇dQd(x)||

≤ ||∇Qct (x)f(Qct(x))|| · ||∇cQct(x)−∇dQd(x)||+
||∇dQd(x)|| · ||∇Qct (x)f(Qct(x))−∇Qd(x)f(Qd(x))||
≤ (GLQ2

+GQ2
LlQ2

)||c− d||.

Proposition 2. f̃ iu(x,Qct(x)) is L+GLQ1
+GQ1

LlQ1
- smooth

with respect to x.

Proof: Similar to that in Proposition 1.
According to A.6 in [5], both fKD

u,i (w
i
u, g

t
u) and

fKD
u,i (Qct(w

i
u), gtu) are smooth functions. Specifically,

fKD
u,i (w

i
u, g

t
u) is LD1

-smooth with respect to wiu for a positive
constant LD1

, and LD2
-smooth with respect to gtu for a



positive constant LD2
. Moreover, fKD

u,i (Qct(w
i
u), gtu) is LDQ1

-
smooth with respect to wiu, LDQ2

-smooth with respect to
c, and LDQ3 with respect to gtu for some positive constants
LDQ1 , LDQ2 , and LDQ3 . In addition, we assume that the
function b(Qct(w

i
u)) is also Lb-smooth with respect to wiu

and LDQb
-smooth with respect to c. Therefore, we have the

following Proposition 3.

Proposition 3. Local loss function f̃ iu(x,Qct(x), gtu) +
λ1(b(Qct(x))−Bi,ru )+λ2(fKD

u,i (x, g
t
u)+fKD

u,i (Qct(x), gtu)−k) is
(L+GLQ1

+GQ1
LlQ1

)+λ1Lb+λ2(LD1
+LDQ1

)-smooth with
respect to x, and (GLQ2

+GQ2
LlQ2

) + λ1LDQb
+ λ2LDQ2

-
smooth with respect to c.

Proof: According to the fact that if two functions f1 and
f2 are L1-smooth and L2-smooth respectively, f1 +f2 is L1 +
L2-smooth.

Moreover, we assume that at any t ∈ {0, 1, ..., T − 1},
there exists ki meeting ||gt+1

u − gtu||2 ≤ ki.
and ||∇gtu F̃ (wiu(t + 1), Qct+1(wiu(t + 1)), gtu) −
1
N

∑N
j=1∇gtu F̃ (wju(t+ 1), Qct+1(wju(t+ 1)), gtu)||2 ≤ ki.

Therefore, we derive Proposition 4, as follows:

Proposition 4. Considering running Algorithm 1 for T
iterations under the bandwidth and learning performance
constraints for minimizing F̃ iu(wiu, Qct(w

i
u), gr) with

τ ≤ T , η1 = 1
(L+GLQ1

+GQ1
LlQ1

)+λ1Lb+λ2(LD1
+LDQ1

) ,
η2 = 1

(GLQ2
+GQ2

LlQ2
)+λ1LDQb

+λ2LDQ2
, η3 =

1
4λ2

√
CL

√
T (LD2

+LDQ3
)
. Let Gti := [∇wi

u(t+1)F̃ (wiu(t +

1), Qct(w
i
u(t + 1)), gtu)T ,∇ct+1 F̃ (wiu(t + 1), Qct+1(wiu(t +

1)), gtu)T ,∇gtu F̃ (wiu(t + 1), Qct+1(wiu(t + 1)), gtu)T ]T . Then,
we have

1

T

T−1∑
t=0

1

N

N∑
i=1

||Gti||2 = O(
τ2k + ∆F√

T
+ τ2k(

C1

T
+
C2

T
3
2

) +k),

where C1, C2 are constants, ∆F =
1
N

∑N
i=1(L

(i)
max)2(F̃ (wiu(0), Qc0(wiu(0)), g0) −

F̃ (wiu(T ), QcT (wiu(T )), gtu)), CL = 1 +
1
N

∑N
i=1(L(i)

max)
2

(mini L
(i)
max)2

,

k = 1
N

∑N
i=1(L

(i)
max)2ki, and L

(i)
max = max{ 1

2 , (L + GLQ1
+

GQ1LlQ1)+λ1Lb+λ2LD1 +λ2LDQ1 , (GLQ2 +GQ2LlQ2)+
λ1LDQb

+ λ2LDQ2}.

Proof: The process is similar to Section 7.2.3 of [5]. The
main difference is that we start with the second-order Taylor
expansion of F̃ (wiu(t), Qct(t), g

t
u) and the derivation result is

based on Proposition 1-3.

Convergence Result. The result in Proposition 4 achieves
a convergence rate of O( 1√

T
) for finding a stationary point

(wiu, c), when we minimize F̃ iu(wiu, Qct(w
i
u), gr) in problem

(12) via Algorithm 1 for T iterations.

V. SIMULATIONS

In this section, we verify our proposed AQeD scheme using
numerical simulations by (1) measuring the performance of
FL settings, and (2) examining training time and bandwidth

consumption. Two existing schemes are used as comparison
reference: 1) GCFL: general multi-cluster (task) federated
learning without quantization [13], and 2) FL8Q: multi-task
FL with 8 bits quantization.

A. Simulation Settings

We consider an FL-enabled wireless network composed of
two UE clusters and one BS with a cloud server as the
FL model aggregator. The coverage of the BS is a circular
area with a radius of 500m. The transmit power of UEs, the
serving BS, and the noise power are set to 20dBm, 43dBm,
and −173dBm, respectively [8]. The path loss is modeled as
g(D1) = 34+40 log(D1) [8] and the total amount of available
wireless resources is set to 20 MHz [8]. Please note that the
UEs are randomly generated in each cluster and only the UEs
in the same cluster can contribute the interference to each other.
Moreover, we set λ1 = 0.2 and λ2 = 0.15 [5].

We consider a multi-class classification task over MNIST
datasets [14], where all datasets of UEs are randomly divided
with 75%-25%, for training and testing respectively [15].
Moreover, we use a convolutional neural network (CNN) built
over Pytorch (Python 3.8). The CNN structure for each cluster
is randomly chosen in: 1) CNN1 with 2 convolution layers and
3 fully-connected layers. Specifically, the first and the second
convolution layers are with 16 and 32 channels respectively,
where each layer follows with 2 × 2 max pooling. Moreover,
the fully-connected layer has 320 units where the activation
function is ReLU [16]. 2) CNN2. CNN1 with an additional
convolutional layer with 32 filters and 5 × 5 Kernal size
[5]. 3) CNN3 still with 2 convolution layers and 3 fully-
connected layers. The first and the second convolution layers
with 32 and 64 channels respectively (2× 2 max pooling), the
fully-connected layer with 512 units (the activation function
is ReLU) [16]. In addition, inspired by the hyperparameter
analysis and the corresponding experimental results in [5], [17],
we set learning rate η1 = 0.01, η2 = 10−4, and η3 = 0.5.

B. Simulation Results

We first verify the convergency property of our proposed
AQeD scheme, while comparing the training accuracy with
the other two schemes including GCFL and FL8Q. In this
simulation, the number of epochs is set to 80, the number of
UEs in each cluster is set to 300, and the number of samples
on each UE is randomly chosen within [200, 1200]. Fig. 2
shows the training accuracy of the three schemes changes
with the number of communication rounds. From Fig. 2, we
can see that the AQeD converges faster than the other two
schemes. Specifically, the training accuracy converges in 10
communication rounds for AQeD, 16 communication rounds
for GCFL and 20 communication rounds for FL8Q. In addition,
we find that the training accuracy of our proposed AQeD is
close to that of GCFL and much higher than that of FL8Q.

Next, we examine the training loss of the three schemes. Fig.
3 shows the training loss decreases with epochs. From Fig. 3,
again we see that our proposed AQeD always converges fast.
This is because we introduce two distillation loss functions into



local training to ensure the behavior of local models is close to
that of the global model. In addition, from Fig. 2 and Fig. 3,
we can see that the training loss/accuracy of GCFL is always
better than that of AQeD and FL8Q schemes when the trend
of the curve converges, as quantization causes the model loss.
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After that, we compare the training time of the three
schemes. Fig. 4 shows the training time changes with the
number of UEs. From Fig. 4, we can see that the training time
of AQeD is always lower than that of GCFL and FL8Q. This is
because the local model training is based on the global model
and distillation loss aggregation of heterogeneous models.
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Fig. 5. Comparison of bandwidth con-
sumption.

Finally, we examine the total bandwidth consumption of
the three schemes. Fig. 5 shows that the total bandwidth
consumption changes with the number of UEs. From Fig.
5, we can see that the bandwidth consumption increases in
the beginning and then decreases with the number of UEs.
Specifically, the total bandwidth consumption increases with
the number of UEs when it is approximately below 150.
When the number of UEs is approximately more than 150, the
total bandwidth consumption decreases as poor channel quality
causes some UEs to fail in transmitting the local models. In
addition, we can see that our proposed AQeD scheme signifi-
cantly outperforms GCFL and FL8Q while FL8Q significantly
outperforms GCFL in terms of bandwidth consumption, as
both AQeD and FL8Q introduce quantization technology while
AQeD is more adaptive than FL8Q.

VI. CONCLUSION

In this paper, with aim to reduce communication cost while
guaranteeing learning performance over heterogeneous models,
we have proposed a novel adaptive quantization scheme based
on ensemble distillation, called AQeD, by designing an aug-
mented global loss function. Moreover, we have theoretically

analyzed the convergence property of our AQeD scheme.
Numerical results show that our proposed AQeD scheme can
achieve a significant performance improvement in terms of
training time and bandwidth consumption when compared with
the state-of-the-art algorithms. In the future, we will continue
to explore effective and efficient FL-based schemes to solve
model heterogeneity as well as resource heterogeneity prob-
lems, which is still a challenging issue in wireless networks.
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