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Abstract—Federated learning (FL) is an emerging learning
paradigm without violating users’ privacy. However, large model
size and frequent model aggregation cause serious communi-
cation bottleneck for FL. To reduce the communication vol-
ume, techniques such as model compression and quantization
have been proposed. Besides the fixed-bit quantization, existing
adaptive quantization schemes use ascending-trend quantization,
where the quantization level increases with the training stages.
In this paper, we first investigate the impact of quantization
on model convergence, and show that the optimal quantization
level is directly related to the range of the model updates. Given
the model is supposed to converge with the progress of the
training, the range of the model updates will gradually shrink,
indicating that the quantization level should decrease with the
training stages. Based on the theoretical analysis, a descending
quantization scheme named FedDQ is proposed. Experimental
results show that the proposed descending quantization scheme
can save up to 65.2% of the communicated bit volume and up to
68% of the communication rounds, when compared with existing
schemes.

Index Terms—Federated Learning, Communication-Efficient,
Quantization

I. INTRODUCTION

Federated learning (FL) [1] is a distributed learning scheme
that does not require sharing users’ data, and hence can
protect users’ privacy. However, FL may face severe com-
munication bottlenecks due to the frequent communication of
large machine learning models between the server and the
clients [2]. Many techniques have been proposed to tackle
the communication obstacle, such as infrequent aggregation
[3], [4], sparse compression [5], and quantization [6], [7].
The key idea of quantization is to use fewer bits to represent
the model updates, which introduces a trade-off between the
communication workload and representation accuracy. To this
end, the selection of the quantization scheme becomes critical
[8], [9].

Fixed-bit quantization schemes, such as 8-bit quantization
[6], ternary gradients [7], and even 1-bit quantization [10],
were proposed without considering the changing nature of the
training process. Adaptive quantization was later proposed to
take the training process into consideration. However, most
proposed schemes adopted an ascending quantization with the
intuition that fewer quantization bits, at early training stages,
can save the communication volume and more quantization
bits, at the later stages, can help achieve high accuracy.
The adaptive scheme was designed by metrics including the

root mean square value of gradients [8], gradients’ mean to
standard deviation ratio [11], and training loss [9]. In [12], the
adaptive quantization problem was theoretically investigated
where the range of the model updates is approximated by a
bound.

In this paper, we first investigate the impact of quantization
on convergence. For a given total communication volume, we
optimize the allocation of the quantization bits to different
training stages. In our derivation process, the range of model
updates is not approximated to be a constant, but a variable
instead. It is shown that the optimal quantization level exactly
depends on the range of model updates, and the quantization
level should have a decreasing relationship with the training
stages. Based on the analysis, we propose a descending quanti-
zation strategy named FedDQ. Experimental results show that
the proposed scheme can save both the total communicated
bit volume and the number of communication round, when
compared with the existing ascending quantization approaches.

The main contributions of this work are outlined as follows:
1) We show that the quantization level has a strong relation
with the range of model updates.
2) Based on the theoretical result, we propose a descending-
trend quantization scheme named FedDQ.
3) Experimental results demonstrate that FedDQ can reduce
the communication volume, compared to the state-of-the-art
ascending scheme, and also converges faster by consuming
fewer communication rounds.

II. PRELIMINARIES

A. Federated Learning

The goal of FL is to train a global model X ∈ Rd, where
d is the dimensions of the model, with multiple rounds of
training on distributed datasets residing on different clients.
The problem can be formulated as [1], [13]

min
X
f(X) := min

X

∑n

i=1
pifi(X), (1)

where n is the number of clients, pi is the ratio between the
data size of the ith client and that of all clients, and fi(X)
is the loss function for the ith client. In the mth round of
communication, the server broadcasts the global model Xm

to all the selected clients, which will perform τ steps of local
stochastic gradient descend (SGD) with a step size η. The local
updating rule for the ith client is given by

Xi
m,t+1 = Xi

m,t − ηm,t∇̃fi(Xi
m,t), (2)978-1-6654-3540-6/22/$31.00 © 2022 IEEE

ar
X

iv
:2

11
0.

02
29

1v
5 

 [
cs

.L
G

] 
 1

0 
N

ov
 2

02
2



where t = 0, ..., τ − 1, Xi
m,0 = Xm, and ∇̃fi(Xi

m,t) denotes
the stochastic gradient computed from local datasets. After
completing τ steps of local training, the ith client obtains a
new model Xi

m,τ , and the model update of the ith client is
calculated by

∆Xi
m = Xi

m,τ −Xm. (3)
Before uploading the model update ∆Xi

m to the server,
quantization is applied to get Q(∆Xi

m). At the server, the
uploaded parameters from r selected clients will be aggregated
to update the global model by

Xm+1 = Xm +
1

r

∑
i∈Sm

Q(∆Xi
m), (4)

where Sm is the set of selected clients.

B. Stochastic Uniform Quantization

In this paper, we adopt a common quantizer named a
stochastic uniform quantizer [14]. For a given model update
∆Xi ∈ Rd, we first compute its range, i.e., range(∆Xi) =
∆Xmax

i − ∆Xmin
i , where ∆Xmax

i = max1≤j≤d∆Xi(j),
∆Xmin

i = min1≤j≤d∆Xi(j) denote the maximum and
minimum values of all the model updates, respectively. With
N bit quantization, the range is divided into 2N −1 bins. The
quantized value of ∆Xi(j) depends on which bin it is located
in. For example, if ∆Xi(j) is located in one bin whose lower
bound and upper bound are h′ and h′′, respectively, then the
quantized value is given by

Q(∆Xi(j)) =

{
h′, with probability h′′−∆Xi(j)

h′′−h′ ,

h′′, otherwise.
(5)

III. INTUITIVE AND THEORETICAL ANALYSIS

In this section, we first discuss the drawbacks of the existing
ascending quantization schemes intuitively. Then, we formu-
late the quantization problem and analyze it theoretically.

A. Intuitive Analysis

Existing adaptive quantization strategies use an ascending
quantization based on the intuition that a low quantization level
at the early training stages can save communication volume,
while a high quantization level at the late stages can improve
the training convergence [11]. However, this intuition may not
reflect the actual situation for the following reasons:

1) In the early training stages, the training loss drops very
quickly (as shown in Fig. 1(a)), and a high quantization level
at the early stages can enhance the speed of this drop. Using
a low quantization level at the early stages does save the bit
volume, but may slow down the convergence, which results in
more communication rounds and larger overall communication
volume to reach convergence.

2) In the later training stages, the model starts to converge
and becomes stable. As a result, the range of model updates
for each layer will decrease (as shown in Fig. 1(b)). Thus,
a small bit-length is enough to represent the narrower range,
while using a high number of quantization bits will be a waste.

Based on the above reasons, a descending-trend quantization
is more suitable for FL training, and we support this intuition
with theoretical analysis in the following section.

(a) Training loss curve. (b) Model update range curve.

Fig. 1: The training characteristics which show the decreasing
training loss and decreasing range of model updates. This
example is FL on Fahion-MNIST [15] using Vanilla CNN [1]
model.

B. Theoretical Analysis

In this section, we first derive the convergence bound for a
given communication volume constraint. Then, we determine
the optimum quantization level by maximizing the conver-
gence rate. We begin by introducing three commonly-used
assumptions.
Assumption 1. The random quantizer Q(·) is unbiased and its
variance is bounded by the quantization level and the range
of the parameters, i.e., E[Q(X)|X] = X and E[||Q(X) −
X||2|X] ≤ qs(range(X))2 [14], where qs = d

s2 [12] and s is
the number of quantization bins, i.e., range(X) is divided into
s bins.
Assumption 2. The loss function fi is L-smooth with respect
to X, i.e., for any X, X̂ ∈ Rd, we have ||∇fi(X)−∇fi(X̂)|| ≤
L||X − X̂|| [12], [13].
Assumption 3. The stochastic gradient ∇̃fi(X) is unbiased
and variance bounded, i.e., Eξ[∇̃fi(X)] = ∇fi(X), and
Eξ[||∇̃fi(X)−∇fi(X)||2] ≤ σ2, ξ is the mini-batch dataset.

With Assumptions 1-3, the convergence bound of FL can
be given by the following theorem.
Theorem 1. For given K communication rounds, the
convergence is bounded by

1

Kτ

K−1∑
m=0

τ−1∑
t=0

E‖∇f(X̄m,t)‖2 ≤
Ld

n2ηKτ

K−1∑
m=0

∑
i∈[n]

(
rangeim
sim

)2

+
2(f(X0)− f∗)

ηKτ
+
η2σ2(n+ 1)(τ − 1)L2

n
+
ησ2L

n
, (6)

where X̄m,t is the averaged model on all local clients, rangeim
is the range of model updates for the ith client in the mth

communication round, f∗ is the minimum value of training
loss, and the other symbols were defined previously. Proof of
the theorem is provided in the Appendix.

Our target is to minimize the right hand side of (6).
With the constraint of a total communication volume B =∑K−1
m=0

∑
i∈[n] ds

i
m, we want to optimize sim to minimize the

right hand side of (6). By ignoring the three terms on the most



right hand side of (6), the problem can be simplified as

min
sim

K−1∑
m=0

∑
i∈[n]

(
rangeim
sim

)2

s.t.

K−1∑
m=0

∑
i∈[n]

dsim = B. (7)

To solve above optimization problem, we recall the Cauchy-
Schwarz inequality: (

∑n
i=1 x

2
i )(
∑n
i=1 y

2
i ) ≥ (

∑n
i=1 xiyi)

2,
where the equality holds when x1/y1 = x2/y2 = ... = xn/yn.
By setting yi = 1, we get the variant of Cauchy-Schwarz
inequality: (

∑n
i=1 x

2
i ) ≥ 1/n(

∑n
i=1 xi)

2, and the equality
holds when x1 = x2 = ... = xn.

Applying the variant of Cauchy-Schwarz inequality on (7),
we get

K−1∑
m=0

∑
i∈[n]

(
rangeim
sim

)2 ≥
K−1∑
m=0

1

n
(
∑
i∈[n]

rangeim
sim

)2, (8)

and the condition for equality is
range0

m

s0
m

=
range1

m

s1
m

= ... =
rangenm
snm

. (9)

Continuing to apply the variant of Cauchy-Schwarz inequality
on (8), we get
K−1∑
m=0

1

n
(
∑
i∈[n]

rangeim
sim

)2 ≥ 1

Kn
(

K−1∑
m=0

∑
i∈[n]

rangeim
sim

)2, (10)

and the condition for equality is∑
i∈[n]

rangei0
si0

=
∑
i∈[n]

rangei1
si1

= ... =
∑
i∈[n]

rangeiK−1

siK−1

. (11)

Combining (8) and (10), we get
K−1∑
m=0

∑
i∈[n]

(
rangeim
sim

)2 ≥ 1

Kn
(

K−1∑
m=0

∑
i∈[n]

rangeim
sim

)2, (12)

and the condition for equality is, for i = 0, 1, ..., n and m =
0, 1, ...,K − 1,

rangeim
sim

= α, (13)

where α is a constant. From (7) we can get α =
d
B

∑K−1
m=0

∑
i∈[n] range

i
m.

Thus, the optimized quantization bins for the ith client in
the mth communication round is

sim =
rangeim

α
. (14)

It shows that the optimal quantization bins should be propor-
tional to the model update range. From Fig. 1(b), we know
that rangim will shrink with communication round m. This
supports the use of a descending quantization scheme.

IV. DESIGN AND CONVERGENCE PROOF

A. Design of Descending Quantization

Eq.(14) indicates that the optimized quantization bins should
be proportional to its model update range. But the constant
α = d

B

∑K−1
m=0

∑
i∈[n] range

i
m is difficult to determine be-

cause B is not same for all experiments, and we also don’t

know the range for the further communication rounds. So we
keep α as a hyper-parameter.

For the ith client in the mth communication round, the
quantization scheme is

sim =
rangeim

α
bitim = dlog2(sim)e. (15)

The quantization bit will only change with the variable
rangeim, which has a descending characteristic.

Eq.(15) is practical and easy to use in reality. The client just
needs to compute the range of local updates and then decide
the quantization bit-length. Compared with other quantization
schemes, FedDQ has more freedom as each client can decide
the quantization bit individually.

B. Convergence Proof

We now provide the convergence proof for FedDQ in non-
convex scenarios. By substituting sim = rangeim/α into (6),
and setting the learning stepsize as η = 1/L

√
Kτ [13], then

the following first-order stationary condition holds:

1

Kτ

K−1∑
m=0

τ−1∑
t=0

E‖∇f(X̄m,t)‖2 ≤
2L(f(X0)− f∗)√

Kτ

+
L2dα2

n
√
Kτ

+
σ2

n
√
Kτ

+
σ2(n+ 1)(τ − 1)

nKτ
. (16)

The result implies the following convergence rate:

1

Kτ

K−1∑
m=0

τ−1∑
t=0

E‖∇f(X̄m,t)‖2 ≤ O(
1√
Kτ

). (17)

Eq.(17) shows if communication rounds K → ∞, we have
1
Kτ

∑K−1
m=0

∑τ−1
t=0 E‖∇f(X̄m,t)‖2 → 0. It proves that the FL

training will converge with sufficient number of communica-
tion rounds K.

V. EXPERIMENTS AND DISCUSSIONS

A. Experiment Setup

We compare FedDQ with the state-of-the-art ascending
quantization scheme AdaQuantFL [12] to show the effective-
ness of our approach. As [12] already shows that adaptive
quantization performs better than fixed-bit quantization, we
will not compare FedDQ with fixed quantization schemes.
Three benchmarks are used in the experiments: 1) Vanilla
CNN [1] on Fashion MNIST [15], 2) CNN (4 convolution
layers + 3 fully connected layers) on CIFAR-10 [16], and 3)
ResNet-18 [17] on CIFAR-10.

We use a similar experimental setup as that used for
AdaQuantFL in [12]. The training datasets of Fashion MNIST
and CIFAR-10 are split among all clients, and the test datasets
are used to perform validation on the server side. For the
hyper-parameters, we set the local update steps τ=5, the step
size η=0.1, and α = 0.005. An SGD optimizer is utilized for
the local training. The numbers of local clients for the three
benchmarks are 10, 10, and 4, respectively. NVIDIA 3090
GPU, CUDA 11.4, and PyTorch 0.2.2 are deployed in our
experiments.



(a) Performance vs.
communicated bits.

(b) Performance vs.
communicated rounds.

Fig. 2: Vanilla CNN on Fashion MNIST.

(a) Performance vs.
communicated bits.

(b) Performance vs.
communicated rounds.

Fig. 3: CNN on CIFAR-10.

B. Experiment Results

Both the training loss and test accuracy are checked for all
the experiments. The training loss is the averaged value of all
the clients’ local training loss [18]. We also compare the total
communication volume and the number of communication
rounds for both methods. The comparisons are shown in
Figures 2 to 4.

In Fig. 2(a), Fig. 3(a) and Fig. 4(a), we compare the
performance with respect to the total communication volume.
We can see that to achieve the same test accuracy or the
same training loss, the number of bits that need to be trans-
mitted for the proposed FedDQ scheme is fewer than that of
AdaQuantFL. This is because, in the later stages of training,
the model range becomes smaller, though AdaQuantFL keeps
increasing the quantization bits, which may cause bit volume
waste. On the other hand, FedDQ uses smaller quantization
bits while maintaining the accuracy.

In Fig. 2(b), Fig. 3(b) and Fig. 4(b), we compare the perfor-
mance regarding the communication rounds. Similarly to the
case of the bit volume, to achieve the same test accuracy or the
same training loss, the proposed FedDQ scheme requires fewer
communication rounds. This is because, in the early training
stages, the training loss drops very quickly. AdaQuantFL uses
small quantization bit-length in these stages, which may slow
down the convergence speed and increases the overall number
of communication rounds. FedDQ assigns higher quantization
bit-length in these stages to accelerate the convergence and
hence, it can reduce the number of communication rounds
and converge faster.

(a) Performance vs.
communicated bits.

(b) Performance vs.
communicated rounds.

Fig. 4: ResNet-18 on CIFAR-10.

(a) Vanilla CNN on
Fashion MNIST.

(b) CNN on
CIFAR-10.

Fig. 5: Bit-length change curves in different experiments.

Table I summarizes the comparison with respect to the
consumed communication volume and communication rounds
between FedDQ and AdaQuantFL. For example, in experiment
1, to achieve a test accuracy of 91.0%, AdaQuantFL consumes
a total 2.07Gb in 100 rounds, while the proposed FedDQ only
needs 0.72Gb in 43 rounds, which translates into a 65.2%
reduction in communication volume and 57% reduction in the
number of communication rounds.

Fig. 5 shows how the quantization bit-length changes with
the training stages for different methods. It can be observed
that the proposed FedDQ results in a descending-trend quan-
tization, while AdaQuantFL shows an ascending-trend quanti-

TABLE I: Performance Improvement

Communicated Bits
AdaQuantFL FedDQ Reduction Ratio

Experiment.1
Acc.=91.0% 2.07 Gb 0.72 Gb 65.2%

Experiment.2
Acc.=76.7% 30.25 Gb 19.95 Gb 34.0%

Experiment.3
Acc.=84.7% 3.71 Gb 1.45 Gb 60.9%

Communication Rounds
AdaQuantFL FedDQ Reduction Ratio

Experiment.1
Acc.=91.0% 100 43 57%

Experiment.2
Acc.=76.7% 100 49 51%

Experiment.3
Acc.=84.7% 25 8 68%



zation. In FedDQ, the quantization bit-length can be different
for different clients, and the quantization bit-length shown in
Fig. 5 is the average among all clients and thus, it is not an
integer.

VI. CONCLUSION

In this paper, we investigated adaptive quantization schemes
for federated learning, and determined the optimal quantiza-
tion level by maximizing the convergence rate. Theoretical
analysis indicates that the quantization level should be related
to the range of model updates, which shows a descending
trend. Based on this result, we proposed an adaptive quan-
tization scheme where the quantization level decreases with
the training stages. A convergence guarantee was provided.
Experimental results demonstrated that to achieve the same
training loss or test accuracy, the proposed scheme requires a
lower communicated bit volume and converges faster than the
scheme with an ascending-trend quantization.

APPENDIX

We first define some notations which will be used
throughout the proof. For each communication round m =
0, 1, ...,K−1 and local iteration t = 0, 1, ..., τ −1, we denote

Xm+1 = Xm +
1

r

∑
i∈Sm

Q(Xi
m,τ −Xm),

X̂m+1 = Xm +
1

n

∑
i∈[n]

Q(Xi
m,τ −Xm),

X̄m,t =
1

n

∑
i∈[n]

Xi
m,t, (18)

where Xm+1 is the updated global model based on r selected
clients, X̂m+1 is the updated global model based on all n
clients, and X̄m,t is the averaged model of all n raw clients
without quantization.
Lemma 1. Consider the sequence of update
Xk+1, X̂k+1, X̄k,τ . If Assumptions 1 and 2 hold, then
we have

Ef(Xm+1) ≤ Ef(X̄m,τ ) +
L

2
E‖X̂m+1 − X̄m,τ‖2

+
L

2
E‖X̂m+1 −Xm+1‖2. (19)

The proof is given in Section 8.2 of [13]. In following three
lemmas, we determine the upper bound for the three terms in
the right-hand side (RHS) of (19).
Lemma 2. Given Assumptions 2 and 3, and considering the
sequence of updates with stepsize η. Then we have

Ef(X̄m,τ ) ≤ Ef(Xm)− η

2

τ−1∑
t=0

E‖∇f(X̄m,t)‖2

− η(
1

2n
− Lη

2n
− L2η2τ(τ − 1)

n
)

τ−1∑
t=0

∑
i∈[n]

E‖∇f(Xi
m,t)‖2

+
Lτη2σ2

2n
+
L2η3σ2(n+ 1)τ(τ − 1)

2n
. (20)

The proof can be found in [13], Section 8.3. This Lemma
shows that by receiving the global model Xm, each client

will execute τ steps of local update, and after the local update,
the training loss of the averaged clients’ model X̄m,τ will be
smaller than the loss of the original global model Xm.
Lemma 3. With Assumption 1, for sequences X̂m+1, X̄m,τ

defined in (18), we have

E‖X̂m+1 − X̄m,τ‖2 ≤
1

n2

∑
i∈[n]

qs(range
i
m)2, (21)

where qs = d
s2 .

Proof: According to the definitions in (18), X̂m+1 and X̄m,τ

are both the updated global model based on all clients, the
difference is that X̂m+1 has up-link quantization error while
X̄m,τ does not. Here we calculate the distance between these
two models. Using Assumption 1, we have
E‖X̂m+1 − X̄m,τ‖2

= E‖Xm +
1

n

∑
i∈[n]

Q(Xi
m,τ −Xm)− 1

n

∑
i∈[n]

Xi
m,τ‖2

= E‖ 1

n

∑
i∈[n]

Q(Xi
m,τ −Xm)− 1

n

∑
i∈[n]

(Xi
m,τ −Xm)‖2

=
1

n2
E‖
∑
i∈[n]

Q(Xi
m,τ −Xm)−

∑
i∈[n]

(Xi
m,τ −Xm)‖2

=
1

n2
E‖
∑
i∈[n]

Q(∆Xi
m)−

∑
i∈[n]

∆Xi
m‖2

≤ 1

n2

∑
i∈[n]

qs(range
i
m)2. (22)

Lemma 4. If Assumption 1 and 3 hold, then for the sequence
of averages X̂m+1 defined in (18), we have

E‖X̂m+1−Xm+1‖2 ≤
4(1 + qs)

r(n− 1)
(1− r

n
)∗

(nσ2τη2 + τη2
∑
i∈[n]

τ−1∑
t=0

‖∇f(Xi
m,t)‖2). (23)

The proof can be found in [13], Section 8.5. It is to calculate
the error by client selection. X̂m+1 is the updated global model
based on all n clients, Xm+1 is the updated global model
based on the selected r clients.

Now we get the basic lemmas in above 4 lemmas, we then
continue to calculate the convergence bound. By combining
Lemmas 1∼4, we can get the following recursive inequality
on the expected function value on the updated model at cloud
server, i.e., Xm : m = 1, ...,K:

Ef(Xm+1) ≤ Ef(Xm)− η

2

τ−1∑
t=0

E‖∇f(X̄m,t)‖2

+
L

2n2

∑
i∈[n]

qs(range
i
m)2 − η

2n
∗{

1− Lη(1 +
4n(n− r)(1 + qs)τ

rn(n− 1)
)− 2L2τ(τ − 1)η2

}
∗
τ−1∑
t=0

∑
i∈[n]

E‖∇f(Xi
m,t)‖2 +

L2η3σ2(n+ 1)τ(τ − 1)

2n

+
Lη2σ2τ

2
(

1

n
+

4(1 + qs)n(n− r)
rn(n− 1)

). (24)



When η is small such that

1− Lη[1 +
1

r(n− 1)
(1− r

n
)4n(1 + qs)τ ]

− 2L2τ(τ − 1)η2 ≥ 0, (25)

we have

Ef(Xm+1) ≤ Ef(Xm)− 1

2
η

τ−1∑
t=0

E‖∇f(X̄m,t)‖2

+
L

2n2

∑
i∈[n]

qs(range
i
m)2 + η3σ

2

n
(n+ 1)

τ(τ − 1)

2
L2

+ η2L

2
σ2τ [

1

n
+

1

r(n− 1)
(1− r

n
)4(1 + qs)n]. (26)

Summing (26) over m = 0, ...,K − 1 and rearranging the
terms produces that

1

2
η

K−1∑
m=0

τ−1∑
t=0

E‖∇f(X̄m,t)‖2 ≤ f(X0)− f∗

+
L

2n2

K−1∑
m=0

∑
i∈[n]

qs(range
i
m)2 +Kη3σ

2

n
(n+ 1)

τ(τ − 1)

2
L2

+Kη2L

2
σ2τ [

1

n
+

1

r(n− 1)
(1− r

n
)4(1 + qs)n],

(27)
or

1

Kτ

K−1∑
m=0

τ−1∑
t=0

E‖∇f(X̄m,t)‖2 ≤
2(f(X0)− f∗)

Kητ

+
L

Kn2ητ

K−1∑
m=0

∑
i∈[n]

qs(range
i
m)2 + η2σ

2

n
(n+ 1)(τ − 1)L2

+ ηLσ2[
1

n
+

1

r(n− 1)
(1− r

n
)4(1 + qs)n]. (28)

In this paper and [12], r = n, (28) can be simplified into

1

Kτ

K−1∑
m=0

τ−1∑
t=0

E‖∇f(X̄m,t)‖2 ≤
Ld

n2ηKτ

K−1∑
m=0

∑
i∈[n]

(
rangeim
sim

)2

+
2(f(X0)− f∗)

ηKτ
+
η2σ2(n+ 1)(τ − 1)L2

n
+
ησ2L

n
, (29)

which completes the proof of Theorem 1.
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