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Abstract—We address the localization of a reconfigurable
intelligent surface (RIS) for a single-input single-output multi-
carrier system using bi-static sensing between a fixed transmitter
and a fixed receiver. Due to the deployment of RISs with a large
dimension, near-field (NF) scenarios are likely to occur, especially
for indoor applications, and are the focus of this work. We first
derive the Cramér-Rao bounds (CRBs) on the estimation error
of the RIS position and orientation and the time of arrival (TOA)
for the path transmitter-RIS-receiver. We propose a multi-stage
low-complexity estimator for RIS localization purposes. In this
proposed estimator, we first perform a line search to estimate
the TOA. Then, we use the far-field approximation of the NF
signal model to implicitly estimate the angle of arrival and the
angle of departure at the RIS center. Finally, the RIS position
and orientation estimate are refined via a quasi-Newton method.
Simulation results reveal that the proposed estimator can attain
the CRBs. We also investigate the effects of several influential
factors on the accuracy of the proposed estimator like the RIS
size, transmitted power, system bandwidth, and RIS position and
orientation.

Index Terms—RIS Localization, Near-Field, CRB.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) consist of con-
trollable elements that can alter the characteristics of an
electromagnetic (EM) wave, such as phase, amplitude, fre-
quency, or polarization [1]–[3]. By properly configuring the
element coefficients, RISs provide controllable communication
channels to support communication and localization services
for wireless devices [4]. With the properties of being energy-
efficient, lightweight, easy to deploy, and compatible with
the existing wireless infrastructures, RISs are expected to be
the vital enabler for the sixth generation (6G) communication
systems [5], [6].

RIS-aided communication and localization have been in-
tensely studied in recent years, see, e.g., [7]–[11]. In the
RIS-assisted communications context, for instance, a location-
aware beamforming design in the far-field (FF) region was
proposed in [7], where authors established the geometrical
channel model based on the user’s 3D location. In the lo-
calization context, the 3D position of a user with the aid
of RIS has been estimated in [8], where the authors have
considered the FF model. For 3D user localization in the near-
field (NF) region of an RIS acting as a lens, a low-complexity
estimator has been proposed in [9]. Furthermore, the potential
of the user localization has been investigated in the NF region
when the direct path is blocked [12]. For 2D RIS-aided user
positioning, the RIS-assisted received signal strength (RSS)-
based localization algorithms have been proposed in [10]. In
[11], the linear RIS phase profile has been designed for both
communications and positioning systems for the FF region in

Fig. 1: System setup, comprising single-antenna TX and RX, as well as an
RIS with unknown location and orientation. θ̃tx and θ̃rx represent the AOA
and AOD at the RIS center when α = 0, respectively.

a 2D scenario. In [13], a low-complexity method for joint lo-
calization and synchronization is proposed based on a passive
RIS phase profile in a 2D scenario. According to the recent
works in RIS-aided localization systems, it can be realized that
the location and orientation of the RIS need to be known. That
is because RIS is one of the reference points in these systems
[1]. In the context of RIS-aided communication systems,
knowing RIS location can facilitate the location-based RIS
phase profile optimization [14]. However, the location and
the orientation of the RIS were assumed to be known in all
previous studies, which is non-trivial to obtain in practice. The
problem of RIS localization (i.e., determining the position of
an RIS) can be seen as a bi-static sensing problem, and was
previously tackled in [15] under FF conditions. However, the
RIS orientation could not be determined, given the time of
arrival (TOA) measurements. When the RIS is large, devices
in most RIS-aided systems will be in the NF, which makes
the RIS localization problem more challenging than in [15].

In this paper, we aim at estimating the location and orienta-
tion of an RIS in a NF scenario with a single-antenna receiver
(RX), where a multi-carrier (MC) single-antenna transmitter
(TX) sends signals to the RX via the linear RIS. Our main
contributions are as follows: (i) we formulate the RIS local-
ization problem in the NF region for a single-input and single-
output (SISO)-MC system with a blocked line of sight (LOS)
path, (ii) we derive a Fisher information matrix (FIM) for RIS
location and orientation estimate, (iii) we propose a multi-
stage low-complexity RIS localization algorithm and evaluate
it by comparing with the theoretical error bound; Moreover,
we use FF approximation of the NF observed signals to earn
information about the angle-of-arrival (AOA) and the angle-



of-departure (AOD) at the RIS.
Notation: Vectors and matrices are indicated by lowercase

and uppercase bold letters, respectively. The element in the
ith row and jth column of matrix A is specified by [A]i,j .
The sub-index i : j determines all the elements between
i and j. The complex conjugate, Hermitian, and transpose
operators are represented by (.)

∗, (.)H, and (.)
⊤, respectively.

∥.∥ calculates the norm of vectors or Frobenius norm of
matrices. By ⊙, we indicate element-wise product. ȷ =

√
−1

and 1K is a column vector comprising all ones with length K.
The function atan2(y, x) is the four-quadrant inverse tangent
function.

II. SYSTEM MODEL

In this section, we describe the considered wireless system
for 2D1 RIS localization and elaborate the signal model.

A. System Setup

We consider a wireless system consisting of a single-
antenna TX, a single-antenna RX, and an M -elements linear
RIS in a two-dimensional Cartesian coordinate system (global
reference) as shown in Fig. 1. The RX and TX are located
at NF region2 of the RIS with the LOS path blocked.3 We
also assume that TX and RX are synchronized (i.e., known
clock bias) with known position (ptx and prx) (e.g., RX as
calibration agent).

With a rotation angle α, the global position of mth RIS
element can be expressed as a function of the RIS center pris:

pm = pris +Rα

(
m− M − 1

2

)
[∆, 0]⊤, (1)

where ∆ is the inter-element space (e.g., λ/2) and Rα is the
2D rotation matrix as

Rα =

[
cos (α) − sin (α)
sin (α) cos (α)

]
. (2)

The aim of this work is to estimate the orientation (α) and the
center position of the RIS (pris).

B. Signal Model

We consider a MC scenario, where TX transmits T or-
thogonal frequency division multiplexing (OFDM) symbols
over time with Nc sub-carries for RIS localization purposes.
Without loss of generality, we assume that all the transmitted
symbols are equal to one. It is also assumed that RIS changes
the phase of the incident wave through a random profile over
time (denoted by t). The RIS phase profile at time t is shown
by the vector γ(t) ∈ CM×1, where |[γ(t)]m| = 1 for all m.
Based on these assumptions, we can write the received signal

1Our study is limited to 2D, given the inherent difficulty of RIS localization.
The 3D problem is left for future work.

2NF region, which is usually defined as the range smaller than the
Fraunhofer distance dF = 2D2/λ [16]. Here, D and λ are the dimension of
the RIS and the wavelength at the carrier frequency, respectively.

3This is not a limiting assumption, but only invoked for notation conve-
nience. When the LOS path is present, it can be separated from the RIS path
as in [15]. When the TX and RX are synchronized, the LOS path does not
convey any information.

over time and sub-carrier frequencies as the following Nc×T
matrix

Y = ρeȷϕ
√

Ptd (τ)b⊤Γ+W, (3)

where ρeȷϕ is an unknown complex gain, modeled with ϕ ∼
U [0, 2π) and [17]

ρ =

√
GtGrAλ2

64π3

1

∥ptx − pris∥∥prx − pris∥
, (4)

where A = ∆2

4 denotes the RIS element’s surface area
and Gt and Gr are the antenna gain at the TX and RX,
respectively. Pt denotes the transmitted power. The matrix
Γ contains all of the RIS phase profiles over time, that is
Γ =

[
γ(0), . . . ,γ(T )

]
, W ∈ CNc×T is the noise matrix

containing zero-mean circularly-symmetric independent and
identically distributed Gaussian elements with variance σ2. We
consider the effect of the delay on the signal with the vector
d(τ) ∈ CNc×1, which is defined as

d(τ) = [ 1, e−ȷ2πτ∆f , . . . , e−ȷ2πτ(Nc−1)∆f ]⊤, (5)

where ∆f is sub-carrier spacing and τ = ∥ptx − pris∥/c +
∥prx−pris∥/c for speed of light c. Finally, b = at⊙ar, where
the vectors at and at are the NF array response vectors from
the RIS to the TX and RX, respectively. The mth elements of
these vectors are defined as [18]

[at]m = e−ȷ 2π
λ (Rt

m−Rt
o), (6a)

[ar]m = e−ȷ 2π
λ (Rr

m−Rr
o), (6b)

where Rt
m = ∥pm − ptx∥, Rr

m = ∥pm − prx∥, Rt
o = ∥pris −

ptx∥, Rr
o = ∥pris −prx∥. Here, we assume that the wavelength

remains relatively constant over the transmission bandwidth
(BW), so that beam squint effects can be ignored.

III. FISHER INFORMATION ANALYSIS

Introducing the noiseless part of observation given in (3) as
µ = ρeȷϕ

√
Ptd( τ)b

⊤Γ , and the 6 × 1 vector of unknowns
η = [ρ ϕ τ p⊤

ris α]⊤, and ζ =
[
ρ ϕ p⊤

ris α
]⊤

, the
FIM J(η) ∈ R6×6 is defined as [19, Sec. 3.9]

J(η) =
2

σ2

T∑
t=1

Nc∑
nc=1

ℜ

{
∂[µ]t,nc

∂η

(
∂[µ]t,nc

∂η

)H
}
. (7)

Using (7), we can calculate the Cramér-Rao bound (CRB) of
the τ , i.e., the time error bound (TEB) as√

E
[
(τ − τ̂)

2
]
≥ TEB ≜

√
[J(η)−1]3,3 , (8)

where τ̂ is the estimate of the true τ . Since there is a
relationship between τ and pris, the FIM of position and
orientation J (ζ) can be derived as J (ζ) = T⊤J (η)T, where
T ∈ R6×5 is a Jacobian matrix [19, Eq. (3.30)]. Its element
on the ℓth row and the qth column is defined

[T]ℓ,q =
∂ [η]ℓ
∂ [ζ]q

. (9)



Considering (7) and (9), the position error bound (PEB) and
orientation (OEB) can be written as√

E [∥pris − p̂ris∥2] ≥ PEB ≜
√
tr([J(ζ)−1]3:4,3:4) , (10a)

√
E
[
(α− α̂)

2
]
≥ OEB ≜

√
[J(ζ)−1]5,5 , (10b)

where p̂ris and α̂ are the estimates of the true RIS position and
orientation, respectively. The matrices J and T are calculated
in the Appendix.

IV. RIS LOCATION AND ORIENTATION ESTIMATOR

A. Maximum Likelihood Estimator

Based on the observation given in (3), the Maximum
Likelihood (ML) estimator is defined as

[ĝr, α̂, p̂ris] = argmax
α,pris

f (Y|gr, α,pris) (11)

= arg min
gr,α,pris

∥Y − gr
√
Ptd (τ)b⊤Γ∥2,

where gr = ρeȷϕ. To solve (11), we can use any gradient
descent method (e.g., Newton method). However, the function
described in (11) is non-convex and has many local optima
around the global optimum. Thus finding a suitable initial
estimate for gradient descent methods is challenging. To tackle
this issue, we propose a low-complexity estimator, which can
provide such an initial estimate.

B. Low Complexity Estimator

In this section, we develop a low-complexity estimator for
RIS orientation and position estimation. To this end, first, we
estimate τ . Then we use the FF approximation of the NF to
gain information about the AOA and the AOD at the RIS.
Based on these estimations, we can find the RIS position
and orientation through a line search. Finally, we adopt this
estimate as an initial guess for the quasi-Newton 4 algorithm
to solve the problem (11). We indeed use the quasi-Newton
algorithm to refine the initial estimate.

1) Estimation of τ : For τ estimation, we take the IFFT with
length NF of the columns of the matrix Y, yielding Z = FY.
We then obtain a coarse estimate of the TOA as

k̃ = argmax
k

∥g⊤
k Z∥, (12)

where gk is vector comprising NF zeros, except with one in
the kth entry. Accordingly, one can obtain a refined estimate
τ as follows [15]:

τ̂ =
k̃

NF∆f
− δ̃, (13)

where

δ̃ = arg max
δ∈[0,1/(NF∆f)]

∥g⊤Z ⊙
(
d (δ)1⊤

T

)
∥. (14)

4The quasi-Newton method is a class of Newton methods in which the
inverse of the Hessian matrix is approximated such that its computation cost
is reduced compared to the Newton method [20, Sec. 3.2].

2) Estimating AOA and AOD at the center of RIS: We first
remove the effect of τ from Y, i.e.,

Yr = Y ⊙
(
d (−τ)1⊤

T

)
(15)

= gr
√
Pt1Ncb

⊤Γ+Wd,

where Wd ≜ W⊙
(
d (−τ)1⊤

T

)
. Next, we sum the signal Yr

across the sub-carriers to obtain

yr = Y⊤
r 1Nc

⇒ yr = Ncgr
√
PtΓ

⊤b+wt, (16)

where wt ≜ W⊤1Nc
. In the NF regime, AOA and AOD

can be defined for each array element. However, estimating
all these angles for all elements is not possible, as they are
unobservable. Hence, we only estimate the AOA and AOD at
the RIS center using a FF approximation. Based on (6), we
can write FF approximation of b as

[b]m = e−ȷ 2π
λ m∆(sin (θtx)+sin (θrx)), (17)

where θtx ≜ θ̃tx + α and θrx ≜ θ̃rx + α are AOA and AOD
at the center of the RIS, respectively (see Fig. 1). Given (17),
we can estimate

ω ≜ sin
(
θ̃tx + α

)
+ sin

(
θ̃rx + α

)
. (18)

Thus, considering (16)–(18), we can rewrite (16) as

yr = Ncgr
√
PtΓ

⊤b (ω) +wt. (19)

Here, for each value of ω, the value of gr can be estimated
by ĝr(ω) = bH (ω)Γ∗yr/(Nc

√
Pt∥bH (ω)Γ∗∥2). Hence, the

estimation for ω can be obtained as

ω̂ = argmin
ω

∥yr −Nc

√
Ptĝr (ω)Γ

⊤b (ω) ∥2, (20)

which can be solved via a simple 1D line search.
3) RIS Position and Orientation Estimation: Based on the

τ̂ , the RIS is constrained to lie on the ellipse defined by ∥pris−
ptx∥ + ∥pris − prx∥ = cτ̂ . Thus a possible solution of RIS
position can be found by parameterizing this ellipse a function
of ν ∈ [0, 2π) as

pris (ν) = RβAνe+ ce. (21)

Here, ce = (prx + ptx)/2 is the center of the ellipse, Rβ is
a rotation matrix with angle β, where β is a angle between
positive x-axis and the line between TX and RX. Aν ≜
diag([cos ν, sin ν]⊤) and e = [cτ̂/2,

√
a2 − ∥ptx − ce∥2]⊤.

Furthermore, we can formulate the θ̃tx and θ̃rx a function of ν
as

θ̃rx (ν) = atan2 (ynr , xnr)−
π

2
, (22)

θ̃tx (ν) = atan2 (ynt , xnt)−
π

2
, (23)

where [xnr , ynr ]
⊤ = (prx − pris(ν)) and [xnt , ynt ]

⊤ = (ptx −
pris(ν)).

Based on the definition of ω, ω̂, (22) and (23), α is also
obtained as a function of ν

α (ν) = arcsin

(
ω̂

2 cos θ−tr

)
− θ+tr , (24)
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Fig. 2: The evaluation of the RMSE of the pris, α, and τ versus Pt. The simulation parameters are given in Table I: (a) RMSE of the RIS position (meter)
and PEB versus Pt; (b) RMSE of the RIS orientation (rad) and OEB versus Pt ; (c) RMSE of the τ (nsec) and TEB versus Pt.

where θ+tr ≜ (θ̃tx + θ̃rx)/2 and θ−tr ≜ (θ̃tx − θ̃rx)/2. Hence, we
can estimate ν as

ν̂ = argmin
ν

∥Y − ĝr (ν)
√

Ptd (τ̂)b (pris (ν) , α (ν))
⊤
Γ∥2,

(25)

where ĝr(ν) = hH (ν)y/(
√
Pt∥h (ν) ∥2), y = Y⊤1Nc

and
h(ν) ≜ (d(τ̂)b(pris(ν), α(ν))

⊤
Γ)⊤1Nc , b(pris(ν), α(ν)) is

defined based on (6a) and (6b). Note that (25) can be solved
through a line search. Then, the position and orientation of the
RIS can be obtained via (21)–(25). This solution is applied as
the initial guess for quasi-Newton method to solve (11).

In summary, the RIS location can be recovered by several
1D line searches, which leads to very low complexity.

V. SIMULATION RESULTS

In this section, we evaluate the proposed estimator and com-
pare it to the corresponding bound. To do so, we compare the
root mean square error (RMSE) of the estimated parameters
(e.g, RIS position) with the derived CRB.

A. Simulation Parameters

To evaluate the performance of the proposed estimator, we
average over 500 noise realizations. We assume that the global
coordinate system is set to be aligned with RX coordinate
system. The phase profile at the RIS elements is randomly
drawn from the uniform distribution [0, 2π). The number of
RIS elements is set to M = 64. The rest of the simulation
parameters are given in Table I.

B. Results and Discussion

In Fig. 2 , we study the effect of the transmitted power on
the performance of the proposed estimator. As expected, the
RMSE of the pris, α, and τ are decreasing functions of the
transmitted power Pt and attains the CRB when Pt ≥ 0 dBm.

Next, we investigate the effect of the system BW on the
RMSE of the RIS localization, shown in Fig. 3. To this end,
we increase the number of sub-carriers while the frequency
spacing and transmit power are fixed. From Fig. 3c, it is
clear that as the BW increases, the RMSE of τ decreases.
Regrading the proposed method, τ estimation plays a key
role on the other stages of the proposed estimator. The more
accurate τ estimate, the more accurate ω and RIS positioning.

This can be seen in Fig. 3a and Fig. 3b: with better τ
estimation, the ellipse equation (21) becomes more accurate.
Since the RIS location is on this ellipse, the RIS positioning
accuracy will be enhanced. On the other hand, the accuracy
of the ω estimate directly depends on the τ estimate (see
(15)–(20)). The ω estimate provides information about the
RIS orientation. Therefore, with finer τ and ω estimation,
the estimator achieves higher accuracy in RIS location and
orientation estimate. This is the effect of the BW increase.
For bandwidths larger than 100 MHz, we observe that the
performance is limited by the the estimation of ω.

Now, we analyze the impact of the RIS size on the RIS
localization as shown in Fig. 4. As it is shown in Fig. 4a
and Fig. 4b, the RMSE of the RIS localization reduces as the
number of the RIS elements grows. One can also see that
the proposed method can localize RIS with sub-centimeter
accuracy when the number of RIS elements reaches 128. This
observation is due to two compounding effects: a larger RIS
size leads to higher SNR, and the larger RIS size leads to a
more pronounced NF effect.

Finally, we assess the RIS localization coverage and per-
formance through contour plots of PEB and OEB. Fig. 5
illustrates the contour plots of PEB and OEB when the x and
y coordinates of the RIS are varied while its orientation is

TABLE I: Simulation Parameters

Parameter Symbol Value
Wavelength λ 1 cm
RIS element spacing ∆ 0.5 cm
Light speed c 3× 108 m/sec
Number of sub-carriers Nc 500
TX antenna gain Gt 2
RX antenna gain Gr 2
Number of transmissions T 50
Sub-carrier spacing ∆f 120 kHz
Noise PSD N0 −174 dBm/Hz
RX’s noise figure nf 8 dB
Noise variance σ2 = nfN0Nc∆f −88 dBm
IFFT Size NF 4096

RX position prx [2, 2]⊤

TX position ptx [0, 2]⊤

RIS position pris [0, 0]⊤

RIS orientation α π/6 rad
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Fig. 3: The comparison of the RMSE of the pris and α with CRB with respect to the system BW. Pt = 10 dBm, and the rest of simulation parameters are
given in Table I: (a) RMSE of the RIS position (meter) and PEB versus BW; (b) RMSE of the RIS orientation (rad) and OEB versus BW; (c) RMSE of τ
(nsec) and TEB versus BW.
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Fig. 4: The comparison of the RMSE of the pris and α with CRB with respect
to the RIS size. Pt = 10dBm, and the rest of the simulation parameters are
given in Table I: (a) RMSE of the RIS position (meter) and PEB versus the
RIS size; (b) RMSE of the RIS orientation (rad) and OEB versus the RIS
size.

fixed. To evaluate the effect of the RIS orientation, we depict
contour plots for two cases: (i) α = 0 (rad); (ii) α = π/6
(rad). One can see, in general, that high accurate location
and orientation can be obtained when the RIS is close to the
RX or TX, due to high SNR. However, several blind areas
exist (e.g., [−1,−0.5]⊤ and [−6,−1]⊤ in Fig. 5a). For α = 0
(rad), both location and orientation estimate degrade as the RIS
approaches the bisector of the line segment between TX and
RX. Furthermore, we can also see two other areas where RIS
localization has a high error. When the RIS rotates (Fig. 5c
and Fig. 5d) the mentioned lines rotates accordingly.

VI. CONCLUSION

In this work, we have proposed a low-complexity bi-static
sensing estimator to determine the location and orientation of
RIS in NF with the help of a single-antenna transmitter and
receiver. We have also derived the CRBs on the RIS position
and orientation estimate error. To show the efficiency of the
estimator, the RMSE of the estimations has been compared
with the CRBs. Simulation results have verified the estima-
tor’s accuracy such that its RMSE attains the CRB. To gain
insight into the RIS localization problem, we investigated the
influential factors like transmitted power, the number of RIS
elements, BW, and RIS position and orientation concerning
the TX/RX. Results show that increasing the value of these
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Fig. 5: The contour plots of PEB and OEB versus the RIS location for one
random RIS phase profile and Pt = 10 dBm. TX and RX positions are marked
by red diamond and black square, respectively: (a) 10 log 10(PEB) (meter),
α = 0 (rad);(b) 10 log 10(OEB) (rad), α = 0 (rad);(c) 10 log 10(PEB)
(meter), α = π/6 (rad); (d) 10 log 10(OEB) (rad), α = π/6.

factors enhances the RIS localization accuracy. In future work,
we would like to study 3D RIS localization.
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APPENDIX

A. Derivation of J

In this appendix, we drive the elements of the ma-
trix J. To this end, we derive ∂[µ]t,nc/∂η accord-
ing to (7) as ∂[µ]t,nc

/∂ρ = eȷϕ
√
Pte

−ȷ2πτnc∆fb⊤γ(t),
∂[µ]t,nc

/∂ϕ = ȷρeȷϕ
√
Pte

−ȷ2πτnc∆fb⊤γ(t), ∂[µ]t,nc
/∂τ =

−ȷ2πnc∆fρeȷϕ
√
Pte

−ȷ2πτnc∆fb⊤γ(t), and

∂[µ]t,nc

∂pris
= ρeȷϕ

√
Pte

−ȷ2πτnc∆fE⊤γ(t) (26)



∂[µ]t,nc

∂α
= ρeȷϕ

√
Pte

−ȷ2πτnc∆fv⊤γ(t) (27)

where E ≜ ∂b/∂pris, v ≜ ∂b/∂α, and we have

[E]:,m = −ȷ
2π

λ

(
κt
m + κr

m − κt
o − κr

o

)
[b]m (28)

where κt
m ≜ (((m− (M −1)/2)∆−ptx)/R

t
m, κr

m ≜ (((m−
(M − 1)/2)∆ − prx)/R

r
m, κt

o ≜ (pris − prx)/R
t
o, and κr

o ≜
(pris − prx)/R

r
o,

[v]m = −ȷ
2π

λ

(
ψt

m +ψr
m

)
[b]m , (29)

where ψt
m ≜ ((pm − ptx)/R

t
m)R′

α(((m − (M − 1)/2)∆),
ψr

m ≜ ((pm−prx)/R
r
m)R′

α(((m−(M−1)/2)∆), and R′
α ≜

∂Rα/∂α.

B. Derivation of the Jacobian Matrix T

Based on (9) and the relation between τ , ϕ, ρ and pris,
the Jacobian matrix elements can be written as [T]1:2,1:2 =

∂ [ρ, ϕ]
⊤
/∂ [ρ, ϕ]

⊤
= I2×2, and

[T]3,3:4 =
∂τ

∂pris
=

1

c

(
d⊤
tx + d⊤

rx

)
(30)

where dtx = (pris − ptx)/∥pris − ptx∥ and drx = (pris −
prx)/∥pris −prx∥. Besides, we have [T]4:5,3:4 = ∂pris/∂pris =
I2×2 and [T]6,5 = ∂α/∂α = 1. The other elements of the
matrix T are zero.
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