
AHP4HPA: An AHP-based Autoscaling Framework
for Kubernetes Clusters at the Network Edge

Ioannis Dimolitsas, Dimitrios Spatharakis, Dimitrios Dechouniotis, Symeon Papavassiliou
School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

{jdimol, dspatharakis, ddechou}@netmode.ntua.gr, papavass@mail.ntua.gr

Abstract—Autoscaling resources in a power-efficient way is
essential to enable Green Computing resource management
solutions. The development of dynamic resource provisioning
techniques could lead to the minimization of power consumption
and simultaneously guarantee high quality of service (QoS) in-
line with the workload demand. In this work, we introduce
AHP4HPA, an autoscaling framework for Kubernetes Clusters,
which is aligned with the Kubernetes architecture and state-of-
the-art practices. We define resource profiles, namely a mapping
between the QoS and the computing resources, to maximize the
performance. Furthermore, Analytic Hierarchy Process (AHP)
is exploited to dictate the scaling decision of the resources
under various Key Performance Indicators (KPIs) toward power
optimization of the allocated resources. To guarantee maximum
performance of the deployed image classification application, an
ARIMA model is dedicated to providing predictions regarding
the incoming workload traffic. The framework is evaluated
against a realistic dataset in a small-scale testbed. Numerical
results indicate at least a 9% reduction of the average energy
consumption when compared to other state of the art techniques.

Index Terms—Edge Computing, Autoscaling, Multi-Criteria
Decision Making, Power Efficiency, Kubernetes.

I. INTRODUCTION

With the advent of 5G technology, many Internet of Things
(IoT) based applications have been developed for various
human and business activities. Therefore, to meet the emerg-
ing stringent service requirements, the application delivery
model has shifted from cloud computing to edge comput-
ing. Although cloud computing provides abundant computing
resources, it cannot guarantee the low-latency requirements
of modern applications. On the other hand, edge computing
provides finite computing resources in the end user’s proximity
to augment the processing capabilities of resource/energy-
constrained IoT devices [1]. The resource management of
IoT-based applications is a challenging task and many or-
chestration platforms, which rely on virtualization technology,
provide operations for the entire application life-cycle. For
instance, OpenStack [2] is widely used as Virtualized Infras-
tructure Manager (VIM) for managing virtual machines (VMs)
in cloud infrastructure. Additionally, Kubernetes [3] is used for

This work was supported by the CHIST-ERA grant CHIST-ERA-18-
SDCDN-003 (DRUID-NET), and is co-financed by Greece and European
Union under the Operational Programme ”Competitiveness, Entrepreneurship
and Innovation” (EPAnEK) through the Greek General Secretariat for Re-
search and Innovation (GSRI), grant number T11EPA4-00022.

orchestrating and managing containerized applications. Both
platforms provide for automating deployment, scaling, man-
agement, and maintenance of the applications. Focusing on
autoscaling, both Openstack and Kubernetes provide horizon-
tal and vertical scaling. On both platforms, horizontal scaling
is widely used. On the contrary, vertical scaling requires the
restart of the VM (container), thus, it is not appropriate for
real-time resource management. These scaling mechanisms are
coarse and the scaling decision is usually based on simple
monitoring metrics such as CPU and memory utilization
without taking into account other important performance pa-
rameters and metrics, such as dynamic workload or energy
consumption. Meeting the emerging 5G applications’ rigorous
requirements in terms of delay, throughput, and location calls
for the improvement of the existing scaling mechanisms to
tackle the underlying challenges.

Towards dynamic scaling, many recent studies focused on
extending the scaling capabilities of the existing platforms
by including various performance criteria and application
parameters. Regarding VM technology, a scaling mechanism
for location-based applications was proposed in [4]. Based
on various VM flavors, a scaling and load balancing mech-
anism determines the number of replicas of each VM flavor
to serve the total incoming workload. The authors in [5]
proposed two heuristics for VM horizontal scaling. The first
heuristic focuses only on cloud computing resources aiming
at satisfying the resources requirements, while the second one
also includes network resources and relies on multi-attribute
decision making (MAMD) algorithms to place new replicas to
selected nodes. However, in this approach, the scaling decision
is only based on resource availability without considering
other system parameters or performance metrics. Regarding
Kubernetes, Horizontal Pod Autoscaler (HPA) component is
responsible for scaling the containerized applications. Phan et
al. [6] proposed a traffic-aware HPA that adjusts the replicas
of pods in edge nodes based on the proportion of incoming
requests accessing nodes in real-time. The authors in [7]
proposed an HPA-based scaling mechanism for edge clusters.
A loss-less MMPP/M/c queuing model and an ML-based
pro-active scaling method were proposed and compared with
default HPA. Four forecasting methods were used to estimate
the varying incoming request rate. However, the above studies
do not take into account other performance metrics (e.g.,
power consumption) in the scaling decision.

Contrary to the default HPA and the above studies, this work978-1-6654-3540-6/22 © 2022 IEEE



aspires to include more criteria in the scaling decision focusing
on power consumption and allocated resources. Towards this
direction, we propose an AHP4HPA framework that is based
on a custom autoscaling controller for Kubernetes and a multi-
criteria decision making (MCDM) approach, which considers
various key performance indicators (KPIs) and application
parameters. Specifically, the contributions of our work are
summarized as follows:

• The scaling decision relies on resource profiles that
provide a mapping between Quality of Service (QoS)
metrics and computing resources of an application pod
to minimize any performance violations.

• The scaling decision of AHP4HPA is computed by Ana-
lytic Hierarchy Process (AHP) [8], which is an MCDM
method and considers various KPIs and parameters such
as incoming workload, power consumption, number of
active servers, and monetary costs. This light-computing
approach can assess numerous scaling solutions in real-
time and demonstrate the trade-off between the applica-
tion performance and cost minimization.

• AHP4HPA is evaluated in a small-scale edge cluster
using a compute-intensive application and a dataset ac-
quired from a touristic application. The results show that
AHP4HPA significantly outperforms HPA in terms of
power consumption and allocated resources, a the cost
of a slight only increase in QoS violations.

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of Kubernetes scaling features
and highlights the modifications introduced in our proposed
framework. Section III presents the modeling of various per-
formance, power and cost parameters included in AHP4HPA,
while Section IV describes the AHP algorithm, which provides
the scaling decision. Section V presents the experimental setup
and the performance evaluation of the proposed AHP4HPA
approach and finally, Section VI concludes the paper.

II. SYSTEM ARCHITECTURE

In the context of Kubernetes, (i) pod is the smallest de-
ployment unit of computing resources for a containerized
application, (ii) service is an abstract way to declare pods
that have the same set of functions (applications), and (iii)
deployment is a declarative way for creating, modifying and
scaling the pods. Pods can run multiple containers of the same
application, which are managed as a single entity. In this work,
we consider that each pod runs only one container.

Definition 1: Resource Profile φi is a mapping of the
pod’s allocated resources to the maximum request rate without
violating the delay constraints.
Let m denote the number of the distinct resource profiles for
an application. For all resource profiles φi, i = 1, . . . ,m, we
consider distinct services, and deployments and implement dif-
ferent resource limits for the pods. As stated in the Kubernetes
documentation, the resource limits are exploited to enforce
that a running pod utilizes at most the predefined resources
in terms of CPU and memory, which are defined as tuple
⟨ci, ri⟩ for CPU and memory respectively. Moreover, for each

Fig. 1. AHP4HPA integrated with Kubernetes.

deployment, the number of identical pod replicas is defined as
ki and the upper replica limit is kmax. Thus, for each resource
profile φi, ki ∈ [0, kmax], ki ∈ N. The resource profiles
are created by experimenting with three different application
settings, i.e., (i) the request rate, (ii) the resource limits, and
(iii) the number of replicas. Through experiments, we identify
the maximum request rate before observing deterioration in
the overall application performance. To this extent, for each
resource profile, a linear function gi(ki) = αiki + βi is
computed by linear regression and maps the maximum request
rate to the number of replicas. The App Deployment, which
will be used by the AHP ranking below, is an abstraction that
includes all deployments of all resource profiles, which serve
the requests of a specific application.

Moreover, Kubernetes runs the containerized applications in
Compute Nodes, which are hosted in Openstack VMs in our
case. To instantiate additional compute nodes and expand the
Cluster we employ the Kubernetes Cluster Autoscaler (CA)1.
It resizes the cluster, i.e., (i) adds a node to the cluster when
the available resources are limited, (ii) removes a node, if
the resources are underutilized. In this work, we select a
compute-intensive application to showcase the performance of
AHP4HPA, i.e., an image classification application developed
with OpenCV. Figure 1 presents the system architecture im-
plemented in Kubernetes along with the workflow. The ingress
traffic is redirected via a Load Balancer to the application pods,
which are accessible externally from App Ingress Control.
We deployed a Python Flask REST API to act as the Load
Balancer. Then, Flask is integrated with Celery2, which creates
asynchronous tasks assigned to workers. For each service, a
Celery worker is responsible for redirecting the HTTP requests
to the corresponding pod. Subsequently, relying on deployed
replicas for every profile, we dynamically load balance the
incoming workload on the instantiated pods. We rely on
the Prometheus monitoring system and Prometheus Adapter
respectively for collecting traffic metrics and app metrics (per
deployment, per pod). The core intelligence of the proposed
framework is the AHP component. We consider that period-

1https://github.com/kubernetes/autoscaler
2https://docs.celeryq.dev/



Fig. 2. Workload Trace used for training and experimentation.

ically the AHP checks the metrics and dictates the resource
scaling decision for each deployment aiming at minimizing the
total power consumption while meeting various QoS criteria.
More information regarding the AHP-based scaling is provided
in the following sections. The main scaling component in the
Kubernetes ecosystem is the Horizontal Pod Autoscaler [9].
However, the HPA’s algorithm is quite simplistic and mainly
aims to stabilize the overall performance towards meeting
a target value for a specific metric (e.g., CPU utilization).
HPA scales horizontally (increases/decreases) the number of
deployed replicas for a deployment. Therefore, the Custom
Pod Autoscaler (CPA) [10] is employed to operate as the
autoscaling controller, which enables custom algorithms for
scaling to be realized. Moreover, CPA enables scaling to zero
pods, which in the case of HPA is impossible and leads
to higher power consumption. At each time slot, for each
deployment, a CPA instance performs scaling according to
the decisions of the AHP algorithm. All essential metrics for
AHP assessment are exposed via the Prometheus Adapter and
the scaling decision is consumed by the CPA via the Custom
Metrics Adapter. Finally, we implement an autoregressive
integrated moving average (ARIMA) model [11], which is
widely used for time-series forecasting, to provide a prediction
for the request rate for the next time slot. To validate the
presented framework, we selected a workload trace from
Ferryhopper website3, which provides ferry booking services
around Europe. The workload trace consists of HTTP requests
produced by clients. As Kubernetes is mainly used for HTTP-
based applications, this dataset is suitable for realistic eval-
uation. Figure 2 presents the distribution of request rate per
minute over six days. The data of the first four days were used
to train the ARIMA model while the latter for evaluation. At
each time slot, the estimation of the ARIMA model is used
by the AHP algorithms as described in III-F.

III. AHP4HPA IN DETAILS

Towards efficient horizontal autoscaling both in terms of
QoS and power consumption, we implement the Analytic
Hierarchy Process, which is a widely used MCDM method.
AHP facilitates the evaluation of alternative scaling decisions

3https://www.ferryhopper.com/

for a specific application, by considering several criteria of
various types. These criteria are hierarchically structured and
separated into KPIs and Attributes. In detail, KPIs indicate
specific technical metrics, such as performance or cost-related
metrics, while attributes summarize correlated KPIs. In the
following, we define the essential KPIs and attributes related
to our scaling problem. The scaling decision concerns the
selection of the appropriate Application Deployment (App
Deployment), which determines a set of replicas of different
resource profiles for the corresponding application.

We consider m distinct resource profiles φi for an appli-
cation. The different combinations of ki replicas determine
the total number of the candidate App Deployments. For
i = 1, . . . ,m, ki ∈ [0, kmax], thus, the total number of
the candidate App Deployments is M = mkmax+1. An App
Deployment Dj , where j = 1, . . . , M, is defined as:

Dj = ⟨kji⟩ , i = 1, . . . ,m .

Given the set of candidate App Deployments UD, the sug-
gested framework strives to nominate the App Deployment
D∗ ∈ UD, which minimizes the power consumption and
the allocated computing resources from the infrastructure
provider’s perspective, while guarantees a certain QoS level
for the user. The quantification of the above evaluation criteria
is done by the definition of the appropriate KPIs as they are
presented below.

A. Total Allocated Resources

In the context of micro-services, a resource profile reflects
the allocated resources of containers. The most common
resources to specify are CPU and memory. As we mentioned
above, an App Deployment Dj is a set of replicas of different
resource profiles φi. Each φi has specific resource request ci
of CPU cores and ri of memory. So, we define two KPIs, to
express the total resource demands for a Dj ; first, the CPU
Cores CDj and secondly the RAM RDj , where:

CDj =

m∑
i=1

ci (1) and RDj =

m∑
i=1

ri (2)

B. Active Servers
From the provider’s perspective, the minimization of the

power consumption is directly related to the reduction of active
servers, as almost 70% of the maximum power consumption
of a server occurs on its idle state [12]. The number of active
servers demanded by an App Deployment is derived from the
total resources required in relation to those provided in a single
server of the infrastructure. Let Ctotal be the total CPU Cores
and Rtotal the total GB of RAM, available in a server. For a
specific Dj , the required number of active servers SDj

is:

SDj = max

(⌈
CDj

Ctotal

⌉
,

⌈
RDj

Rtotal

⌉)
. (3)

C. App Deployment’s Power Consumption
Several energy-aware approaches for cloud computing pro-

pose a power model based on the server’s maximum power
consumption when it is fully loaded (PMAX ) and its idle state



consumption (Pmin). The following model is introduced in
[12] to predict the server’s power consumption:

P = γ ∗ PMAX + (1− γ) ∗ PMAX ∗ u. (4)

The γ parameter refers to the proportion of the consumed
power of an idle server with respect to PMAX . The second
term of equation (4), denotes the server’s power consumption
which occurs from its CPU utilization u. In accordance with
[12], u depends on the allocated resources of a deployed
application, with respect to the available resources of the
server. Hence, in our model, we define the power consumption
for an App Deployment Dj based on its resource requirements
and the CPU utilization of the corresponding active servers:

PDj = (1− γ) ∗ PMAX ∗
(

CDj

SDj ∗ Ctotal

)
. (5)

Therefore, based on (4), (5), the total power consumption
under the specified deployment is defined as,

P total
Dj

= SDj ∗ γ ∗ PMAX + PDj . (6)

D. Transformation Cost

The scaling process itself brings about extra resource man-
agement overhead, as different workloads require deployment
adjustment. To quantify these adjustments required per case,
we define the Transformation Cost KPI. It reflects on a penal-
ization of the adjustments of each candidate App Deployment,
from the current state. Let the scaling cost of a resource profile
φi from current App Deployment Dc to the Dj is:

scj(φi) =

{
1 + (kji − kci)a, if kci < kji (scale-out)
1 + (kci − kji)(1− a), if kci ≥ kji (scale-in)

.

(7)
where kci is the number of replicas of φi in the current App
Deployment Dc. The parameter a is a degree of penalization
regarding the scaling-out adjustments with respect to scaling-
in changes. If a = 0.5 the penalty is equal for both cases. So,
the Transformation Cost for the candidate Dj is:

TCDj
=

m∑
i=1

scj(φi). (8)

E. App Deployment’s Billing

Typically, cloud providers charge VM or container’s in-
stance based on its type (e.g., OS type) as well as the required
resources, for a specific period of time. Therefore, for each
resource profile φi, the corresponding billing for one replica
of φi is defined as b(φi). Thus, for Dj the total billing is:

BDj =

m∑
i=1

kjib(φi) . (9)

F. Resource Profiling - QoS

Towards the selection of the appropriate scaling decision, it
is important to include a QoS-related metric for the evaluation
of the candidate App Deployments. To address this, we rely
on (i) a profiling regarding the potential service rate for every
available resource profiles φi and (ii) on a prediction model
of the incoming workload λ̃ for the respective application in a
specific time-slot. The predicted workload rate is expressed as

Fig. 3. AHP Hierarchical Structure Model.

requests per second. Concerning the resource profiling, which
corresponds to the total service rate for the next time slot for
each candidate App Deployment, we calculate the QoS profile
for each one of them as: f(Dj) =

∑m
i=1 g(kji). So, in order

to evaluate the candidate App Deployments, the QoS Profiling
score KPI is determined as,

QoSDj
=

{
0.2, if f(Dj) < λ̃

1 + 1
2 ∗ [1 + (f(Dj)− λ̃)]−1, if f(Dj) ≥ λ̃

. (10)

This KPI penalizes candidates that do not guarantee the
QoS for the predicted workload. Regarding the case where
f(Dj) ≥ λ̃, the score is lower for over-provisioned resources
for the respective λ̃. Specifications about the profiling and the
workload predictor model can be found in section II.

IV. AHP-BASED AUTOSCALING

In this section, an overview of the MCDM method of the
proposed framework is presented. Specifically, the ranking
process of the candidate App Deployments for scaling is
based on AHP, which enables the simultaneous processing of
various criteria, by structuring them in a hierarchical manner.
Thus, provider-related attributes such as Power Consumption,
and Resource Allocation can be combined with user-related
requirements for high QoS with minimum billing. In the
following, we present the AHP adaptations for AHP4HPA.
The AHP can be divided into three main phases:
Phase 1 - Hierarchical Structure & Weight Assignment:
Based on the above described KPIs and attributes, the hi-
erarchical structure of the proposed framework is depicted
in Figure 3. The leaves on the hierarchy tree represent the
KPIs of the model, which are condensed in an attribute of a
higher level. Furthermore, AHP enables the configuration of
the importance of each criterion, as a weight assignment on the
edge between two criteria. Regarding the weight assignment,
the sum of weights for a set of siblings KPIs and attributes
is equal to 1. Figure 3, also, includes the weight assignment
for our framework and reflects the main scope of AHP4HPA,
which is to minimize the total power consumption, while
taking into consideration multiple other parameters.
Phase 2 - Relative Attribute Score Computation: Candidate
App Deployments are assigned a value for each KPI of the



TABLE I
SETTING FOR RESOURCE FLAVORS

Resource Profiles Small Medium Large Kubernetes Node
CPU cores 1 2 4 8
RAM (GB) 2 4 8 16

Billing per φi ($) 7 13 21

structure based on equations (1) - (10). A Relative Comparison
Matrix (RCM) is computed for every KPI. In our work, the
KPIs are numeric values of two types: (i) Higher-is-better
and (ii) Lower-is-better. In our model, all KPIs are numeric,
Lower-is-better criteria, except of the QoS Profiling in eq.
(10), which is of Higher-is-better type. Let Aj denotes the
value assigned in KPI X for the candidate Dj . Then, for
j = 1, . . . ,M, where M = mk+1, we compute the RCM
of KPI X -if X is of higher-is-better type- as follows:

RCMX =


1 A1/A2 . . . A1/AM

A2/A1 1 . . . A2/AM
...

...
...

AM/A1 AM/A2 . . . 1

 . (11)

For Lower is better KPIs, the RCM occurs by the computation
of the transposed matrix of (11). Furthermore, given the
RCMX = [xij ], i, j = 1, . . . ,M, we calculate a Relative
Ranking Vector (RRV) for each KPI as:

RRVX = [vX1 . . . vX2], where vXi =
∑M

j=1 xij∑M
i=1

∑M
j=1 xij

. (12)

More details regarding the AHP calculations of different type
KPIs can be found in [8].
Phase 3 - App Deployments Ranking and Decision: For
all Attributes, the RRV is computed in a bottom-up fashion,
until the computation of the RRV of the App Deployments
Ranking (top level attribute). The computations are based on
the lower level RRVs and the weights among siblings KPIs
and attributes. For a parent attribute with n sub-attributes and
the weight vector, which consists of n values, the RRV is:

RRVpar = [RRV T
sub1 . . . RRV T

subn]∗[wsub1 . . . wsubn]
T (13)

Finally, an RRV is computed for the ranking of the candidate
App Deployments for scaling. This RRV has the form of:
[r1, r2, . . . , rM]. The maximum r∗ = max[rj ]

M
j=1 value

corresponds to the nominated App Deployment D∗.

V. EXPERIMENTAL EVALUATION

In this section, we present the experimental setup and com-
parative performance evaluation of the AHP4HPA framework.
The Kubernetes Cluster is deployed in self-hosted Openstack
VMs to enable the Kubernetes Cluster Autoscaler. We consider
three types of resource profiles, m = 3, i.e., small, medium,
large, and the maximum number of replicas for each φi is
kmax = 4. The resource limits and billing for each resource
profile along with the capacity of the Kubernetes Nodes,
are presented in Table I. For the billing of the resources,
we take information from Azure4 pricing calculator, and we

4https://azure.microsoft.com/en-us/pricing/calculator/

Fig. 4. The maximum rate per sec per pod for each resource profile.

consider that solely a new replica instantiation is charged for
the whole amount. The maximum power consumption for a
fully operational server is PMAX = 2000W in accordance
to [12]. We trained the workload prediction model with the
Ferryhopper dataset, using an ARIMA model of order=(3,1,1),
which has sufficient accuracy. The evaluation of the ARIMA
model or an alternative prediction methods is out of scope for
this work. Moreover, we assume that when the response time
of a request for the image classification application takes three
times more than expected, the request is considered lost, and
we enforce a connection timeout.

Figure 4 presents the maximum request rate for the re-
spective number of replicas for each resource profile. We use
a linear regression technique to extract the respective QoS
mapping gi(ki) for this application for the three resource
profiles. QoS mapping functions are also utilized for dynamic
load balancing of the ingress traffic, according to the deployed
number of replicas for each App Deployment. We selected
to compare three different setups, namely: (i) the proposed
AHP4HPA, (ii) modified HPA (M-HPA), and (iii) the default
HPA (D-HPA) of Kubernetes. For M-HPA, the resource pro-
files are also included along with the dynamic load balancing.
The HPA is trying to target 70% CPU utilization for the
deployed pods. On the other hand, for D-HPA none of the
proposed techniques is employed, so we select to target 70%
CPU utilization, utilizing only the medium resource profile. To
produce unbiased results, all three scaling mechanisms operate
every 15s (time slot), while we evaluate them against a three-
hour workload traffic dataset from the Ferryhopper test dataset.
As the deployed application is mainly compute-intensive, in
the following results, we focus on CPU utilization. All three
scaling decisions run in the order of ms, as a result the overall
performance is not disrupted. In Figure 5, the power con-
sumption of the deployed resources for the three experiments
is presented. We calculated the power consumption using (6)
according to the deployment instantiated by each autoscaling
method at each time slot. The results for each experiment
are summarized in Table II. Specifically, the average energy



Fig. 5. Power Consumption in W for each experiment at each time slot

consumption throughout the experiment results in 3.96 kWh
for AHP4HPA. Similarly, in Figure 6, the total number of cores
instantiated at each time slot for each setup is presented. For
AHP4HPA, the CPU cores deployed for all resource flavors are
15.8 vCPUs averaged throughout the experiment. Our solution
outperforms both M-HPA and D-HPA, producing 9% and 14%
less average energy consumption accordingly. The proposed
framework sufficiently serves the incoming workload having
only 1.53% percent of total lost requests, while M-HPA has
0.37% and D-HPA has 0.25%. The difference in total request
loss is mainly due to the workload prediction miscalculations
produced by the ARIMA. We should also mention that the
average energy consumption of M-HPA is 4.32 kWh with
average CPU cores of 20.5 vCPUs while the D-HPA is 4.57
kWh and 19.4 vCPUs. Hence, these results indicate that the
inclusion of resource profiles leads to 6.5% less average energy
consumption, regardless of the increased utilization of CPU
resources. This is explained since D-HPA autoscaling results
in instantiate a 4th node in the Kubernetes Cluster, consuming
unnecessary power to serve the incoming traffic.

TABLE II
RESULTS FOR THE THREE EXPERIMENTS

Setup Total Request
Loss

Average Energy
Consumption

Average CPU
cores

AHP4HPA 1.53% 3.96 kWh 15.8
M-HPA 0.37% 4.32 kWh 20.5
D-HPA 0.25% 4.57 kWh 19.4

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the AHP4HPA framework for autoscaling in
Kubernetes Clusters is introduced. Focusing primarily on mini-
mizing power consumption and satisfying several requirements
of both infrastructure provider and users, AHP is utilized to
enable the ranking of different scaling decisions. Also, we
proposed a set of KPIs to be included in the hierarchical
structure, as well as the definition of the corresponding weights
to adapt the AHP algorithm, focusing on autoscaling with
power minimization. To extend the AHP capabilities, we

Fig. 6. Number of cores instantiated for each experiment at each time slot

introduced different resource profiles and a prediction of the
incoming workload. Evaluation results indicate a significant
reduction in the consumed power from scaling decisions
derived from AHP4HPA in comparison with other solutions,
while reducing the allocated CPU Cores, with a negligible
increase in request loss. For future plans, we aim to enhance
the resource profiles by leveraging Machine Learning (ML)
classification algorithms to achieve minimal request loss.

REFERENCES

[1] D. Dechouniotis, N. Athanasopoulos, A. Leivadeas, N. Mitton,
R. Jungers, and S. Papavassiliou, “Edge computing resource allocation
for dynamic networks: The DRUID-NET vision and perspective,” Sen-
sors, vol. 20, no. 8, p. 2191, 2020.

[2] OpenStack. https://www.openstack.org/, Last Accessed on 2022-05-01.
[3] Kubernetes. https://kubernetes.io/, Last Accessed on 2022-05-01.
[4] D. Spatharakis, I. Dimolitsas, D. Dechouniotis, G. Papathanail, I. Fo-

toglou, P. Papadimitriou, and S. Papavassiliou, “A scalable edge comput-
ing architecture enabling smart offloading for location based services,”
Pervasive and Mobile Computing, vol. 67, p. 101217, 2020.

[5] E. Zeydan, J. Mangues-Bafalluy, J. Baranda, R. Martı́nez, and L. Vettori,
“A Multi-criteria Decision Making Approach for Scaling and Placement
of Virtual Network Functions,” Journal of Network and Systems Man-
agement, vol. 30, no. 2, pp. 1–36, 2022.

[6] L.-A. Phan, T. Kim, et al., “Traffic-Aware Horizontal Pod Autoscaler
in Kubernetes-Based Edge Computing Infrastructure,” IEEE Access,
vol. 10, pp. 18966–18977, 2022.

[7] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Machine learning-based
scaling management for kubernetes edge clusters,” IEEE Transactions
on Network and Service Management, vol. 18, no. 1, pp. 958–972, 2021.

[8] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking
of cloud computing services,” Future Generation Computer Systems,
vol. 29, no. 4, pp. 1012–1023, 2013.

[9] Horizontal-Pod-Autoscaling. https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/, Last Accessed on 2022-05-01.

[10] Custom-Pod-Autoscaler. https://custom-pod-autoscaler.readthedocs.io,
Last Accessed on 2022-05-01.

[11] R. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload
prediction using ARIMA model and its impact on cloud applications’
QoS,” IEEE Transactions on Cloud Computing, vol. 3, no. 4, pp. 449–
458, 2014.

[12] L. Ismail and H. Materwala, “Computing Server Power Modeling in
a Data Center: Survey, Taxonomy, and Performance Evaluation,” ACM
Comput. Surv., vol. 53, jun 2020.


