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Abstract—This work lies at the intersection of two cutting edge
technologies envisioned to proliferate in future 6G wireless sys-
tems: Multi-access Edge Computing (MEC) and Reconfigurable
Intelligent Surfaces (RISs). While the former will bring a
powerful information technology environment at the wireless
edge, the latter will enhance communication performance, thanks
to the possibility of adapting wireless propagation as per end
users’ convenience, according to specific service requirements. We
propose a joint optimization of radio, computing, and wireless
environment reconfiguration through an RIS, with the goal
of enabling low power computation offloading services with
reliability guarantees. Going beyond previous works on this topic,
multi-carrier frequency selective RIS elements’ responses and
wireless channels are considered. This opens new challenges
in RIS optimization, accounting for frequency dependent RIS
response profiles, which strongly affect RIS-aided wireless links
and, as a consequence, MEC service performance. We formulate
an optimization problem accounting for short and long-term
constraints involving device transmit power allocation across
multiple subcarriers and local computing resources, as well as
RIS reconfiguration parameters according to a recently developed
Lorentzian model. Besides a theoretical optimization framework,
numerical results show the effectiveness of the proposed method
in enabling low power reliable computation offloading over RIS-
aided frequency selective channels.

Index Terms—Multi-access Edge Computing, Reconfigurable
Intelligent Surfaces, Energy-efficient wireless networks, 6G

I. INTRODUCTION

Today, as part of the race to 6G, communications and
computing are converging towards a unified complex system in
which data are continuously exchanged among heterogeneous
intelligent agents that operate computational demanding op-
erations such as training, data distillation, and inference [1],
over severe wireless channels. This explosion of data requires
an unprecedented effort in conceiving wireless systems with a
unified perspective in which computing is a natural component
of the network, to be designed, optimized, and operated jointly
with communication. To this end, in the last few years, Multi-
access Edge Computing (MEC) [2] has been identified as a key
technological enabler of this vision, thanks to its fundamental
characteristic of bringing such resources close to the end
service consumers, thus enabling low-latency, energy-efficient,
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and dependable connect-compute operations. To enhance de-
pendability aspects, Reconfigurable Intelligent Surfaces (RISs)
[3], [4] have been identified as a key component of 6G
and beyond [5], thanks to their ability of opportunistically
and dynamically controlling signal reflections, to enhance
reliability and diversity, thus avoiding unexpected detrimental
service disruptions and boost the performance in intended
areas across space, time, and frequency [6]. In this paper, we
focus on the specific case of computation offloading services
in MEC and RIS-enabled networks, exploring the promising
marriage of these technologies towards the 6G vision.
Related works. The research efforts on RISs and MEC-
aided systems have already started, with contributions on edge
caching [7] and computation offloading [8]–[11]. Specifically,
the authors of [8] propose to minimize the latency in a multi-
user scenario, optimizing the computation offloading volume,
the edge computing resource allocation, the multi-user detec-
tion matrix, and the RIS configuration, under the constraint of
a total edge computing capability. In [9], the authors maximize
the number of processed bits for computation offloading, opti-
mally designing the edge server, or Mobile Edge Host (MEH)
CPU frequency, the offloading time, the transmit power, and
the RIS configuration. Also, [10] exploits RISs to maximize
the performance of a machine learning task run at the MEH,
acting jointly on radio parameters such as User Equipment
(UE)’s power, Access Point (AP) beamforming, and RIS phase
shifts. Furthermore, data-driven solutions for RIS-empowered
multi-user mobile edge computing is proposed in [11], with
the goal of maximizing the total completed task-input bits of
all UEs under energy budget constraints. Finally, in [12], a
joint optimization of radio, computing, and RIS parameters
was proposed considering frequency-flat channels and RIS
responses. A similar contribution was presented in [13] for the
case of multiple-input-multiple-output communications. None
of these works considers a realistic frequency selective model
of channels and RISs’ element response [14], [15].
Our contribution. In this work, we propose a resource
allocation algorithm to dynamically optimize radio, comput-
ing, and frequency dispersive aware RIS configuration, over
multi-carrier frequency selective channels. Following [14],
we model the elements’ response with a Lorentzian form,
and we optimize it accordingly. Our goal is to seek for
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the minimum power consumption of a user performing local
computation before uploading intermediate results to a MEH,
through the wireless connection with an AP, under average
and probabilistic delay constraints, with no prior knowledge of
the statistics of time varying computational demands, wireless
channels, MEH CPU availability, and offloaded tasks’ sizes.
After formulating a long-term problem, we decouple it into
a sequence of deterministic problems to be solved in a per-
slot fashion, only based on instantaneous observations. The
resulting sub-problems are then solved with low-complexity
heuristics and closed forms when possible, with QoS guaran-
tees. Numerical results show the effectiveness of our method
and the convenience of using a frequency selective aware
dynamic RIS configuration when optimizing connect-compute
resources. To the best of our knowledge, this is the first work
merging RIS and MEC technologies over frequency selective
channels and RIS element responses.
Notation: Bold lower and upper case letters denote vectors
and matrices, respectively; the operator | · | denotes the ab-
solute value of a complex number, while card(·) denotes the
cardinality of a set. Finally, given a random variable X , its
long-term average is denoted as X

X = limT→∞
1

T

∑T

t=1
E{Xt} (1)

II. SYSTEM MODEL AND ASSUMPTIONS

Let us consider a scenario in which time is organized in
slots t = 1, 2, 3, . . ., with an end device (e.g. a UE or a sensor)
periodically generating new computation tasks to be executed
under targeted service performance. Such tasks entail a local
computation demand, and a remote computation portion to be
offloaded to the MEH, as well as a number of bits needed to
enable such remote processing (i.e. the offloading task size).
Then, the end-to-end (E2E) delay comprises local computing,
transmission, and remote computation.

A. RIS’s frequency response and channel model

An RIS is generally composed of nearly passive elements,
whose phases can be opportunistically tuned. However, while
most of the existing models exploited in the literature consider
the RIS response as constant across frequency, we model
the system according to [15], where the resonant elements
(described as inductor-capacitor resonators in circuit theory) of
an RIS exhibit a frequency dispersive property. By assuming
electrically small metamaterial elements to implement the RIS,
we can model each n-th element as a polarizable dipole, whose
frequency response takes the following Lorentzian form [14]:

ϕn(x) ≜
Snx

2

f2
n − x2 + jκnx

, n = 1, 2, . . . , N, (2)

where Sn, fn, and κn are the element-dependent oscillator
strength, resonance frequency, and damping factor, which can
be externally controlled. According to [16], the damping factor
can be written as κn ≜ fn

2χn
, where χn is a tunable quality

factor. The quality factor determines the bandwidth influenced
by an RIS element. The smaller is χn, the larger is the

influenced bandwidth, and vice versa [15]. Let us consider
a multi-carrier system with subcarrier spacing W , and central
frequency fb on frequency bin b ∈ B, with B the set of bins.
Then, the Lorentzian in (2) takes the following discrete form
on subcarrier fb at time slot t [16], [17]:

ϕn,t(fb) =
Sn,tf

2
b

f2
n,t − f2

b + j
fn,t

2χn,t
fb

, (3)

with n = 1, . . . N the RIS element index, and t the slot index.
The time dependency shows that RIS reflection parameters can
be optimized dynamically. We denote by hLoS

t (fb) ∈ C1 the
frequency response of the direct channel between a single-
antenna device and a single-antenna AP (receiver), while we
denote by gt(fb) ∈ C1×N and ht(fb) ∈ CN×1 the vectors of
frequency responses between the RIS and the AP, and between
the device and the RIS, respectively. Also let us denote by
Φt(fb) ∈ CN×N , a diagonal matrix whose n-th diagonal
elements is given by (3), and which varies with b due to the
frequency dispersive property of the RIS. Then, the overall
channel to noise ratio on frequency bin b can be written as
follows:

αt(fb) ≜
|hLoS

t (fb) + gt(fb)Φt(fb)ht(fb)|2

N0W
, (4)

B. Local Computation Delay and Power Consumption

We denote by wl
t the local computing demand (in CPU cy-

cles), which varies over time, according to a possibly unknown
distribution. Also, the device selects, at each time slot, its CPU
clock frequency f l

t (in CPU cycles per second). Then, the time
needed to process the local computation demand at slot t is

Dl
t ≜ wl

t/f
l
t . (5)

Also, given f l
t , we adopt the widely used cubic model for the

CPU power consumption [18]:

plt = γ(f l
t)

3, (6)

where γ is the effective switched capacitance of the processor.

C. Uplink Transmit Power and Delay

We denote by pb,t the portion of the user transmit power
that is dynamically allocated on each bin b at each time slot
t. Denoting by pmax the maximum user transmit power over
all card(B) subcarriers, the following constraint must hold:

put ≜
∑

b∈B
pb,t ≤ pmax, (7)

where put denotes the total power spent by the user to upload
data, at slot t. Given (3) and (4), and assuming an OFDM
system, we can write the total experienced uplink data rate at
time slot t through the Shannon formula:

Rt ≜ W
∑

b∈B
log2 (1 + αt(fb)pb,t) . (8)

Finally, denoting by At the number of bits to be transmitted
at time t to enable the remote execution part, the uplink
transmission delay simply reads as:

Du
t ≜ At/Rt. (9)



D. Remote Computation Delay and Energy Consumption

At the MEC infrastructure side, we assume that, at each
slot t, the MEH assigns a portion σt ∈ (0, 1] (with unknown
statistics) of its total CPU cycle frequency fmax to the user,
due, e.g., to higher priority traffic, which we consider as an
exogenous variable. Then, the time needed to execute the
remote computation demand wr

t , at time slot t, is

Dr
t = wr

t /(σtfmax), (10)

where the required amount wr
t of CPU cycles is a random

variable with unknown statistics.
Finally, given (5), (9), and (10), the E2E delay reads as

follows:
Dtot

t = Dl
t + (Du

t +Dr
t ) . (11)

Similarly, recalling (6), and (7), we can write the user power
consumption as

ptot
t = plt + put . (12)

E. Average Delay and Outage Probability

In this work, we consider two types of service requirements:
i) Average E2E delay; ii) Outage probability, i.e. the proba-
bility that the E2E delay exceeds a predefined threshold. The
first requirement can be formalized as follows (cf. (1)):

Dtot ≤ Davg. (13)

However, only guaranteeing a bounded average E2E delay is
not usually enough to meet service requirements, as long tails
of the delay distribution can be highly detrimental for most of
edge applications. To this end, we assume that each generated
task is also required to be completed before a predefined delay
threshold Dmax with a certain probability, requested a priori
by the user. More specifically, we assume an outage event to
occur if Dtot > Dmax, while its probability, which we refer to
as outage probability in the sequel, is (cf. (1))

P o ≜ Pr
{
Dtot

t > Dmax
}
= u {Ot} ≤ ϵ (14)

where u{·} denotes the unitary step function, Ot = Dtot
t −

Dmax, and ϵ is a predefined threshold for outage tolerance.

III. PROBLEM FORMULATION AND SOLUTION

The aim of this work is to design a computation offloading
policy that involves radio, computing, and RIS optimization,
to minimize user’s power consumption under average delay
and outage probability constraints. To this end, recalling (1)
and (12), we formulate the following long-term problem:

min
{Θt}t

ptot (15)

subject to (13), (14);
(a) 0 ≤ Sn,t ≤ 1, ∀n, t (b) fn,t ∈ Ω, ∀n, t;
(c) χn,t ∈ X , ∀n, t; (d) |ϕn,t(fb)| ≤ 1, ∀n, b, t;

(e) pb,t ≥ 0, ∀b, t (f) pmin ≤
∑
b∈B

pb,t ≤ pmax, ∀t

(g) f l
min ≤ f l

t ≤ f l
max, ∀t

with Θt = [{fn,t}n, {Sn,t}n, {χn,t}n, {pb,t}b, f l
t ]. Besides

the long-term constraints (13) and (14), the instantaneous
feasibility constraints in (15) have the following meaning:
(a) the parameter Sn,t is chosen between 0 and 1, for
each element of the RIS; (b) the resonance frequency fn,t
is chosen from a discrete set Ω of candidate values; (c)
the quality factor χn,t is chosen from a discrete set X of
candidate values; (d) the amplitude response of each RIS’s
element cannot exceed 1 across all subcarriers; (e) the transmit
power allocated on each bin is non negative; (f) the total
transmit power is chosen between a minimum value pmin and
a maximum value pmax; (g) the local CPU frequency is chosen
between a minimum value f l

min and a maximum value f l
max.

Problem (15) is extremely complex, due to the absence of
statistical knowledge of context parameters involving wireless
channels, computational demands, task offloading sizes, and
MEH’s CPU availability. Furthermore, the discrete nature of
several involved variables makes it hardly tractable over the
considered long-term horizon.

A. The Lyapunov approach

Lyapunov stochastic optimization is a powerful tool to trans-
form long-term problems into a sequence of lower complexity
deterministic problems, with convergence and asymptotic op-
timality guarantees with respect to the original problem. This
is possible thanks to the definition of suitable state variables
that are exploited to guarantee bounded time-averages of the
involved variables (i.e. (13), (14) in this case) [19]. More
specifically, to deal with long-term constraints, we make use
of mathematical models known as virtual queues, able to track
the state of the system in terms of constraint violations, to then
take control actions, thus driving the system towards efficient
and reliable operations. More specifically, to deal with (13),
we define a virtual queue Yt that, between two consecutive
time slots, evolves as follows:

Yt+1 = max
(
0, Yt +Dtot

t −Davg
)
. (16)

Similarly, for constraint (14), we define virtual queue Zt,
which evolves as follows

Zt+1 = max (0, Zt + u {Ot} − ϵ) . (17)

The rationale behind the virtual queues is straightforward.
Each virtual queue increases whenever the corresponding
constraint is instantaneously violated, and decreases otherwise.
Building on this, we can formally and theoretically guarantee
constraints (13)-(14), by guaranteeing virtual queues’ mean
rate stability1. This transforms (15) into a pure stability prob-
lem. To achieve mean rate stability of the virtual queues (i.e. to
guarantee the long-term constraints) let us define the Lyapunov
function [19], L(Qt) = 1

2

(
Y 2
t + Z2

t

)
, with Qt = [Yt, Zt],

which is a measure of the instantaneous congestion state of
the system. Intuitively speaking, our goal is to push the system
towards low congestion states (i.e. achieving stability) with
the least power consumption (i.e. the objective function of

1For a virtual queue Gt, it is defined as limT→∞ E{GT }/T = 0.



(15)). To this end, let us define the conditional Lyapunov
drift (LD) ∆(Qt) = E {L(Qt+1)− L(Qt)|Qt}, which is the
conditional expected change of the Lyapunov function over
successive slots, with the expectation typically taken with
respect to context parameters (in this case wireless channels,
computational demands, tasks’ size, and MEH’s CPU avail-
ability). A bounded LD leads to virtual queues’ stability (i.e.
long-term constraints guarantees) [19]. However, the LD does
not assign any importance to the objective function of the
original problem (15), i.e. the device power consumption. To
tackle with both stability and power minimization, we define
the drift-plus-penalty (DPP) function as follows [19]:

∆p(Qt) = ∆(Qt) + V E
{
ptot
t |Qt

}
. (18)

The DPP is an augmented version of the conditional Lyapunov
drift, which weights the drift and the objective function of
the problem, thus shaping the trade-off between E2E delay
guarantees (average and probabilistic) and device power con-
sumption. Now, the same theoretical results apply to the DPP,
meaning that by ensuring its bounded value at each slot, we
guarantee the mean rate stability of the virtual queues, but also
a power consumption that decreases as V increases. To this
end, following [19], we now proceed by defining a suitable
upper bound of the DPP, to be minimized afterwards with
theoretical guarantees. In this case, the upper bound reads as

∆p,t ≤ ζ + E{Yt(D
tot
t −Dth) + Zt(u {Ot} − ϵ) + V ptot

t |Qt},

with ζ a finite positive constant, omitted due to the lack of
space, along its derivation and that of the upper bound, which
follow similar arguments as in [19]. Finally, hinging on the
concept of opportunistically minimizing an expectation, we
proceed by greedily minimizing the above upper bound at each
time slot, thus formulating the following deterministic per-slot
problem, which only requires instantaneous knowledge of the
involved random variables:

min
Θt

V ptot
t + YtD

tot
t + Zt1

{
Dtot

t −Dmax
}

(19)

subject to (a)-(g) of (15).

Problem (19) is a mixed integer non linear, non differentiable
program, due to the presence of the unitary step function, and
the non convex nature of the data rate with respect to the
RIS parameters. However, let us hinge on the upper bound
u{Dtot

t − Dmax} ≤ Dtot
t + Dmax(η − 1), with η ≥ 1/Dmax,

to approximate the unitary step function. This approximation
dramatically simplifies (19), however preventing to achieve
its optimal solution at time t. Nevertheless, we hinge on the
concept of C-additive approximation, which allows inexact
solution of the per-slot problem, provided that their distance
from the optimal one is bounded by a finite constant C
[19]. Now, given the above approximation, it can be easily
shown that the problem can be split into a radio resource
allocation sub-problem, involving power allocation and RIS
configuration, and a computation resource allocation sub-
problem to optimize local computing resources.

B. Local computation sub-problem

To allocate local computing resources, it is necessary to
solve the following problem:

min
f l
t

V γ(f l
t)

3 + (Yt + Zt)w
l
t/f

l
t (20)

subject to f l
min ≤ f l

t ≤ f l
max.

Problem (20) is convex, and its closed form solution, which
can be easily derived via the Karush-Kuhn-Tucker conditions
[20], reads as follows:

f l∗
t = min

(
max

(
4
√

(Yt + Zt)wt

3V κ
, f l

min

)
, f l

max

)
(21)

C. Communication sub-problem

The problem to be solved for the uplink power allocation
over subcarriers and the RIS configuration is the following

min
θ

V
∑

b∈B
pb,t + (Yt + Zt)At/Rt (22)

subject to (a)-(f) of (15)

with θ = [{pb,t}b, {fn,t}n, {Sn,t}n, {χn,t}n], with Rt de-
fined as in (8). Problem (22) is still a mixed-integer non-
convex program. However, given an RIS configuration, the
problem is convex and can be efficiently solved optimally
through efficient procedures such as interior-point methods
[20]. Therefore, we now propose an efficient heuristic to
optimize the RIS configuration. The algorithm to optimize
the RIS builds on the one proposed in [12], in which RIS
elements responses are subsequently selected with the goal of
increasing a weighted sum of channel power gains. However,
[12] is limited to frequency selective channels and focuses
on a multi-user case. Therefore, in this case, we propose to
subsequently select RIS parameters (i.e. Sn,t, fn,t, and χn,t)
for each element, in order to maximize the sum of the channel
power gains over all subcarriers. In particular, as reported in
Algorithm 1, the greedy procedure starts from all elements
with Sn = 0, i.e. an RIS with no reflections. Starting from
this condition, the sum of all channel gains is computed (S.1).
Then, going through all elements, each elements’ response,
encoded by fn,t, χn,t, and Sn,t, is chosen to maximize the
sum of channel gains ∆ =

∑
b∈B αt(fb), given the other

elements’ parameters f−n,t, χ−n,t, and S−n,t (S.2), choosing
Sn,t ∈ [0, 1] to guarantee constraint (d) of (15). The described
procedure obviously guarantees a monotone non-decreasing
behaviour of ∆, i.e. the sum channel power gain.

IV. NUMERICAL RESULTS

In this section, we assess the performance of our proposed
optimization method. The parameters used for the simulations
are reported in Table I. In addition to those, the amount of local
computational demand wl

t, the amount of data At transmitted
by the user, and the remote computational demand wr

t are gen-
erated from Poisson distributions with mean wl = 5×105 CPU
cycles, A = 2 Mb and wr = 5× 107 CPU cyles, respectively.
We consider a 2D scenario composed by one device placed at
(10, 30), one RIS of N = 100 elements placed at (−5, 2.5)
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Algorithm 1: Greedy RIS optimization
Input: Channels’ frequency responses
(S.1) Set Sn = 0 ∀n, ∆ =

∑
b∈B αt(fb).

for n = 1 : N do
(S.2) {f̄n, χ̄n}n =argmax

{fn∈Ω,χn∈X}
∆(f̄n, χ̄n; f̄−n, χ̄−n),

with S̄n = (argmax
fb

|ϕ(fb; f̄n, χ̄n)|)−1

end
Set {fn = f̄n}n, {χn = χ̄n}n, {Sn = S̄n}n
Output: {fn}n, {χn}n, {Sn}n
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Fig. 4: Average power consumption vs. time-slot index.

TABLE I: Simulation Parameters

Parameters Values
Device’s transmit power pmin, pmax (mW) 0.1, 100

Carrier frequency fc (GHz) 3.5
Subcarrier spacing W (MHz) 1

number of subcarriers B 16
Noise power spectral density N0 (dBm/Hz) −174

Server’s CPU maximum frequency fmax(GHz) 10

Device’s CPU frequencies f l
min, f l

max (GHz) 0.01, 1
Processor’s effective switched capacitance γ 10−27

and an AP placed at (0, 0). At each time slot t, Rayleigh
fading frequency selective SISO channels are generated, with
L = 4 delayed taps, and their Fourier transform is performed
to obtain the channel transfer functions ht, gt and hLoS

t (cf.
(4)). Typical frequency dependent pathloss is considered, with
exponent 2, 2 and 4 for the distance, respectively. Regarding
constraints (b) and (c) of (15), we choose Ω equal to the set
of subcarriers B, and χ = {10, 25, 50, 100}. In all simulations,
we compare the RIS-aided performance with the Lorentzian
model and our frequency selective-aware optimization, termed
as optimized RIS, with three benchmarks: i) the case without
the RIS, termed as direct link, with resources optimized
with the proposed method; ii) the frequency flat RIS case,
termed as freq-flat RIS, in which the RIS response does not
follow the realistic Lorentzian model, but it is flat across
all frequencies. In this last case, the RIS is optimized as in



[12], while resources are optimized through our method; iii)
random RIS: the RIS parameters are randomly selected from
the feasible set at each time slot, and resources are accordingly
optimized with our method. As a first result, in Fig. 1 we show
the trade-off between the average E2E delay and the power
consumption, obtained by increasing the parameter V (cf. (18))
from right to left. Two different average delay constraints are
considered, namely 100 ms and 80 ms, while no probabilistic
delay constraint is imposed in this simulation. As we can
notice, for all curves, the average E2E delay increases as
the power consumption decreases, until approaching the delay
constraint. However, the direct link case exhibits the worst
performance in terms of delay-power trade-off, as it achieves
higher delays for a fixed power consumption. At the same
time, the best performance is achieved by the optimized RIS
(i.e. the proposed method). To make a fair comparison, let us
focus on the highest values of V , and therefore the highest
delay (points on the left side of the plot), which is indeed the
service requirement. Here, we can notice how the optimized
RIS case achieves the lowest power consumption, while a
slight gain with respect to the direct link case is achieved by
the freq-flat RIS and the random RIS. However, the last two
benchmarks do not achieve the considerable gain achieved by
the proposed method, due to the awareness of the latter on
frequency selective channels and RIS responses.

Let us notice that Fig. 1 only shows the average E2E delay,
while it ignores the distribution of the delay. To this end,
in Fig. 2, we plot the complementary cumulative distribution
function (CCDF) of the delay, for the highest value of V , i.e.
the left points of Fig. 1, for Davg = 100 ms, for all cases. From
this figure, we notice an even more interesting outcome: the
optimized RIS exhibits much better performance in terms of
delay distribution, while the three benchmarks present longer
tail distributions, i.e. higher delay variability, also due to the
fact that the RIS improves link reliability and no probabilistic
constraints have been imposed in this simulation. Then, we
run a simulation with Davg = 100 ms, Dmax = 110 ms,
and ϵ = 10−2. We show the resulting survivor function in
Fig. 3, validating the ability of our algorithm to guarantee the
probabilistic constraint, as shown by the intersection of the
curves with Dmax and ϵ. However, given these comparable
distributions, it is fundamental to plot the power consumption,
shown in Fig. 4 for all cases. Again, despite the fact that
all cases exhibit the same performance in terms of delay
distribution, the power consumption of the proposed optimized
RIS method is considerably lower than the others, while freq-
flat RIS and random RIS show again a lower gains as compared
to the direct link benchmark case, which exhibits indeed the
worst performance due to its sensitivity to channel fading
conditions.

V. CONCLUSIONS

We proposed a first step towards the optimization of radio
and computing resource over frequency selective RIS-aided
communication channels, with a recently developed frequency
dispersive RIS response model. We formulated and solved a

problem taking into account short-term constraints involving
local computing, transmit power and RIS parameters, as well
as long-term constraints involving average and probabilistic
E2E delays. Through numerical simulations, we assess the
performance of our method, especially with respect to bench-
mark solutions that do not involve RISs or do not perform a
frequency selective-aware optimization. We believe the results
shown in this work pave the way to future investigations
on frequency selective RIS-aided MEC in more complex
scenarios, to finally assess the benefits of such technology in
future connect-compute 6G and beyond networks.
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