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Abstract—Guessing random additive noise decoding (GRAND)
is a maximum likelihood (ML) decoding method that identi-
fies the noise effects corrupting code-words of arbitrary code-
books. In a joint detection and decoding framework, this work
demonstrates how GRAND can leverage crude soft information
in received symbols and channel state information to generate,
through guesswork, soft bit reliability outputs in log-likelihood
ratios (LLRs). The LLRs are generated via successive computa-
tions of Euclidean-distance metrics corresponding to candidate
noise-recovered words. Noting that the entropy of noise is much
smaller than that of information bits, a small number of noise
effect guesses generally suffices to hit a code-word, which allows
generating LLRs for critical bits; LLR saturation is applied to
the remaining bits. In an iterative (turbo) mode, the generated
LLRs at a given soft-input, soft-output GRAND iteration serve as
enhanced a priori information that adapts noise-sequence guess
ordering in a subsequent iteration. Simulations demonstrate that
a few turbo-GRAND iterations match the performance of ML-
detection-based soft-GRAND in both AWGN and Rayleigh fading
channels at a complexity cost that, on average, grows linearly
(instead of exponentially) with the number of symbols.

Index Terms—GRAND, soft-GRAND, turbo-GRAND

I. INTRODUCTION

The upcoming sixth generation (6G) of wireless commu-
nications promises to support a plethora of data-demanding
and delay-sensitive applications [1], requiring both ultra-
broadband high-frequency connectivity [2] and ultra-reliable
low-latency communication (URLLC) [3]. Such variety in
requirements compels a paradigm shift from structured, code-
specific channel-code decoding to universal and practical de-
coding that is efficient for different code rates and lengths.
Early universal near-maximum-likelihood (ML) decoders for
linear codes adopted a list-decoding principle [4], [5]. Re-
cently, guessing random additive noise decoding (GRAND)
[6], [7] is celebrated as a novel and practical universal decoder
suited for block-code constructions of moderate redundancy.

GRAND is a capacity-achieving channel-code decoder that
has demonstrated ML decoding performance on arbitrary (even
unstructured) code-books. Instead of directly identifying the
transmitted code-word, GRAND aims at identifying the noise
effect that corrupts the code-word; it successively reverses the
noise effects from the received signal to recover candidate
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transmitted words. By leveraging information on channel and
noise models, the candidate noise sequences are ordered
and queried in decreasing likelihood, guaranteeing the first
recovered code-word to be the ML decoding solution, even
for channels with memory in the absence of interleaving. The
guesswork literature [8]–[10] establishes the computational
feasibility of GRAND for all moderate redundancy codes,
where the Shannon entropy rate of noise is typically less than
that of information symbols [7]. Furthermore, GRAND’s com-
putational efficiency and modularity have resulted in highly
efficient circuit design, as demonstrated in a recent 65 nm
[11] synthesis and a 40 nm [12] CMOS implementation.

Incorporating soft-detection symbol reliability information
into decoding decisions enhances decoding accuracy [13],
[14]. At one end, GRAND can leverage as soft information a
one-bit mask designating whether a channel use is reliable
or not [15]; specifying reliable bits via a channel-fading-
induced mask is also proposed in [16]. At the other end, the
complete information in continuous channel outputs serves
as soft symbol-reliability information in the soft-GRAND
(SGRAND) scheme [17]. A compromise between one-bit soft-
GRAND and SGRAND is ordered reliability bits GRAND
(ORBGRAND) [18], which matches the decoding accuracy
of SGRAND through code-book-independent quantization of
soft information in a hardware-friendly algorithm.

With fading channels, generating high-resolution soft infor-
mation (as opposed to masks [16]) through exhaustive ML
detection is computationally demanding, and low-complexity
soft-output detectors only generate sub-optimal LLRs. In the
absence of soft information (or with low-quality informa-
tion), iterative decoding schemes can intrinsically generate
soft-decoding reliability information to be fed as soft-input
decoding information in subsequent iterations [19]. Such in-
formation can be updated over both the detection and de-
coding iterations [20], introducing more degrees of freedom
in versatile, adaptive communication systems. However, how
to generate soft-reliability outputs through GRAND remains
unclear. Consequently, iterative soft-input, soft-output (SISO)
GRAND (turbo-GRAND) has not yet been investigated.

In this work, we propose a variation of GRAND that does
not avail of input soft-detection bit reliability information but
leverages complex received symbols (soft-information in a
crude, unprocessed form), channel state information (CSI),
and demapped bits (linear detector outputs) to generate soft-
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decoding bit-reliability information in log-likelihood ratios
(LLRs). We compute the LLRs by populating Euclidean
distance metrics corresponding to a list of candidate words–
not necessarily code-words–resulting from noise guesswork.
Because the number of guesses before hitting a code-word
is limited, we cannot compute LLRs for all bits; we propose
LLR thresholding. We propose a turbo-GRAND scheme in
which the generated extrinsic LLRs are fed as a priori LLRs in
subsequent SISO decoding iterations. With access to complex
received vectors and continuous CSI, the Euclidean distance
computations are common to both detection and decoding;
turbo-GRAND thus realizes joint detection and decoding.

The paper is organized as follows. The problem formulation
is first presented in Sec. II. Then, the proposed turbo-GRAND
scheme is detailed in Sec. III. Performance and complexity
results are reported in Sec. IV; conclusions are drawn in Sec.
V. Regarding notation, bold upper case, bold lower case, and
lower case letters correspond to matrices, vectors, and scalars,
respectively. Scalar and vector L2 norms are denoted by |·| and
‖·‖, respectively. E[·], (·)𝑇 , and (·)∗, stand for the expected
value, transpose, and conjugate transpose, respectively. I𝑀 is
an identity matrix of size 𝑀 , 0𝑁 is a vector of zeros of size
𝑁 , F𝑢 denotes a Galois field with 𝑢 elements, Pr(·) is the
probability function, and � is the Hadamard product.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a communication system of equivalent base-
band input-output relation, y = Hx + n, where y ∈ C𝑀×1 is
the received symbol vector, H∈C𝑀×𝑀 is the channel matrix,
x= [𝑥1 · · · 𝑥𝑖 · · · 𝑥𝑀 ]𝑇 ∈C

𝑀×1 is the transmitted symbol vector,
and n = [𝑛1 · · · 𝑛𝑖 · · · 𝑛𝑀 ]𝑇 ∈ C

𝑀×1 is the additive–possibly
colored–noise vector

(
E[𝑛𝑖𝑛∗𝑖 ]=𝜎2

𝑖

)
. Note that H can be an

identity matrix in an additive white Gaussian noise (AWGN)
system, a diagonal matrix under point-to-point fading, or a
complete matrix under spatial diversity/multiplexing schemes.
Furthermore, we assume the information symbol, 𝑥𝑖 , to be-
long to a normalized complex constellation, X𝑖

(
E[𝑥∗

𝑖
𝑥
𝑖
]=1

)
.

Consequently, x ∈ X̄ ⊂ C𝑀×1, where X̄ is the finite 𝑀-
dimensional lattice of all possible modulated symbol vectors.
The bit-representation of 𝑥𝑖 is c𝑖 = [𝑐𝑖,1 · · · 𝑐𝑖, 𝑗 · · · 𝑐𝑖,𝑞𝑖 ]𝑇 ∈F

𝑞𝑖
2 ,

where 𝑞𝑖 = dlog2 ( |X𝑖 |)e. The bit-representation of x is thus
c = [c1 · · · c𝑖 · · · c𝑀 ]𝑇 ∈ F𝑁2 , where 𝑁 =

∑𝑀
𝑖=1 𝑞𝑖 . We assume

c to be a code-word encoded with an error correcting code
𝛼 : F𝐾2 → F𝑁2 , of code-rate 𝑅 = 𝐾/𝑁 . A code-book
C , {c : c = 𝛼(b), b ∈ F𝐾2 } includes all possible code-words,
where b is the uncoded bit vector. We denote by v ∈R+𝑁 a
vector of 𝜎2

𝑖, 𝑗
values, the second-order noise statistics per bit.

At the receiver side, assuming perfect CSI, a hard detector,
𝛽 : C𝑀 → X̄, equalizes the channel and recovers a symbol
vector, x̂, from y; a demapper recovers a word, ĉ, from x̂.

B. Problem Formulation

The ML decoder computes the conditional probability of the
demapped word, ĉ, for each of the 2𝐾 code-words, c, in code-
book, C. The c with the highest conditional likelihood of trans-

Algorithm 1 Hard GRAND
Input: Demapped bits ĉ; ordered noise-generating function

Π; abandonment threshold 𝐵
Output: Decoded c̄GRAND

1: 𝑘 ← 0
2: while 𝑘 < 2𝑁 do
3: 𝑘 ← 𝑘 + 1
4: w← Π(𝑘) ⊲ 𝑘th likely noise sequence
5: if ĉ 	 w ∈ C or 𝑘 = 𝐵 then
6: c̄GRAND ← ĉ 	 w
7: return c̄GRAND

8: end if
9: end while

mission given what was received is the ML solution, c̄ML =

arg max{Pr (ĉ | c) : c ∈ C}. Instead of searching code-words,
GRAND searches putative, not necessarily memoryless, noise
effect sequences that corrupt c, w = [𝑤1 · · ·𝑤𝑖, 𝑗 · · ·𝑤𝑁 ]𝑇 ∈
F𝑁2 , with non-increasing probability. We express the channel’s
action at the bit level through function ⊕, where c̄ = c ⊕ w.
We can write Pr (c̄ | c) = Pr (c̄ = c ⊕ w), and it follows that

c̄GRAND = arg max{Pr (w = c̄ 	 c) : c ∈ C}. (1)

The receiver creates a list of noise effect sequences of decreas-
ing order of likelihood through a noise generating function
Π : {1,· · ·, 2𝑁 } → w ∈ F𝑁2 ; the sequences are queried until
the first code-word hit, w = ĉ 	 c (block-code syndrome
computations). GRAND is thus a ML decoder that executes
Algorithm 1 and returns c̄GRAND; information bits are retrieved
as b̄GRAND = 𝛼−1 (c̄GRAND). Because the entropy of noise
is small in most communication systems, GRAND is low-
complexity. GRAND’s efficiency is further guaranteed by
abandoning guessing after a computational cut-off [7], 𝐵.

Soft GRAND accepts, in addition to ĉ, bit-reliability in-
formation in a vector 𝚲 = [_1,1 · · · _𝑖, 𝑗 · · · _𝑀,𝑞]𝑇 ∈ R𝑁

(assuming 𝑞𝑖 = 𝑞,∀𝑖). We can generate a weight metric per
putative noise sequence by multiplying the noise sequences
by |𝚲|; noise sequences with smaller weights are more likely
to occur. However, 𝚲 is not always available (or available but
with bad quality), as soft-output detectors are computation-
ally demanding. We aim at generating soft-reliability outputs
within GRAND, proposing a low-complexity noise-centric
soft-output decoding algorithm, a function �̄� : {F𝐾2 ,C𝑀 } →
R𝑁 , that accepts ĉ and y and generates output LLRs, �̄� =

[_̄1,1 · · · _̄𝑖, 𝑗 · · · _̄𝑀,𝑞]𝑇 ∈ R𝑁 , with the knowledge of H.
By further integrating knowledge of noise statistics in LLR
computations (scaling by noise variance), our proposal can
account for noise bursts (Markovian channel noise, for exam-
ple), foregoing interleaves, and whitening filters [7], [21]. The
extrinsic LLRs, �̄�, can then be fed as intrinsic LLRs, 𝚲, in a
subsequent soft GRAND; an iteration that is repeated in the
proposed turbo-GRAND.

III. PROPOSED SISO TURBO-GRAND

We propose a SISO variation of GRAND that leverages, in
addition to the resources of Algorithm 1, the received symbols,



Fig. 1. A block diagram of turbo-GRAND.

CSI, and optional noise statistics, to generate extrinsic bit-
reliability LLRs through joint detection and decoding. The
LLRs are fed as input soft-decoding information to a sub-
sequent SISO GRAND iteration (up to 𝑇 iterations), resulting
in turbo-GRAND (Fig. 1). Turbo-GRAND aims to approach
the performance of a soft GRAND with soft-input information
from an exhaustive soft-output ML detector. Therefore, turbo-
GRAND is helpful in the absence of soft-input information or
the presence of sub-optimal soft information.

The LLR of bit 𝑗 of symbol 𝑖 is defined as

_𝑖, 𝑗 = log
(
Pr

(
𝑐𝑖, 𝑗 =1, y,H

)
/Pr

(
𝑐𝑖, 𝑗 =0, y,H

) )
. (2)

Near-optimal ML-detection log-max LLRs [22] are computed
by exhaustively searching the lattice X̄, computing |X1 |×|X𝑖 |×
· · · × |X𝑀 | Euclidean distance metrics to solve for [23]

_ML
𝑖, 𝑗 ≈

1
𝜎2

(
min

x∈X̄𝑖, 𝑗,1
‖y −Hx‖2 − min

x∈X̄𝑖, 𝑗,0
‖y −Hx‖2

)
, (3)

where X̄𝑖, 𝑗 ,1 , {x ∈ X̄ : 𝑐𝑖, 𝑗 = 1} and X̄𝑖, 𝑗 ,0 , {x ∈
X̄ : 𝑐𝑖, 𝑗 = 0} are subsets of symbol vectors in X̄, having
in the corresponding 𝑗 th bit of the 𝑖th symbol a value of
1 and 0, respectively. We have further assumed the case of
white noise, 𝜎𝑖, 𝑗 = 𝜎,∀𝑖, 𝑗 . For colored noise, ‖y −Hx‖2 is
replaced by (y −Hx)∗ Γ−1 (y −Hx), where Γ = diag (v). The
hard ML detection output is x̂ML = arg minx∈X̄ ‖y −Hx‖2.
Furthermore, soft information can be extracted per symbol in
linear detectors [24], which are near-optimal in point-to-point
systems at a high signal-to-noise ratio (SNR) but sub-optimal
under symbol interference/correlation. In particular, a zero-
forcing (ZF) detector equalizes the channel by multiplying by
its pseudo-inverse, ŷZF = (H∗H)−1 H∗y. The per-symbol ZF
LLRs in 𝚲ZF are

_ZF
𝑖, 𝑗 =

1

𝜎ZF
𝑖

2

(
min
𝑥𝑖 ∈X 𝑗,1

𝑖

���̂�ZF
𝑖 − 𝑥𝑖

��2 − min
𝑥𝑖 ∈X 𝑗,0

𝑖

���̂�ZF
𝑖 − 𝑥𝑖

��2) , (4)

where X 𝑗 ,1
𝑖
, {𝑥𝑖 ∈ X𝑖 : 𝑐𝑖, 𝑗 = 1} and X 𝑗 ,0

𝑖
, {𝑥𝑖 ∈ X𝑖 :

𝑐𝑖, 𝑗 = 0} are subsets of symbols in the one-dimensional
constellation X𝑖 , having a 𝑗 th bit of 1 and 0, respectively,
and 𝜎ZF

𝑖

2
= 𝜎2

𝑖

(
ℎ∗
𝑖
ℎ𝑖

)−1 is a scaled noise variance. The ZF
hard-outputs are computed per symbol as 𝑥𝑖ZF=

⌊
�̂�ZF
𝑖
− 𝑥𝑖

⌉
X𝑖 ,

where b[eX𝑖 , arg min𝑥∈X𝑖 |[ − 𝑥 | is the slicing operator over
X𝑖 . The demapped version of x̂ZF, ĉZF, is the initial vector
over which noise effects are guessed in turbo-GRAND.

Contrary to conventional ML and list decoders that query all
or multiple code-words, the basic implementation of GRAND
achieves ML decoding performance by querying noise se-
quences and recovering a single code-word. This scarcity in
code-word hits across turbo-GRAND iterations is mitigated

Algorithm 2 Joint detection and decoding - turbo-GRAND
Input: Demapped bits ĉ = ĉZF; received symbols y; channel

matrix H; noise matrix W; noise statistics v; noise gen-
erating/sorting function Π/Π́; input LLRs 𝚲 (𝚲=𝚲ZF or
𝚲=0𝑁 ); abandonment threshold 𝐵

Output: Output LLRs �̄�GRAND; demapped ĉGRAND; decoded
c̄GRAND

1: 𝑑ML←∞; 𝑑ML←∞; dcML←𝑁 � (1/v)
2: ĉGRAND← ĉ; c̄GRAND← ĉ; �̄�GRAND←𝚲
3: 𝑡 ← 0;
4: while 𝑡 < 𝑇 do
5: s← Π́

(
W ×

���̄�GRAND
��)

6: 𝑘 ← 0
7: while 𝑘 < 𝐵 do
8: 𝑘 ← 𝑘 + 1; w← Π(s(𝑘)) ⊲ 𝑘th likely noise
9: c̄← ĉGRAND 	 w; x̄← mod (c̄)

10: 𝑑 ← (y −Hx̄)∗ Γ−1 (y −Hx̄) ⊲ Γ=diag (v)
11: 𝑛← 0
12: while 𝑛 < 𝑁 do
13: 𝑛← 𝑛 + 1
14: if 𝑐𝑛 ≠ 𝑐GRAND

𝑛 then ⊲ complementary bits
15: if 𝑑 < 𝑑ML then
16: 𝑑cML

𝑛 ← 𝑑ML ⊲ update 𝑑cML values
17: else if 𝑑 < 𝑑cML

𝑛 then
18: 𝑑cML

𝑛 ← 𝑑

19: end if
20: end if
21: end while
22: if 𝑑 < 𝑑ML then ⊲ detection
23: ĉGRAND ← c̄; 𝑑ML ← 𝑑

24: end if
25: if c̄ ∈ C or 𝑘 = 𝐵 then ⊲ code-word hit
26: if 𝑑 < 𝑑ML then ⊲ decoding
27: c̄GRAND ← c̄; 𝑑ML ← 𝑑

28: end if
29: �̄�GRAND ←

(
2ĉGRAND − 1

)
�

(
𝑑ML − dcML)

30: 𝑡 ← 𝑡 + 1
31: break ⊲ go to next turbo iteration - line 4
32: end if
33: end while
34: end while
35: return �̄�GRAND, ĉGRAND, and c̄GRAND

in joint detection and decoding. We propose generating soft-
output LLRs by populating a number of Euclidean distance
computations equal to the number of noise guesses, as opposed
to the exponential number of distance computations in (3). In
particular, through guesswork, we aim at extracting an updated
hard-detected vector, ĉGRAND, and a reliability metric for each
bit in ĉGRAND, accumulated in the soft-decoding LLR vector,
�̄�GRAND, all while recovering the decoded output, c̄GRAND.

Algorithm 2 illustrates turbo-GRAND in more detail. For
detection, we keep track of an ML-detection distance metric,
𝑑ML; for decoding, we keep track of an ML-decoding distance
metric, 𝑑ML. After each turbo-GRAND iteration, the candidate
vector corresponding to 𝑑ML is the updated detected vector,



ĉGRAND, and the candidate vector corresponding to 𝑑ML is the
updated decoded vector, c̄GRAND. Furthermore, for LLR com-
putations, we accumulate a vector of counter-ML-detection
distance metrics, dcML = [𝑑cML

1,1 · · · 𝑑
cML
𝑖, 𝑗
· · · 𝑑cML

𝑀,𝑞
]𝑇 ∈ R𝑁 ,

which tracks vectors closest to ĉGRAND, but with bit-flips at
corresponding indices. Searching the entire lattice X̄ results in
𝑑ML=minx∈X̄ ‖y −Hx‖2; we can re-express (3) as

_ML
𝑖, 𝑗 ≈

{
1
𝜎2 𝑑

ML − 1
𝜎2 minx∈X̄𝑖, 𝑗,0 ‖y −Hx‖2 if 𝑐ML

𝑖, 𝑗
= 1

1
𝜎2 minx∈X̄𝑖, 𝑗,1 ‖y −Hx‖2 − 1

𝜎2 𝑑
ML if 𝑐ML

𝑖, 𝑗
= 0,

(5)
where 𝑑cML

𝑖, 𝑗
= minx∈X̄𝑖, 𝑗,0 ‖y −Hx‖2 if 𝑐ML

𝑖, 𝑗
= 1 and 𝑑cML

𝑖, 𝑗
=

minx∈X̄𝑖, 𝑗,1 ‖y −Hx‖2 if 𝑐ML
𝑖, 𝑗

= 0 (note that colored noise scal-
ing is embedded into dML and dcML in Alg. 2). However, turbo-
GRAND only searches a limited number of x̄ vectors that are
extracted from the recovered c̄= ĉ 	 w words via guesswork,
and that can be accumulated in a set S

(
|S| < 𝑇×𝐵�

��X̄��) .
We first initialize 𝑑ML to ∞ and dcML to saturation noise-

scaled thresholds. Then, 𝑑ML and dcML are updated iteratively,
upon every new noise guess (up to 𝐵 guesses per iteration 𝑡 in
GRAND with abandonment). For every guessed word, c̄, we
re-generate a modulated vector, x̄=mod (c̄), and add it to S.
Hence, for turbo-GRAND, 𝑑ML=minx̄∈S ‖y −Hx̄‖2, and

_̄GRAND
𝑖, 𝑗 ≈

{
1
𝜎2 𝑑

ML− 1
𝜎2 minx̄∈S𝑖, 𝑗,0 ‖y−Hx̄‖2 if 𝑐GRAND

𝑖, 𝑗
=1

1
𝜎2 minx̄∈S𝑖, 𝑗,1 ‖y−Hx̄‖2− 1

𝜎2 𝑑
ML if 𝑐GRAND

𝑖, 𝑗
=0,
(6)

where 𝑑cML
𝑖, 𝑗

= minx̄∈S𝑖, 𝑗,0 ‖y −Hx̄‖2 if 𝑐GRAND
𝑖, 𝑗

= 1 and
𝑑cML
𝑖, 𝑗

=minx̄∈S𝑖, 𝑗,1 ‖y −Hx̄‖2 if 𝑐GRAND
𝑖, 𝑗

=0. For the 𝑖, 𝑗 indices
where 𝑑cML

𝑖, 𝑗
cannot be computed over S, owing to the absence

of a corresponding x̄, the initial saturated value of 𝑁/𝜎2
𝑖

is
retained. Note that we use a separate 𝑑ML for the decoded
c̄GRAND because not every x̄ in S corresponds to a code-word.
Each turbo-GRAND iteration 𝑡 ends with a single code-word
hit c̄GRAND (𝑡); the final decoded vector after 𝑇 iterations is

c̄GRAND = arg min
c̄GRAND (𝑡); 𝑡 ∈{1, · · · ,𝑇 }

y −H mod
(
c̄GRAND (𝑡)

)2
.

(7)
Note that Algorithm 2 does not explicitly construct S and store
it in memory for post-processing but instead updates the ML
and counter-ML distance metrics on the fly.

The core of turbo-GRAND is a soft-input decoding mecha-
nism which rank-orders candidate noise sequences according
to �̄�GRAND. Let W ∈ F2𝑁×𝑁

2 be a matrix containing in
its rows all possible noise sequences, and let Π́ : R2𝑁

→
{1, · · · , 2𝑁 }2𝑁

be a sorting function (increasing order). Then,
s = Π́ (W × |𝚲|) is a vector of sorted noise-sequence indices,
and w = Π(s(𝑘)) retrieves the 𝑘th likely noise sequence.
However, populating noise sequences in a single matrix is not
hardware-friendly nor computationally efficient. Alternatively,
SGRAND [17] recursively constructs a max-heap for each
combination of reliabilities in 𝚲 to dynamically generate w
vectors with increasing likelihoods. Also, ORBGRAND [18]
builds a bit permutation map based on the decreasing rank

order of bit reliability to generate a pre-determined series of
putative noise queries. Most probably, we have s(𝑖) ≤ s( 𝑗)
when Pr(w = w𝑖) ≥ Pr(w = w 𝑗 ). In SGRAND [17], the
latter is an “if and only if” condition. Thus, with either
SGRAND or ORBGRAND, turbo-GRAND always queries the
all-zeros noise sequence first and is biased to give higher
priority to noise sequences of smaller Hamming weight, but
not necessarily so, depending on the reliability information
in �̄�GRAND. In the absence of soft information or further
channel knowledge, noise query follows increasing Hamming
weights for a probability of bit flip less than 1/2. The latter
is captured by an SGRAND core of turbo-GRAND, which
reduces to hard-GRAND in the absence of soft information.
Hence, SGRAND can be used in the first turbo-GRAND
iteration when 𝚲=0𝑁 . ORBGRAND requires some soft input
information to match the performance of SGRAND, so it can
be adopted when 𝚲 = 𝚲ZF in the first iteration. However,
ORBGRAND entails more noise guesses on average, so it has
the potential to generate richer LLRs.

Turbo-GRAND can be modified to support iterative disjoint
detection and decoding, where �̄�GRAND is fed all the way back
to a separate detector. Towards this end, the detector should
itself be SISO. For instance, the modified distance metric of
a turbo MAP detector can be [25]

𝜑(x) = − ‖y −Hx‖2

𝜎2 +
𝑁∑︁
𝑖=1

𝑞∑︁
𝑗=1
(2cx (𝑖, 𝑗) − 1) �̄�GRAND (𝑖, 𝑗),

(8)
where cx is the bit representation of x. The a posteriori LLRs
can be calculated as

_MAP
𝑖, 𝑗 =

(
max

x∈X𝑖, 𝑗,1
𝜑(x) − max

x∈X𝑖, 𝑗,0
𝜑(x)

)
. (9)

Disjoint detection and GRAND offers good modularity, where
on every detection iteration, the noise can be filtered towards
new signal subspaces [26], yielding more efficient GRAND.

IV. PERFORMANCE AND COMPLEXITY EVALUATION

Following the system model of Sec. II, the block-error
rate (BLER) performance of turbo-GRAND in decoding
Bose–Chaudhuri–Hocquenghem (BCH) [ 127,113] codes is
compared to reference GRAND/ORBGRAND schemes (OR-
BGRAND exhibited superior performance and complexity
tradeoffs compared to other code-specific decoders [18]).
Assuming AWGN and normalized transmit power (SNR of
1/𝜎2), with the absence of input soft information, Fig. 2a illus-
trates that SGRAND-based turbo-GRAND generates soft in-
formation that matches ML-detection soft information. Turbo-
GRAND can outperform ML-detection-based ORBGRAND
because: 1) turbo iterations can introduce a list-decoding
gain and 2) distance computations are over an entire code-
word of many channel uses; feasible ML detection search
routines only span a few channel uses. A similar relative
performance is noted under Rayleigh fading in Fig. 2b and
Fig. 2c, using binary phase-shift keying (BPSK) and 16-
quadrature amplitude modulation (16-QAM) (Gray mapping),
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Fig. 2. BLER performance evaluation of the proposed turbo-GRAND schemes with BCH [ 127,113] codes.

respectively. The gains in soft-GRAND schemes are larger
under fading (more than 6 dB SNR gains at a BLER of 10−2),
highlighting the importance of turbo-GRAND in the absence
of soft information. We further note that the turbo-GRAND
gains are captured in two iterations, beyond which diminishing
returns are expected, as both SGRAND and ORBGRAND
converge faster on every new iteration, 𝑡, guessing over an
enhanced initial vector, ĉGRAND (𝑡). The achievable gains of
turbo-GRAND can be improved by tuning a fixed guess
budget, 𝐵. Alternatively, some sort of reactive taboo search
[27] can be adopted, in which every iteration starts with a
pseudo-random initial vector upon which noise is guessed.

Several communication system scenarios further highlight
the turbo-GRAND gains, especially under symbol interference
in spatial/path diversity schemes, where ML soft information is
significantly better than ZF soft information. In such scenarios,
starting from ZF soft information, ORBGRAND-based turbo-

GRAND can bridge the gap to the much more complex ML-
detection-based soft-GRAND (this paper only covers uncor-
related point-to-point channels). In another scenario, under
imperfect CSI, joint detection and decoding in turbo-GRAND
outperforms conventional soft decoding. We assume 10% CSI
error in Fig. 2d, where Herr = 0.9H+0.1H̃, and H̃ has the
same distribution as H but is independently and randomly
generated. Starting from ZF soft information as input LLRs,
ORBGRAND-based turbo-GRAND outperforms both ML-
soft- and ZF-soft-ORBGRAND. Note, however, that our ML-
detection implementation in these simulations only undergoes
an exhaustive search over subsets of symbols in x of size four.

We next analyze the complexity in terms of floating-point
operations in complex multiplication (CMT) and complex ad-
dition (CAD). We compare the additional processing in turbo-
GRAND over soft-GRAND to the complexity of soft-output
ZF and ML detection. The search complexities are dominated



TABLE I
SOFT-OUTPUT DATA DETECTION COMPLEXITY COMPARISON

Detector Complexity

ML |X|𝑀
(
(𝑀2+𝑀)CMT + (𝑀2+𝑀)CAD

)
ZF |X| (𝑀CMT + 𝑀CAD)

turbo-GRAND 𝑇 × 𝐵
(
(𝑀2+𝑀)CMT + (𝑀2+𝑀)CAD

)
by Euclidian distance computations and the complex matrix
multiplications they entail. The complexity is exponential (in
the symbol-vector length, 𝑀) with ML detection ((3) and (5)),
polynomial with turbo-GRAND (6), and linear with ZF (4).

Table I illustrates the approximate worst-case complexity of
generating soft information in one channel use. The average
complexity of turbo-GRAND is much less because the guess
budget, 𝐵, is not exploited on every iteration; with more
iteration and higher SNR, a few or a single guess can recover
a code-word. Turbo-GRAND is thus much less complex than
conventional iterative list-based detection and decoding. Even
with larger guess budgets, the recovered words on different
iterations often overlap, and redundant computations can be
saved. Furthermore, because noise-sequence guessing typically
follows increasing Hamming weights, the vector Euclidean
distance computations can reduce to simple symbol-based
scalar distance computations/updates, resulting in an average
linear turbo-GRAND complexity of 𝑇×𝐵 (𝑀CMT + 𝑀CAD).
Hence, for large modulation orders, a hardware-optimized
turbo-GRAND can even prove to be less complex than soft-
output ZF detection followed by soft-GRAND; much less
complex than ML detection. Further simplifications can be
made if the channel remains static over multiple uses.

V. CONCLUSIONS

We proposed a mechanism for using GRAND to extract
soft information in a joint detection and decoding framework.
By leveraging access to complex received symbols, hard
demapped bits, CSI, and possibly noise statistics, we generate
LLRs by populating a shortlist of Euclidean distance compu-
tations. Such LLRs can be used in subsequent soft-decoding
GRAND iterations, giving rise to turbo-GRAND. Compared
to hard GRAND, a few iterations of turbo-GRAND introduce
an excess of 6 dB SNR gains at a BLER of 10−2 (much
higher gains at lower BLERs), under practical communication
system scenarios of Rayleigh fading channels. Furthermore,
turbo-GRAND can match and even outperform exhaustive
ML-detection-based soft-GRAND at a much-reduced average
linear complexity. This work can extend into a generic joint
detection and decoding framework for future investigations.
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