
ar
X

iv
:2

10
7.

08
60

7v
1

 [
cs

.I
T

]
 1

9
Ju

l 2
02

1

A unified polar decoder platform for low-power and

low-cost devices

Jiajie Tong, Qifan Zhang, Huazi Zhang, Rong Li, Jun Wang, Wen Tong

Huawei Technologies Co. Ltd.

Email: {tongjiajie, Qifan.Zhang, zhanghuazi, lirongone.li, justin.wangjun, tongwen}@huawei.com

Abstract—In this paper, we design a polar decoding platform
for diverse application scenarios that require low-cost and low-
power communications. Specifically, prevalent polar decoders
such as successive cancellation (SC), SC-list (SCL) and Fano
decoders are all supported under the same architecture. Unlike
high-throughput or low-latency decoders that promote paral-
lelism, this architecture promotes serialization by repeatedly
calling a “sub-process” that is executed by a core module. The
resulting serial SCL-8 decoder is only 3 times as big as an
SC decoder. Cost and power are minimized through resource
sharing and adaptive decoding techniques, etc. We carried
out performance simulation and hardware implementation to
evaluate the actual chip area and energy consumption.

Index Terms—Polar codes, low cost, low complexity, unified
architecture.

I. INTRODUCTION

A. Motivations

6G will cover a wide range of terminals for artificial intelli-

gence (AI) and sensing applications. Among them, the number

of the low-end devices is expected to take up the majority.

Meanwhile, these numerous devices come in different types,

since they need to be customized for thousands of use cases.

This poses a challenge for channel coding, as a variety of

decoders with different decoding algorithms and parameters

are to be implemented.

First, “versatility” is required to meet the diverse require-

ments of application scenarios. However, it is not a wise choice

to design a separate type of codes for each scenario due to

the overall description and implementation cost. One unified

coding scheme would bring a lot of convenience. This in turn

requires the decoders in each scenario to be highly specialized

and flexibly customized at the same time. To this end, a unified

and flexible decoding architecture is desirable.

Second, “low cost” and “low power consumption” are

necessary features for a great proportion of the devices that are

small-sized, battery-powered (sometimes even passive devices)

with limited hardware fabrication budget. Some devices may

transmit several kilobytes per day and receive even less. They

can be idle for 99% of the time. Some applications are not

delay-sensitive, and the decoding latency requirement can

be relaxed. Therefore, the constraint is mainly on the chip

size and total energy consumption rather than throughput and

energy per bit.

B. Background

It has been shown in literature that polar codes are versatile

and support energy-efficient decoding algorithms. Successive

cancellation (SC) is the among the simplest in many soft

decoders. It is suitable for resource-constrained hardware but

delivers mediocre error correction performance. Successive

cancellation list (SCL) decoding runs a list of SC decoder

instances in parallel, and requires list management and cross

bar, thus is more complex than an SC decoder, although

the performance is significantly better. We need to find an

architecture that enjoys the benefits of both SC (efficient

hardware implementation) and SCL (performance gain).

Polar codes are also versatile on the encoding side. There

exist a rich selection of code constructions such as CRC-aided

(CA)-polar [3], parity-check (PC)-polar [4], and polarization-

adjusted polar (PAC) codes [5]. They can be unified under

the framework of pre-transformed polar codes. They share the

same polar transformation module in the encoding part, and

most of the decoding modules. Their only differences are their

outer codes. Together, they can cover a wide range of use

cases, whereas PAC can be optimized for very short block

length, and PC-Polar and CA-Polar are designed for longer

codes.

In this paper, we focus more on the polar decoding schemes

for 6G low-cost and low-power applications.

C. Contribution

We designed a unified polar decoder platform to achieve

versatility, low power and low cost at the same time. The same

SC-decoder-based architecture can be tailored into different

chip sizes, and its parameters flexibly configured for different

uses. First, its architecture is optimized for our purposes.

Second, most of its core modules can be reused across all

applications.

Unlike high-throughput or low-latency applications, we can

resort to “serialization” instead of “parallelization” when it

contributes to a smaller chip size or lower energy consumption.

However, certain parallelism can be preserved as long as they

are “free”, i.e., do not incur additional cost. With serialized

implementation, some resource-consuming modules such as

cross bar are no longer required.

The technical contributions are summarized:

1) The recursive nature of SC decoding algorithm is cap-

tured by the “sub-processes” in the hardware design. It

constitutes the core part of the unified architecture.

http://arxiv.org/abs/2107.08607v1

vp

v

vrvl

 αv v

 αvl

vl
 αvr

vr

 Stage: s=3

 s=2

 s=1

 s=0

 i=0 1 2 3 4 5 6 7

(a) (b)

Recovery

 α

Calculate

Fig. 1. (a) Decoding architecture as a binary tree; (b) Node v re-
ceived/response information

2) With the unified architecture, we implemented three

decoders, i.e., SC decoder, adaptive serial-SCL (S-SCL),

and Fano decoder. The serial-SCL serializes the list of

SC decoder instances and thus simplifies the list man-

agement part; In Fano, we apply the multi-bit decision

technique and limit the number of tracing attempts.

3) We evaluated the chip area and energy efficiency based

on hardware implementation. With TSMC 16nm pro-

cess, the sizes of these decoders are 70µm × 80µm
for SC, 120µm × 140µm for adaptive S-SCL and

125µm× 145µm for Fano. The power consumption for

decoding a packet per second are as follows: 0.326nW
for SC, 0.553nW for adaptive S-SCL, and 41.86nW for

Fano.

II. PRELIMINARIES

Successive cancellation decoding can be represented as a

binary tree traversal [6], as shown in Fig. 1(a). Each subtree

therein represents a shorter polar code. The set of nodes of the

subtree rooted at node v is denoted by Vv. Thus Vroot denotes

the full binary decoding tree. The set of all leaf nodes is

denoted by U . Meanwhile, the set of the leaf nodes in subtree

Vv is denoted by Uv. All leaf nodes can be separated into two

subsets, one is for information leaf nodes and the other is for

frozen leaf nodes.

As shown in Fig. 1(b), a node v in a tree is directly

connected to a parent node pv , a left child node vl and a

right child node vr, respectively. The stage s of a node v is

defined by the number of edges between node v and its nearest

leaf node. All leaf nodes are at stage s = 0.

The node v, which is not a leaf node, receives αv from its

parent node, and generates αvl according to (1) [7].

f− : αi
vl

= αi
v ⊞ αi+2

s−1

v , i ∈ [0, 2s−1 − 1]. (1)

Node v sends the αvl to its left child node and then waits

for the feedback vector βvl to return. Subsequently, (2) [7] is

used to calculate αvr from αv and feedback vector βvl .

f+ : αi
vr = (−1)β

i

v
l × αi

v + αi+2
s−1

v , i ∈ [0, 2s−1 − 1]. (2)

After receiving the feedback vector βvr from the right child,

node v uses (3) to recover the feedback vector βv , which is

sent to its parent node vp.

{

βi
v = βi

vl
⊕ βi

vr

βi+2
s−1

v = βi
vr

, i ∈ [0, 2s−1 − 1] (3)

The node v, which is a leaf node, receives αv from its

parent node, and makes hard bit decision to get the feedback

βv directly. Thus, a leaf node is a bit-decision node.

Both SC and SCL decoders can benefit from a series of

multi-bit decision techniques to prune certain decoding tree

branches. Readers may refer to [6] [8] [9] [10] for several well-

known multi-bit decision techniques for SC decoding, and [11]

[12] [13] for SCL decoding. Thanks to these techniques, a

none-leaf node can become a bit-decision node because its

child leaf nodes no longer need to be visited.

III. AN ARCHITECTURE BASED ON “SUB-PROCESS”

This paper presents a new architecture for polar decoding

based on “sub-process”. SC-based decoding is a typical re-

cursive algorithm. For software implementation, a decoding

program runs by recursively calling a subroutine, i.e., decoding

a node in Fig. 1(a). Similarly, for hardware implementation,

one dedicated module processes a part of the decoding tree at a

time, until the decoding tree is fully traversed. The processing

is called a “sub-process” (SP). The module is called an SP

module.

What remains to be designed is how do we partition a

decoding tree into SPs, and what exactly constitutes an SP?

Two design principles are crucial for our purpose:

• In order to achieve versatility, an SP module should be

capable of processing all the SPs in a polar code.

• In order to reduce hardware cost and energy consumption,

an SP module should be as small as possible.

According to the design principles, SP module has to be

general enough to process every part of the tree, and at the

same time minimizes hardware resource. In other words, it

needs to include the components to perform all the decoding

functions; but for each function, we can only afford to im-

plement one instance of the component. Correspondingly, we

partition a full binary tree such that each part starts from a bit-

decision node (or the root node) to the next bit-decision node,

excluding the former and including the latter. An example for

code length is N = 16, and code rate R = 0.5 is given in

Fig. 2, where “F” denotes a frozen leaf node and “I” denotes

an information leaf node. There are four bit-decision nodes

in the binary tree (excluding frozen nodes), therefore, the

decoding tree can be partitioned into four SPs. As such, each

part can be efficiently processed by an SP module with one

pass.

Thus, a hardware decoder is composed of an SP module,

storage for α and β, and the necessary control logic. A finite-

state machine (FSM) is implemented to repeatedly call the

SPs. The SP-based decoding procedures for SC, SCL and Fano

are described in the following subsections.

s=3

 s=2

 s=1

 s=0 F F F F F F F I

1st SP 2-nd SP 3-rd SP

F I I I I I I I

 Stage: s=4

4-th SP

Start of

edge

traversal

End of

edge

traversal

Step of bit decision in 2-nd SP

Fig. 2. Sub-process in an SC Decoder.

A. “Sub-process” for SC decoding

For SC decoding, an SP comprises two steps, “edge traver-

sal” and “bit decision”. Specifically, an “edge traversal” step

calculates αv and recovers βv for each none-bit-decision node,

and a “bit decision” step makes hard decisions from the soft

input α.

Note that the latency of each SP may be different, it depends

on the starting node and ending node positions on the tree,

and the type of multi-bit decision to be executed at the ending

node.

B. “Sub-processes” for SCL decoding

The additional functions of SCL over SC decoding are

related to list path management. Accordingly, the SP for

SCL decoding should additionally include path management

related components. Some preliminaries are introduced before

defining the SP for SCL, as follows.

PC-SCL and CA-SCL decoders share most of the path

management functions except for final path selection. For PC-

SCL decoders, the final path selection is similar to that of

SCL. For CA-SCL decoders, there is an additional parameter

called “check times”, i.e., the maximum number of paths to

go through CRC check at the end of list decoding.

We use “SCLaTb” to denote a CA-SCL decoder which

has list size “a” and checks the best “b” paths. For example,

SCL8T8 has 8 list paths, and checks all 8 paths. Compared

with an SC decoder, SCL8T8 has over 1dB performance gain

in terms of block error rate (BLER) at short code length, e.g.,

N = 256. But a typical SCL8T8 requires over “8×”SC chip

area and power consumption.

SCL decoder keeps L survival paths and extends each

survival path into two paths once the decoding algorithm visits

an information leaf node. A path metric (PM) must be stored

to indicate reliability of each extended path. A sorter is used

to select the best L survivors from the 2 × L extended paths

according their PMs. On the other hand, a frozen leaf node

only calculates PM.

We adopt the approach of “good bit” [12] to simplify

SCL decoding. Specifically, a set of very reliable information

bits, or good bits, are identified offline. The SCL decoding

algorithm does not perform path extension and sorting for

these good bits.

If all leaves in the subtree Vv rooted from a node v are

good bits, this node v is called a “good node”, denoted by

vG. Meanwhile, if all leaves in the subtree Vv rooted from a

node v are frozen leaves, this frozen node v is denoted by vF .

For a SCL decoding, we identify two types of “sub-

processes” in one SP module. The first type is called “simpli-

fied sub-process” (SSP), whose ending node is either vG or vF .

The steps of SSP are identical to the SP of SC. The second one

is called “full sub-process” (FSP), which has all components of

SSP and additionally includes path management components.

There are four steps in FSP. Besides “edge traversal” and

“bit-decision”, FSP requires two more steps, that is, “sorting”

and “inter-path data switching”. FSPs and SSPs are repeatedly

called to complete decoding. As seen, an SSP is nested in an

FSP.

C. “Sub-processes” for Fano decoding

Fano decoding was proposed for polar codes in [14] [5].

Like SCL decoding, it also extends one input path to two

output paths at an information leaf node. The main difference

is here only one path with the smaller PM will be extended

first. In our implementation, the extended path proceeds to

the next SP, and the other path is pushed into a stack. If the

current path fails, the decoder goes back to retrieve a previous

one, following the last-in-first-out order, by popping from the

stack.

The decoder uses a threshold to determine whether to extend

the current path, or roll back to retrieve a previous path. If

the current path’s PM exceeds the threshold, the decoder will

switch to roll-back mode. During the roll-back mode, the PM

of each retrieved path will be examined. If it still exceeds the

threshold, the path will be discarded and the decoder goes on

to retrieve the next one; otherwise the path will be chosen

and extended. In other words, the first path whose PM is less

than the threshold will be chosen, and its metadata will be

recovered for path extension. If such a path cannot be found,

the decoder increases the threshold by a pre-defined increment.

The decoding latency incurred by the above procedures may

be prohibitive due to the unlimited back and forth between

“roll back” and “path extension”. As a countermeasure, we

set up a counter to count the times when a PM exceeds the

threshold. In such an event, the decoder has to retrace to

a previous path, which is called a “retracing” event. In the

hardware, we limit the retracing times to bound the worst-

case latency.

A CRC-aided Fano decoder performs CRC checks upon

reaching the last leaf node. It decides whether to roll back, if

CRC check fails, or terminate decoding if passes. Like CA-

SCL decoding, it also sets a maximum CRC check times b.

If the maximum is reached, decoding is terminated regardless

of CRC check result.

A Fano decoder also has two types of SPs. Among them,

SSP is exactly the same as in an SCL decoder, but FSP

 α/

Storage

List Select Storage Indices Management

PEs(F-/+)
Bit

Decision

Sorter

Temp

Storage

Indices Switch Between List

according Sorting Results
List Running One By One

G-1/R-0 Node, Directly output

Intermediate Sorting Results

Finally Sorting

Results

From

First

List

Simplified Sub Progress

Full Sub Progress

Fig. 3. Flow chart of a serial successive cancellation list decoder

is slightly different. Besides the “edge traversal” and “bit-

decision” steps, here FSP requires a “retrace decision” step,

instead of the “sorting” and “inter-path data switching” steps.

Because a Fano decoder avoids sorting and path data exchang-

ing, it demands less data storage than SCL decoding.

IV. LOW POWER AND LOW COST DESIGN

A. Serial design for SCL

To reduce chip area, we design a serial-running architecture

for SCL. Fig. 3 shows the basic modules of a serial SCL

decoder, where list paths are processed one by one. For each

path, intermediate LLRs α and partial sums β are read from

the storage according to addresses provided by an “index man-

agement module”. These variables are subsequently processed

by PEs and bit-decision module.

If the current SP is an SSP, it goes on to process the next

path. When all paths have been processed, the current SP

completes and the decoder proceeds to the next SP. Otherwise

if the current SP is an FSP, the PM of a processed path will be

sorted together with previous paths’ PM (also in a sequential

manner). When all paths have been processed, the indices

of the surviving (best) paths will go through a small switch

network and be sent to the index management module. Then

the decoder proceeds to the next SP.

The benefits of a serial architecture are listed below.

• All PEs and bit-decision module are shared among paths.

• Serialization helps to avoid data switching between the

paths, thus no longer requires a big crossbar.

• Memories, which is much smaller than registers, are used

to save the intermediate results of α and β, thanks to the

low read/write bandwidth requirements.

According the evaluation presented in section VI-C, the layout

area of a serial SCL decoder is only 3 times that of an SC

decoder.

B. Adaptive SCL decoding

An adaptive SCL decoder [15] progressively doubles its list

size (e.g., 1 → 2 → 4 → 8) after a CRC check failure, until a

predefined maximum list size is reached. This can effectively

reduce every consumption, and its BLER performance matches

that of an SCL with the maximum list size.

For hardware implementation, we adopt a simplified version

of adaptive SCL. That is, after an SC decoding failure, the

Es/N0
0.5 1 1.5 2 2.5 3

B
L

E
R

10-4

10-3

10-2

10-1

100 N=256,K=128

SC
SCL8T8
ADP SCL8T8
FANO T8 NoMRT
FANO T8 MRT=10000
FANO MRT=3000

Fig. 4. BLER performance comparison.

EsN0
0.5 1 1.5 2 2.5 3

R
et

ra
ce

 T
im

es
101

102

103

104

105

106 N=256,K=128

NoMRT Max Trace
NoMRT Ave Trace
MRT=10000 Max Trace
MRT=10000 Ave Trace
MRT=3000 Max Trace
MRT=3000 Ave Trace

Fig. 5. Retracing times for Fano decoding.

decoder directly switches to SCL8T8 decoding (1 → 8).

We found this strategy saves much controlling overhead and

eventually achieves the smallest power consumption over

others.

V. BLER PERFORMANCE

We compare the BLER performances of various polar

decoders for case of code length N = 256, code rate R = 0.5.

The results are shown in the Fig.4. Note that MRT in the

figure means the maximum retrace times. The benchmark is

the SC decoder, which has the poorest BLER performance.

The adaptive SCL decoder, which is composed of an SC and

an SCL8T8, has the same BLER performance of an SCL8T8

decoder. The gain over SC performance is over 1.2dB at

BLER=10−2.

A Fano decoder, which allows a maximum of 8 CRC check

times and unlimited retracing times, has even better BLER

performance. However, we observe that retracing times can

be as large as 105. Fig. 5 shows the Fano decoder’s worst-

case and average retracing times at different SNR values. To

bound worst-case latency, we can set the upper limit to 10000

or 3000 and observe their corresponding BLER performance.

The former has the a similar BLER performance to SCL8T8

at high SNR but a 0.2dB loss at low SNR. The latter has a

0.4dB gap from SCL8T8 at all SNRs.

Channel

LLR Storage

LLR Stage-2

LLR Stage-3

...

LLR Stage-n

LLR Stage-2

LLR Stage-3

...

LLR Stage-n

...

Psum Stage-n

...

Psum Stage-n

Psum Stage-3Psum Stage-3

Psum Stage-2Psum Stage-2

......

Process

Elements

PEs

FSM

Contrl Path

Bit-Decision

Module (SC)

Bit-Decision

Module (SCL)List-

management

Retrace-

Recovery

PM/Indices

Management

Retrace Data

Storage

Serial processing of list paths

(SC/FANO only process list-0)

Serial processing of list paths

(SC/FANO only process list-0)

Recovery

Psum Results

Common Modules

xxx SC Decoder (Add-on module)

xxx SCL-Serial Decoder (Add-on module)

CRC

Calculation

xxx FANO Decoder (Add-on module)

Notes SC+SCL Adaptive = SC Parts + SCL Parts

Sorter
Read Indices By

 List Manager

Fig. 6. A unified hardware architecture for polar decoders.

VI. HARDWARE IMPLEMENTATION

A. One platform for all devices

For 6G, a vendor may customize a great amount of decoders

for thousands, if not millions, of low-end devices. Besides

the aforementioned techniques to bring down per-device cost,

the overall development, fabrication and manufacturing cost

can be reduced a “platform sharing” strategy. This demands a

unified hardware architecture to support all polar decoders.

The SP-based architecture lends itself well to platform

sharing. We obverse that the SPs of these decoders have

the similar steps. The FSM-based control logic and part of

the storage can also be shared across different decoders.

These functions are implemented in a core module, and we

build around it a unified architecture with peripheral add-

on modules. This architecture can be easily reconfigured to

different decoders with different parameters.

The Fig.6 shows the unified architecture for polar decoders.

The core module includes FSM for SP coordination, storage

for channel LLRs, and intermediate LLRs α and partial sums

β, and PEs for f
−/+ calculation. A list of add-on modules for

different types of decoders are described below.

• SC decoder: bit decision module for SC.

• Serial SCL decoder:1 bit decision module for SCL de-

coder, additional storage for α and β, a sorter, and a list

path management module (PM/indices).

• Fano decoder: reuse the bit decision module of SCL;

plus additional storage for retracing, and path recovery

module for retracing.

• Adaptive decoder: reuse the add-on modules of SC and

serial SCL decoders, plus control logic for triggering SCL

decoding.

B. Implementation of decoders

We designed three types of decoders based on the proposed

architecture to verify the area efficiency and energy efficiency.

Two sets of PEs are implemented, the first contains 8 PEs and

1SCL decoder was not implemented as an independent decoder.

70

8
0

120

1
4
0

125

1
4
5

SC

Decoder
SC+SCL-Serial

Adaptive Decoder

FANO

Decoder

Fig. 7. Layout graphs of an SC Decoder, an adaptive (SC+SCL) decoder and
a Fano decoder, drawn to the same scale.

Es/N0
0.5 1 1.5 2 2.5 3

E
n

er
g

y/
P

ac
ke

ts
(n

J)

10-1

100

101

102

103

104 Decoding Energy (Packet)

SC
SCL8T8
ADP SCL8T8
FANO T8 NoMRT
FANO T8 MRT=10000
FANO T8 MRT=3000

Es/N0
0.5 1 1.5 2 2.5 3

C
yc

le
s

102

103

104

105

106 Latency
SC
SCL8T8
ADP SCL8T8
FANO T8 NoMRT
FANO T8 MRT=10000
FANO T8 MRT=3000

Es/N0
0.5 1 1.5 2 2.5 3

E
n

er
g

y
P

er
 B

it
(p

J)

100

102

104

106 Decoding Energy (Per Correct Bit)
SC
SCL8T8
ADP SCL8T8
FANO T8 NoMRT
FANO T8 MRT=10000
FANO T8 MRT=3000

Fig. 8. Left: Decoding energy per packet (nJ/Pkt). Center: Decoding
energy per correct bit (pJ/bit). Right: The decoding latency between each
decoders(Cycles).

the second contains 4. They are concatenated as described in

[16]. This structure can avoid α storage for stage s = 3, 5, 7.

Multi-bit decisions are made at stage 2 ≤ s ≤ 4. A CRC

check module is implemented for error detection. All designs

employ 6-bit quantization for LLRs.

1) SC decoder: To reduce latency, we employ multi-bit

decision for SC. It simplifies the decoding of rate-1 (R-1) [6],

single parity check (SPC) [9], repetition (REP) [9], dual-SPC

(SPC2) [10], dual-REP (REP2) [10], parity checked repetition

(PCR) [10] and repeated parity check (RPC) [10] nodes.

2) Adaptive SC and SCL8T8-serial decoder: Besides the

modules in SC, an SCL decoder also includes additional multi-

bit decision modules to support flip-syndrome algorithm at

stage s = 2 [13], which can avoid the sorting between the

candidates extended from the same path. Meanwhile, this

module also supports fast decoding at nodes of vG and vF .

3) Fano decoder: A Fano decoder reuses the same multi-

bit decision as in the adaptive decoder. It keeps a maximum

of 6 candidate paths at path extension. The best candidate is

selected as the output of the current SP, and the others are

pushed back to the first-in-last-out stack.

C. Layout view

We present the physical implementations of the three de-

coders with TSMC 16nm process. The decoding clock fre-

quency for all these decoders is 50Mhz. The chip area of

these decoders are 70µm × 80µm for SC, 120µm× 140µm
for adaptive SCL and 125µm × 145µm for Fano. Fig. 7

demonstrates the layout graphs of them.

Thanks to the serialized and unified architecture, the area

of the adaptive SCL with list size 8 is only 3 times as

big as the SC decoder, much smaller than the conventional

implementation that requires at least 8 times chip area. The

Fano decoder is slightly bigger than the adaptive decoder,

mainly resulting from the stack for storing candidate paths.

According the synthesis area reports, the area of candidate

stack is about 41.3% of the whole Fano decoder.

VII. KEY PERFORMANCE INDICATORS

The key performance indicators (KPIs) are reported in this

section are energy consumption per packet, energy consump-

tion per correctly decoded bit, and decoding latency. We

present the indicators in the Fig. 8.

First of all, we evaluate the average decoding energy per

packet. The evaluation is based on a simulation in which

200 packets are decoded. The tested polar codes have code

length N=256 and code rate R=0.5. For an SC decoder, it

takes about 0.3 ∼ 0.4nJ to decode a packet. Meanwhile, an

SCL8T8 decoder takes 13 ∼ 15nJ. Both energy consumptions

do not change with SNR. An adaptive (SC+SCL8T8) decoder

consumes about 11nJ at low SNR. When ESN0 increases to

3dB, the energy consumption reduces to only 0.55nJ. The

energy consumption of a Fano decoder exhibits the same trend

as the adaptive decoder, but overall is 102 ∼ 104× higher. At

low SNR, a Fano decoder takes 104nJ to decode a packet given

unlimited retracing times. Its energy consumption will reduce

to 2333nJ and 955nJ, if the retracing times are limited to 104

and 3 × 103, respectively. Note that at high SNR, the energy

consumptions under all three retracing settings are almost the

same, at 41 ∼ 43nJ per packet.

The second indicator is decoding energy for per correct bit.

We exclude incorrect bits to avoid trivial solutions (such as

not decoding at all). Thus, the energy consumption of SC and

SCL8T8 decreases as SNR increases, as more correct bits are

decoded. For an SC decoder, a correct bit costs 10.9pJ on

average at EsN0 = 0.5dB, and 2.6pJ at EsN0 = 3dB. For

an SCL8T8 decoder, a correct bit costs much more energy:

162pJ and 108pJ at EsN0 = 0.5dB and 3dB, respectively. An

adaptive decoder achieves the same performance as SCL8T8,

but requires much less energy: 119pJ to 4.3pJ, comparable to

that of an SC decoder at high SNR. The Fano decoder with

different retracing settings are also evaluated. At low SNR,

a correct bit comsumes 105pJ with unlimited retracing times,

and it reduces to 3.7 × 104pJ and 3 × 104pJ when retracing

times are limited to 104 and 3× 103. At high SNR, all energy

consumptions reduce to 325 ∼ 328pJ regardless of retracing

setting.

The last indicator is average decoding latency. Although

serialization trades latency for low power consumption, too

much decoding time keeps the device awake and eventually

consumes more energy. A SC takes 166 cycles to decode a

packet and a SCL8T8 costs 1258 cycles. The average latency

of adaptive decoding is similar to SCL8T8 at low SNR region

and similar to SC at high SNR. The former is 1096 and the

latter is 186 cycles. Fano decoder has the maximum decoding

latency among these decoders. At low SNR, a packet takes

8 × 105 cycles per packet without retracing limitation, and

it reduces to 1.9 × 105pJ and 7.7 × 104pJ, with a retracing

limitation of 104 and 3 × 103. At high SNR, the decoding

latencies reduce to 3570 ∼ 3578 cycles for all cases.

VIII. CONCLUSIONS

In this paper, we implement three polar decoders with a

unified hardware architecture for low cost and low power

consumption scenarios. This architecture achieves versatility

with a core module called “sub-process” and add-on modules.

The core module is shared among different decoders, and

add-on modules support various decoding algorithms. Among

them, the SC decoder is only 4100µm2 and has the lowest

cost and power consumption. An adaptive SC/SCL-8 decoder

requires only 3 times area of an SC decoder, and enjoys

both benefits of low power and good BLER performance.

Finally, Fano decoder without retracing limitation achieves the

best BLER performance, still low cost, but incurs the highest

energy consumption. They together can serve a wide range of

potential applications in 6G.

REFERENCES

[1] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
applications, trends, technologies, and open research problems,” IEEE

Network, vol. 34, no. 3, pp. 134-142, May 2020.
[2] E. Arıkan, “Channel polarization: a method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,” IEEE

Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073, Jul.
2009.

[3] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE

Communications Letters, vol. 16, no. 10, pp. 1668-1671, Oct. 2012.
[4] H. Zhang, R. Li, J. Wang, S. Dai, G. Zhang, H. Luo and J. Wang, “Parity-

check polar coding for 5G and beyond,” in IEEE International Conference

on Communications (ICC), May 2018, pp. 1-7.
[5] E. Arıkan, “From sequential decoding to channel polarization and back

again,” [Online]. Available: https://arxiv.org/abs/1908.09594.
[6] A. Alamdar-Yazdi and F. Kschischang, “A simplified successive-

cancellation decoder for polar codes,” IEEE Communications Letters, vol.
15, no. 12, pp. 1378-1380, Dec. 2011.

[7] A. Balatsoukas-Stimming, M. B. Parizi and A. Burg, “LLR-based suc-
cessive cancellation list decoding of polar codes,” IEEE Transactions on

Signal Processing, vol. 63, no. 19, pp. 5165-5179, Oct. 2015.
[8] G. Sarkis, W. Gross, “Increasing the throughput of polar decoders,” IEEE

Communications Letters, vol. 17, no. 4, Apr. 2013.
[9] G. Sarkis, P. Giard, A. Vardy, C. Thibeault and W. J. Gross, “Fast

polar decoders: algorithm and implementation,” IEEE Journal on Selected

Areas in Communications, vol. 32, no. 5, pp. 946-957, May 2014.
[10] J. Tong, X. Wang, Q. Zhang, H. Zhang, R. Li, J. Wang, W. Tong,

“Fast polar codes for terabits-per-second throughput communications,”
in preparation.

[11] S. Hashemi, C. Condo, and W. Gross, “Fast and flexible successive-
cancellation list decoders for polar codes,” IEEE Transactions on Signal

Processing, vol. 65, no. 21, pp. 5756–5769, Nov 2017.
[12] B. Li, H. Shen, K. Chen, “A decision-aided parallel SC-list decoder for

polar codes,” [Online]. Available: https://arxiv.org/abs/1506.02955.
[13] H. Zhang, J. Tong, R. Li, R. Qiu, Y. Huangfu, C. Xu, X. Wang,

J. Wang, “A flip-syndrome-list polar decoder architecture for ultra-low-
latency communications,” IEEE Access, vol. 7, pp. 1149-1159, 2019.

[14] M. Jeong and S. Hong, “SC-Fano decoding of polar codes,” IEEE

Access, vol. 7, pp. 81682-81690, Jun. 2019.
[15] B. Li, H. Shen and D. Tse, “An adaptive successive cancellation list

decoder for polar codes with cyclic redundancy check,” IEEE Communi-

cations Letters, vol. 16, no. 12, pp. 2044-2047, Dec. 2012.
[16] X. Liu, Q. Zhang, P. Qiu, J. Tong, H. Zhang, C. Zhao, J. Wang, “A

5.16Gbps decoder ASIC for polar code in 16nm FinFET,” International

Symposium on Wireless Communication Systems (ISWCS), Lisbon, 2018,
pp. 1-5.

	I Introduction
	I-A Motivations
	I-B Background
	I-C Contribution

	II Preliminaries
	III An architecture based on ``sub-process''
	III-A ``Sub-process'' for SC decoding
	III-B ``Sub-processes'' for SCL decoding
	III-C ``Sub-processes'' for Fano decoding

	IV Low power and low cost design
	IV-A Serial design for SCL
	IV-B Adaptive SCL decoding

	V BLER Performance
	VI Hardware Implementation
	VI-A One platform for all devices
	VI-B Implementation of decoders
	VI-B1 SC decoder
	VI-B2 Adaptive SC and SCL8T8-serial decoder
	VI-B3 Fano decoder

	VI-C Layout view

	VII Key Performance Indicators
	VIII Conclusions
	References

