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Abstract—The optimal offloading of tasks in heterogeneous
edge-computing scenarios is of great practical interest, both
in the selfish and fully cooperative setting. In practice, such
systems are typically very large, rendering exact solutions in
terms of cooperative optima or Nash equilibria intractable. For
this purpose, we adopt a general mean-field formulation in order
to solve the competitive and cooperative offloading problems in
the limit of infinitely large systems. We give theoretical guarantees
for the approximation properties of the limiting solution and solve
the resulting mean-field problems numerically. Furthermore, we
verify our solutions numerically and find that our approximations
are accurate for systems with dozens of edge devices. As a
result, we obtain a tractable approach to the design of offloading
strategies in large edge-computing scenarios with many users.

Index Terms—edge-computing, mean-field, computation of-
floading, Nash equilibria, Pareto optima

I. INTRODUCTION

In recent years, a rapid growth of data generated from
the network edge is witnessed, especially, the Cisco Annual
Internet Report 2020 forecasts a rapid deployment of billions
of Machine To Machine (M2M) devices until 2023 [1]. Multi-
access Edge Computing (MEC) is a key technology to com-
pensate strictly limited M2M devices in their processing by
enabling computation offloading to cloudlet servers with com-
putation resources in their vicinity. Additionally, the number of
User Edge devices (UE) like smartphones, tablets and laptops
also have increased tremendously due to the ease of their
availability and low costs. These devices can also gain from
offloading their tasks that demand intensive computations and
low latencies, e.g., virtual reality, real-time face recognition,
natural language processing, to such cloudlets.

A MEC system can be seen as a multi-agent system where
each UE is an agent who needs to decide, for each arriving
task, whether to offload it to the MEC server or not. There has
been great interest in finding the optimal policy for these UEs,
to either offload or process locally, depending on factors such
as their own available resources, network conditions and of-
floading computation costs. Even though several computation
offloading strategies between UEs and MEC servers have been
proposed in the literature, finding scalable solutions for MEC
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Fig. 1. MEC scenario with N UEs offloading their tasks to M MEC servers,
where computation resources of MEC servers are shared through a fiber loop
connecting them, acting as a single processing pool.

multiagent systems remains an important problem considering
the continuously increasing number of agents.

Mean-field approximations are becoming an increasingly
popular approach to resolve the curse of dimensionality in
large-scale multi-agent systems [2]. The idea is to represent
a many-agent system as a single-representative-agent system
which interacts with the empirical state distribution (or the
mean-field) of all the other agents in the system, making the
system tractable. It has been shown that the solution to a mean-
field system is a good approximation to an N-agent system as
N grow large [3]. There are two main categories in which
agents can work in a multi-agent system, either cooperatively
to maximize a global goal or competitively to maximize their
own reward, or a combination of both. Mean-Field Games
(MFGs, [4], [5], [6], [7]) provide a way to analyze and solve
large-scale competitive problems in a tractable manner, in
particular under the usage of learning-based techniques [8],
[9]. On the other hand, Mean-Field Control (MFC) is used
to model cooperative settings in many-agent systems [10],
[11], see [12], [13], [14], [15], and references therein for
some interesting applications. Similarly, we will formulate
offloading in edge-computation as both a one-shot problem
with theoretical guarantees and alternatively a time-stationary
problem, allowing for competitive and cooperative solutions
in a unified, tractable manner.

The decision to offload tasks to MEC has been an important
area of research since it is crucial to find a good, if not optimal,978-1-6654-3540-6/22 © 2022 IEEE

ar
X

iv
:2

20
9.

03
85

4v
1 

 [
cs

.D
C

] 
 8

 S
ep

 2
02

2



policy in scalable applications. Various prior works have used
mean-field approximations for similar offloading problems.
In [16], the authors model a shared MEC competitive of-
floading problem as an MFG in continuous time and solve
the resulting coupled Hamilton-Jacobi-Bellman and Fokker-
Plank partial differential equations using fixed-point iteration.
However, their model considers only the non-cooperative case
and results in a continuous time model, while in our work
we also consider a cooperative setting and obtain a model for
the time-stationary case. Similarly, in [17], [18], the authors
consider both cooperative and non-cooperative computational
offloading problems, though through the special case of a
linear-quadratic model, while we solve a non-linear problem.

Mean-field approximations have also been used to model
large-scale MEC systems with D2D collaborations [19] par-
ticularly on graphs as a deterministic ODE system, though the
model does not consider entirely selfish nodes. Finally, authors
in [20] model and solve a large-scale resource-sharing prob-
lem using mean-field theory and both cooperative and non-
cooperative strategies, i.e. a more centralized setting without
local computational capabilities. In contrast to our work, their
models focus on graph-based job forwarding and continuous-
action resource-sharing problems, whereas our model focuses
on offloading decisions. For a variety of other works on
applications of the mean-field approach in communication
systems, see also e.g. [21], [22], [23], [24]. Apart from the
discussed differences, all of the models in prior works and
our work are diverse and apply to a variety of differing
scenarios. Here, in contrast to previous work, our model will
consider the both cooperative and competitive optimization of
binary offloading decisions in edge-computing, where users
may choose to offload or compute locally. In this work, we
will formulate a unified mean-field framework for both the
competitive and cooperative setting of offloading decisions in
edge-computing. In particular, our tractable solution considers
both a one-shot and time-stationary scenario that is rigorously
approximating the finite user system.

We begin our analysis with a computationally expensive-
to-solve one-shot game, a knapsack problem, where many
edge devices must independently decide whether to offload
or not for a given distribution of task configurations. Our
contribution can be summarized as follows: (i) We pass to the
infinite-user limit in order to obtain a tractable problem with
a complexity independent of the number of users; (ii) The
model is theoretically motivated by showing novel existence
and approximate optimality properties of solutions in large
finite systems, both in terms of Nash equilibria and Pareto
optima; (iii) Since, in practice, a one-shot game may not be
sufficiently realistic, we extend our model to a new time-
stationary model with a Poisson task arrival process and find
analogous competitive and cooperative solutions in the limit
of large systems; and finally (iv), the proposed models are
verified in simulation and solved or learned with complexity
independent of the number of users, while concurrently giving
a good solution to large finite systems. As a result, we tractably
solve an otherwise intractable many-agent offloading problem.

II. MATHEMATICAL MODEL

In the considered scenario, a multi-cell ultra-dense network
includes M MEC servers and a total number of N UEs
associated with these MEC servers. It is assumed that M
MEC servers are connected through a fiber loop to share their
computational resources, pooled into a single centralized but
distributed MEC pool, where we also assume the bandwidth
across the MEC servers is large enough for connecting all
UEs and the delay in resource sharing through fiber loop is
neglected, similar to the framework presented in [16]. The
scenario is depicted in Fig. 1 with M MEC servers and N UEs.
Each UE, modeled by i = 1, . . . ,N, is given a configuration

Ci := (W i,Li, f i,Ri) ∈K⊆ R4
≥0 (1)

with task transmission length W i in bits, task processing com-
plexity Li in CPU cycles to be computed (either by offloading
to a MEC server or by computing locally), transmission rate Ri

between user and MEC server measured in bits per second, and
finally a local processing rate f i in CPU cycles per second.
Each user i may make a decision Xi ∈ {0,1} of whether to
offload their task.

For a given overall MEC server processing rate fpool ∈R, we
assume each offloading UE is allocated a proportional amount
of processing power from the MEC processing pool to their
offloaded task’s complexity. The time T tx

i to transmit the i-th
users’ task to a MEC server and the time T off

i to compute at
the MEC server are given by

T tx
i =

W i

Ri , T off
i =

Li

fpool · 1
∑ j X j

(2)

assuming that each offloading task is assigned equal pro-
cessing power. Alternatively, one could also easily consider
completion of all offloaded tasks at once, i.e. T off

i =
X j ∑ j L j

fpool
.

The time to compute a task locally is given by

T loc
i =

Li

f i . (3)

The result of the computed tasks are assumed to be negli-
gible in size compared to original task size W i, therefore, the
time needed for the reception of results is not considered.

A. Competitive game setting

In the competitive, selfish setting, each user i independently
decides on whether to offload or not via the random variable
Xi ∈ {0,1} so as to minimize only their own expected com-
putation time, i.e. either time to compute locally or offload

P(Xi = 1) · (T tx
i +T off

i )+P(Xi = 0) ·T loc
i

= E
[
Xi(T tx

i +T off
i )+(1−Xi)T loc

i

]
(4)

Under full information, we obtain a standard static game
with the classical solution concept of mixed Nash equilibria:
Each of the users chooses whether to offload according to a
policy πi which gives the conditional probability of offloading

P(Xi = 1 |C1, . . . ,CN)≡ πi(C1, . . . ,CN) (5)



which results in the minimization objective of each user i,

JN
i (π1, . . . ,πN) = E

[
Xi(T tx

i +T off
i )+(1−Xi)T loc

i

]
. (6)

An approximate ε-Nash equilibrium is now defined as a
tuple of policies (π1, . . . ,πN) such that no user can gain by
unilaterally changing their policy, i.e. for any i = 1, . . . ,N,

JN
i (πi,π−i)≤max

π∈Π
JN

i (π,π−i)+ ε (7)

where π−i denotes all policies other than the i-th policy. Here,
the minimal such ε is also referred to as the exploitability
of policies. An exact Nash equilibrium for ε = 0 is indeed
guaranteed to exist as long as K is compact (e.g. [25]).

Unfortunately, it is known that the computation of Nash
equilibria is hard, see [26]. Instead, we shall consider the
many-agent case through mean-field analysis to obtain a
tractable solution for large systems. At the same time, the
solution will consist of decentralized policies. To this end, we
shall now assume that there exists an underlying distribution
µ0 ∈ P(K) of user specifications, i.e. for i = 1, . . . ,N we
have random variables Ci = (W i,Li, f i,Ri) ∼ µ0. To obtain a
reasonable solution, we must also assume that the MEC pool
computing power scales suitably with the number of users, i.e.
fpool = N · fper for some fper ∈ R, since otherwise in the limit
of many agents, offloading will become pointless. In practice,
for fixed fpool and N in given finite N-agent systems, this may
be realized by defining fper := fpool

N .
We now consider a decentralized control setting by allowing

each agent to decide whether to offload depending only on
their own configuration Ci. For motivation, note that since
all other agents are exchangeable from the perspective of a
single agent, only the own state and overall distribution of
behaviors of other agents matters. Furthermore, in the limit
of N→∞, the other users’ distribution is uninformative, since
under a common offloading strategy, the distribution converges
to some fixed mean-field by the law of large numbers. Addi-
tionally, decentralized control policies may be motivated in
practice by limited agent information. Since the computation
of Nash equilibria in this setting nonetheless remains hard,
this motivates the mean-field formulation.

For tractability, we formulate a mean-field game as N→∞,
as popularized by [3] and [4] for stochastic differential games.
Here, we propose a mean-field model with near-Nash proper-
ties as N grows large, as we will also verify theoretically.
Consider a policy π shared by all users. The policy induces
a joint distribution µ = µ0⊗π over user states and offloading
decisions. Under this fixed distribution µ , the objective of a
single, representative user becomes

Jµ(π) = E
[
X(T̃ tx + T̃ off)+(1−X)T̃ loc

]
(8)

where we have expectations of random variables of the rep-
resentative agent (W,L, f ,R,X)∼ µ⊗π , and random transfer
or processing times of the mean-field system W,L, f ,R

T̃ tx =
W
R
, T̃ off =

L
∫

X dµ

fper
, T̃ loc =

L
f
. (9)

The N → ∞ analogue of Nash equilibria is the mean-field
equilibrium, defined as a tuple (π∗,µ∗) of policy and mean-
field, such that the policy is optimal under the mean-field
generated by itself, i.e. defined through the fixed point equation

π
∗ = argmin

π

Jµ∗(π), (10a)

µ
∗ = µ0⊗π

∗. (10b)

Analytically, for any fixed mean-field µ , we could find such
a best response policy BR(µ) by defining

π
∗(W,L, f ,R) = 1T̃ tx(W,L, f ,R)+T̃ off(W,L, f ,R)<T̃ loc(W,L, f ,R). (11)

However, simply iterating the two fixed point equations is
generally not guaranteed to converge to an equilibrium. Thus,
we will learn equilibria through fictitious play [9].

B. Cooperative control setting
In contrast to the selfish, competitive setting, in a coop-

erative setting it may be of interest to minimize the average
processing time of all users. One may formulate a centralized
optimization problem as

min
X1,...,XN

1
N

N

∑
i=1

Xi(T tx
i +T off

i )+(1−Xi)T loc
i (12a)

subject to Xi ∈ {0,1} ∀i ∈ {1, . . . ,N} (12b)

under full information. However, again this problem is known
to be difficult to solve exactly for large N, as it is a knapsack
problem [27]. Furthermore, we may again be interested in a
decentralized solution, where each agent uses an independent
policy, eliminating the need for centralized knowledge and
only requiring knowledge of the local configuration Ci. Re-
formulating as optimization over decentralized policies πi and
optimizing over the expected cost, we have

min
π1,...,πN

E

[
1
N

N

∑
i=1

Xi(T tx
i +T off

i )+(1−Xi)T loc
i

]
(13a)

subject to πi : K→ [0,1] ∀i ∈ {1, . . . ,N} (13b)

where each offloading decision Xi ∼ Bernoulli(πi(Ci)) follows
from the policy πi.

As N→∞, under the policy π for all agents, we can obtain
the corresponding mean-field control problem, which is more
tractable than directly solving the N-user system, given as

min
π

∫
X(T̃ tx + T̃ off)+(1−X)T̃ loc d(µ0⊗π) (14)

again with the previous definitions. Note that although we
impose a shared, common policy π , sharing a policy across
all agents will indeed be sufficient for optimality [28].

Since the problem is now reduced to the choice of π : K→
[0,1], the combinatorial optimization problem has been re-
duced to optimization over a bounded function π with com-
plexity independent of N. If we further assume that µ0 has
finite support, i.e. K := |K|< ∞ and

µ0 =
K

∑
j=1

p jδ(W j ,L j , f j ,R j),
K

∑
j=1

p j = 1, (15)



for some p j ≥ 0, (Wj,L j, f j,R j) ∈K, then we obtain∫
X(T̃ tx + T̃ off)+(1−X)T̃ loc d(µ0⊗π)

=
K

∑
j=1

p jπ j

(
Wj

R j
+

L j ∑
K
k=1 pkπk

fper

)
+ p j(1−π j)

L j

f j

=
K

∑
j=1

K

∑
k=1

p j pkL j

fper
π jπk +

K

∑
j=1

(
p jWj

R j
− p jL j

f j

)
π j +

K

∑
j=1

p jL j

f j

= π
T Qπ + cT

π + const.

for π ≡ (π1, . . . ,πK)
T , π j = π(Wj,L j, f j,R j) and appropriate

Q, c. Therefore, we obtain a non-convex quadratic program

min
π1,...,πK

π
T Qπ + cT

π (16a)

subject to π j ∈ [0,1] ∀ j ∈ {1, . . . ,K} (16b)

with box constraints, which though NP-hard [29] in the cardi-
nality of the support of µ0, can be solved numerically. Most
importantly, the complexity remains independent of N, giving
us a tractable solution for sufficiently small K. To handle more
general densities µ0 with non-finite but compact support K,
we may discretize distributions and solve the resulting finite-
support problem. As a result, we have obtained a tractable
solution to the otherwise intractable offloading problem for
many devices, as we will verify in the sequel.

III. TIME-STATIONARY MODEL

While the previous model assumes an instantaneous prob-
lem where we let all users play a one-shot game, another
important and interesting setting is to assume a continuous
flow of tasks arriving over time. While a theoretically rigorous
analysis of this setting is beyond the scope of our work,
we nonetheless consider this setting at its time-stationary
equilibrium and solve it numerically.

At all times, let the arrival process of tasks be given by a
Poisson process with constant rate λN, which is equivalent to
Poisson arrival rates λ for each of N users. At equilibrium,
in the limit there must be a time-stationary bandwidth per
user falloc allocated to a user choosing to offload their task.
This bandwidth is given by dividing the total processing power
fpool = N fper by the number of jobs in the system. Since the
processing time for any offloaded job arriving at equilibrium
is given by T tx = W

R and T off = L
falloc

, the expected number of
jobs in the system as N→ ∞ will be given by

E [Ntot] = λNE
[
X(T tx +T off)

]
(17)

and is given by a sum of N Poisson variables Ni
tot, the numbers

of jobs in the system from each user i. Therefore, by the
central limit theorem, the fluctuations of Ntot are on the order
of O(

√
N), resulting in the allocated processing rate per user

falloc =
fpool

E [Ntot]+O(
√

N)
=

fper

λE [X(T tx +T off)]+O( 1√
N
)

→ fper

λE
[XW

R

]
+ λE[XL]

falloc

(18)

as N→ ∞, which for falloc 6= 0 gives

falloc =
fper−λE [XL]

λE
[XW

R

] (19)

and the natural constraint

fper−λ

∫
XLd(µ0⊗π)> 0. (20)

Intuitively, this constraint formalizes the notion of sufficient
MEC resources, i.e. the rate of assigned jobs times their
complexity must not exceed the possible compute assigned
per node, as otherwise the MEC servers will be unable to
catch up with assigned tasks, resulting in no time-stationary
solution. Note that this constraint is trivially fulfilled if

fper > λE [L] . (21)

Optimizing the average waiting times of all agents in the
cooperative case gives the MFC problem

min
π∈[0,1]K

E
[
X(T tx +T off)+(1−X)T̃ loc

]
(22)

where for finite K we have

E
[
X(T tx +T off)+(1−X)T̃ loc

]
= E

[
XW

R
+

XLλE
[XW

R

]
fper−λE [XL]

+ (1−X)
L
f

]

=
K

∑
j=1

p jπ j

(
Wj

R j
+

L jλ ∑
K
k=1

pkπkWk
Rk

fper−λ ∑
K
k=1 pkπkLk

)
+ p j(1−π j)

L j

f j
.

For the competitive MFG, we can analogously define an
equilibrium as any fixed point policy π∗ such that

π
∗ ∈ argmax

π

Eπ

[
XW

R
+

XLλEπ∗
[XW

R

]
fper−λEπ∗ [XL]

+ (1−X)
L
f

]
.

(23)

IV. THEORETICAL GUARANTEES

In this section, we state a number of theoretical guarantees
for the one-shot mean-field problems. Extensions to the time-
stationary case are deferred to future work. The results follow
from formulating the problem as certain standard mean-field
game and mean-field control problems and applying existing
results. In particular, note that our systems can be reformulated
as standard mean-field games with action space {0,1} and
state space K∪(K×U), see also [7], [28]. For the competitive
setting, as N → ∞, the MFG equilibrium exists and will
constitute an approximate Nash equilibrium.

Theorem 1: A solution (π∗,µ∗) of the MFG problem (10)
exists, and π∗ constitutes an εN-Nash equilibrium of the finite
N-user system with εN → 0 as N→ ∞.

Proof: See [7, Theorem 4.1].
Furthermore, it is known that the fictitious play algorithm

will converge in terms of exploitability, giving us the desired
approximate Nash equilibrium.

Theorem 2: The exploitability of the solution of the ficti-
tious play algorithm converges to zero.
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Fig. 2. Learning curve for the exploitability ∆J in the competitive MFG
problem (10) (left) over 5000 iterations n using fictitious play. The ficti-
tious play algorithm quickly converges to the equilibrium π∗ ≈ (1,0.65,0).
Here, we used (p1, p2, p3) = (0.2,0.4,0.4), fper = 0.5 and (Ci)i=1,2,3 =
((1,1,1,20),(3,2,1,20),(5,3,1,20)). Similar results are achieved in the
time-stationary MFG problem (23) (right), converging to the equilibrium
π∗ ≈ (1,0.65,0) for (p1, p2, p3) = (0.2,0.4,0.4), fper = 0.5, λ ≈ 0.225 and
(Ci)i=1,2,3 = ((1,1,5,10),(3,2,5,10),(5,3,5,10)).

Proof: The system fulfills [9, Assumption 1] and in
particular the monotonicity property, since the offloading cost
only increases when more agents offload. Therefore, by [9,
Corollary 8.2], we have convergence of the fictitious play
algorithm to the unique mean-field equilibrium.

Similarly, the cooperative MFC solution has an optimal
solution, which will constitute an approximate Pareto optimum
in the finite user system.

Theorem 3: For distributions µ0 with finite support, an
optimizer π∗ of (16) exists, and π∗ constitutes an εN-Pareto
optimum of the finite N-user system with εN → 0 as N→ ∞.

Proof: Existence is trivially guaranteed by the extreme
value theorem, since the objective is a continuous function of
π ∈ [0,1]K , and [0,1]K is compact. For approximate Pareto-
optimality, see [28, Corollary 1].

V. NUMERICAL SIMULATION

In this section, we present numerical simulations for the
systems established in the prequel. For the quadratic program
MFC, we could apply convex quadratic program solvers if
the problem is indeed convex. However, in general the MFC
problem may be non-convex and thus results in a NP-hard
problem [29]. Still, we again stress that the complexity scales
only with the size of K and remains independent of the
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Fig. 3. Exemplary 2D-case for the quadratic MFC problem (16) (left)
and K = 2, reaching the optimal objective of around 1.26 at around π∗ ≈
(0.52,0). Here, we used (p1, p2) = (0.8,0.2), fper = 3 and (Ci)i=1,2 =
((3,5,3,10),(1.5,1.5,5,25)). Similar results are achieved for the time-
stationary MFC problem (22) (right), where we achieve the optimal value
0.25 at π∗ ≈ (0.24,1) for (p1, p2) = (0.8,0.2), fper = 3, λ = 0.6 and
(Ci)i=1,2 = ((3,1.5,5,12),(1.5,1,2,20)).
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Fig. 2 and various N from 5 to 100, compared against the stationary mean-
field solution (MF). We average over 5000 sample trajectories. As we consider
increasingly large systems, the expected rescaled number of jobs in the system
converges to the limiting mean-field description, letting us conclude that the
limiting mean-field system is a good approximation for the finite user system.
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Fig. 5. Comparison of N-agent exploitability in the MFG (10) (left), and N-
agent objective deviation from the limiting objective in the MFC (16) (right)
for the configurations used in Figures 2 and 3. The exploitability quickly
decreases to zero, and similarly the cooperative problem is quickly well-
approximated by the MFC.

number of users N. Therefore, our formulation will be of
lower complexity than solving the finite user model for large
systems. For space reasons, we do not compare run times,
since finite model solvers will trivially exceed the run time of
our solution for sufficiently large systems. We may follow any
global optimization algorithm, and for simplicity we apply a
simple grid search, though more sophisticated algorithms such
as Bayesian optimization can easily be substituted.

As can be observed in Fig. 2, for the competitive MFG
problem (10), the fictitious play algorithm

πn+1 ≡
1

n+1

(
nπ1:n + argmin

π

Jµ0⊗π1:n(π)

)
(24)

with the past average policy π1:n := 1
n ∑

n
m=1 πm quickly con-

verges in terms of the exploitability

∆J(π) := max
π∗

Jµ0⊗π(π∗)− Jµ0⊗π(π) (25)

which must be equal to zero for an exact equilibrium. For
the parameters given in Fig. 2, the resulting equilibrium
π∗ ≈ (0,0.81,1) is intuitive: Only the second configuration
splits between offloading and local computation at a ratio that
equilibrates offloading and local computation time, since the
second configuration has longer offloading times than the first,
and longer local computation time than the third. The result are
offloading decisions where each UE gains little by deviating.

In Fig. 3, we can observe the cost function for an illustrative
case where K = 2. As can be seen in the example, the



optimum computational offloading policy is reached at around
π∗ ≈ (0.52,0). Similarly, a solution can be reached for the
time-stationary problem at around π∗ ≈ (0.24,1). Here, we
solve the problem for an illustrative 3D example in a few
seconds, though similar results can easily be obtained for
larger problems. Thus, we obtained nearly optimal offloading
decisions, minimizing the average computation times.

In Fig. 4, we can observe that the time-homogeneous
problem empirically shows a number of jobs in the system
that converges to the mean-field description when rescaled by
N, leading us to the conclusion that the mean-field model we
proposed is a good approximation to the finite user system as
long as the system is sufficiently large.

Finally, in Fig. 5, we can observe (i) the exploitability in
the competitive finite user system, i.e. the expected maximum
gain by deviating to any other policy in (4), and (ii) the
deviation of the objective (13) from the computed mean-field
objective (16) in the cooperative setting. Here we estimated
the exploitability for each value of N by taking the maximum
over all pure policies π ∈ {0,1}K over 100 000 samples.
Similarly, we estimated the deviation between (13) and (16)
over 20 000 samples of the finite user system. We observe that
the exploitability and deviation of objectives tends to zero as
the number of agents increases, showing that the mean-field
solution solves the finite system well.

VI. CONCLUSION

In this work, we have shown the general applicability
of rigorous mean-field frameworks for both competitive and
cooperative scenarios in offloading for edge-computing. In
particular, we have shown that the mean-field approximation
quickly becomes a good approximation and can reliably be
solved with a complexity independent of the number of agents.
As a result, we have obtained good and tractable solutions for
large-scale, decentralized edge-computing systems. In future
work, one could extend rigorous theoretical analysis to the
time-stationary case. Other interesting directions could be an
extension to Markov-modulated task arrival rates and thereby
a non-time-stationary case, or an even more distributed setting
with multiple separate limited-access MEC pools. Finally, an
application to real systems may be of interest.

REFERENCES

[1] Cisco, “Cisco annual internet report (2018–2023),” Tech. Rep. C11-
741490-01, 2020.
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[5] O. Guéant, J.-M. Lasry, and P.-L. Lions, “Mean field games and
applications,” in Paris-Princeton lectures on mathematical finance 2010.
Springer, 2011, pp. 205–266.

[6] D. A. Gomes, J. Mohr, and R. R. Souza, “Discrete time, finite state
space mean field games,” Journal de mathématiques pures et appliquées,
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