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Abstract—Reconfigurable intelligent surface (RIS) is a promis-
ing technique to enhance the performance of physical-layer key
generation (PKG) due to its ability to smartly customize the
radio environments. Existing RIS-assisted PKG methods are
mainly based on the idealistic assumption of an independent
and identically distributed (i.i.d.) channel model at both the
transmitter and the RIS. However, the i.i.d. model is inaccurate
for a typical RIS in an isotropic scattering environment. Also,
neglecting the existence of channel spatial correlation would
degrade the PKG performance. In this paper, we establish
a general spatially correlated channel model in multi-antenna
systems and propose a new PKG framework based on the
transmit and the reflective beamforming at the base station (BS)
and the RIS. Specifically, we derive a closed-form expression
for characterizing the key generation rate (KGR) and obtain a
globally optimal solution of the beamformers to maximize the
KGR. Furthermore, we analyze the KGR performance difference
between the one adopting the assumption of the i.i.d. model
and that of the spatially correlated model. It is found that the
beamforming designed for the correlated model outperforms that
for the i.i.d. model while the KGR gain increases with the channel
correlation. Simulation results show that compared to existing
methods based on the i.i.d. fading model, our proposed method
achieves about 5 dB performance gain when the BS antenna
correlation ρ is 0.3 and the RIS element spacing is half of the
wavelength.

I. INTRODUCTION

The inherent broadcast nature of wireless medium is vulner-

able to security breaches, attracting passive or active attacks

from potential eavesdroppers [1]. In contrast to conventional

encryption schemes that experience difficulties in key dis-

tribution, physical-layer key generation (PKG) provides an

alternative approach to establish symmetric keys between the

legitimate parties. By exploiting the intrinsic randomness and

the reciprocity of wireless channels, PKG is information-

theoretically secure. Nevertheless, the essential premise to

ensure the security of secret key in PKG is the existence

of rich-scattering and dynamically varying channels. Unfortu-

nately, this condition can hardly be satisfied to guarantee key

generation performance in some harsh propagation scenarios,

such as static and shadowed environments. As a result, there

is a need for new technologies to improve PKG performance.

Recently, the emergence of reconfigurable intelligent sur-

face (RIS) provides a promising means to address the afore-

mentioned problems. RIS is a programmable and reconfig-

urable metasurface consisting of a large number of passive

elements, which can be controlled collaboratively to alter

the signal propagation environment. Since the key generation

performance relies on the properties of fading channels, RIS

could be the key enabler for improving the PKG. Inspired by

this, there are several studies on the design of RIS-assisted

PKG systems. For example, in static environments, a RIS-

induced randomness method was proposed in [2] and the

experiments in [3] demonstrated its effectiveness. In addition,

the authors of [1], [4], [5] investigated the optimization of RIS

beamforming in dynamic environments to further improve the

key generation rate (KGR). Nevertheless, all of these works

are based on the independent and identically distributed (i.i.d.)

Rayleigh fading model for the RIS-related channels. In prac-

tice, the non-negligable spatial correlations exist among RIS

elements due to their sub-wavelength sizes. More importantly,

these correlations may jeopardize the PKG performance if

they are not taken into account in the system design [6].

In addition, only a single-antenna BS was considered in

these works, e.g., [1]–[5] and their results are not applicable

to the case of multi-antenna. Indeed, the RIS-assisted PKG

methods in multi-antenna spatially correlated channels are still

unknown.

To fill this gap, this paper investigates a RIS-asisted PKG

method in a multi-antenna system with the consideration of

the spatial correlation between the BS and the RIS. The main

contributions of this paper are listed as follows:

• We propose a novel transmit and reflective beamforming

based RIS-assisted PKG framework in spatially corre-

lated channels. We formulate the design of beamforming

as an optimization problem by deriving the closed-form

KGR expression.

• We design the globally optimal transmit and reflective

beamforming vector by decomposing the optimization

problem into two sub-problems and optimizing them

separately. Also, our analysis shows that the optimal

beamforming outperforms existing designs adopting the

i.i.d. channel assumption.

• Simulation results show that compared with existing

http://arxiv.org/abs/2207.11752v1


Alice

Bob

RIS

RIS 

controller

Eve

ae
H

be
h

re
G

( )T
ra ar
G G

( )
rb br
h h

( )
ab ba
h h

Fig. 1. The model of RIS-assisted PKG based on transmit and reflective
beamforming.

methods that ignore the spatial correlation, the optimal

design achieves about 5 dB gain when the antenna corre-

lation coefficient is 0.3 and the element spacing is half of

the wavelength. Moreover, the KGR gain increases with

the spatial correlation at both the BS and the RIS.

II. SYSTEM MODEL

As shown in Fig. 1, we study a RIS-assisted key generation

method in a multiple-input single-output multi-antenna eaves-

dropper (MISOME) system, in which a multi-antenna base

station (BS), Alice, and a single-antenna user, Bob, aim to

generate symmetric keys [4], [5] from the wireless channel

with the help of a RIS adopting the time-division duplexing

(TDD) protocol. Meanwhile, a multi-antenna eavesdropper,

Eve, intends to obtain the key information from her received

signals. We assume that Alice and Eve are equipped with

M and K antennas, respectively. The RIS consists of N
passive reflecting elements and introduces phase shifts to the

impinging signals to facilitate key generation. Since the spatial

correlation affects the secret key rate, we consider the general

spatial correlation channel model at both the RIS and the BS.

A. Channel Model

The direct channels of Alice-to-Bob, Eve-to-Bob, and

Alice-to-Eve are denoted by hab ∈ CM×1, heb ∈ CK×1,

and Hae ∈ CK×M , respecively, where CA×B denotes the

space of complex matrices of size A × B. hak ∈ CM×1

denotes the channel from Alice to Eve’s k-th antenna, k ∈
{1, · · · ,K}. When a RIS is involved in the PKG system, it

introduces additional channels. Specifically, the channels of

RIS-to-Alice, RIS-to-Bob, and RIS-to-Eve are represented as

Gra ∈ CM×N , hrb ∈ CN×1, and Gre ∈ CK×N , respectively.

hrk ∈ CM×1 denotes the channel from the RIS to Eve’s

k-th antenna. To account for the spatial correlation, the

channel matrices are described by employing the Kronecker

correlation channel model as

Gra = GT
ar = β

1

2

arR
1

2

S H̃R
1

2

I , (1)

hri = hir = β
1

2

irR
1

2

I h̃ir, i ∈ {b, k}, (2)

haj = hja = β
1

2

jaR
1

2

S h̃ja, j ∈ {b, k}, (3)

respectively, where RS ∈ CM×M and RI ∈ RN×N are

the spatial correlation matrices at Alice and the RIS, respec-

tively [6]. The elements [RS ]m,n and [RI ]m,n represent the

correlation between the m-th antenna/element and the n-th

antenna/element. In addition, H̃ ∈ CM×N , h̃ir ∈ CN×1, and

h̃ja ∈ CM×1 are random matrices with i.i.d. Gaussian random

entries of zero mean and unit variance. βar, βir, and βja are

the path loss of the corresponding channels, respectively.

B. PKG Framework Based on Transmit and Reflective Beam-

forming

Now, we propose a new framework to take full advantages

of the RIS-assisted PKG in multi-antenna systems. In PKG,

Alice and Bob first perform channel probing to acquire the

reciprocal channel estimation. The process of channel probing

is described as follows.

Step 1: Uplink channel sounding. Bob transmits the publicly

known pilot su ∈ C with s∗usu = 1. Then, the equivalent

baseband signal received at Alice and Eve are expressed as

yu
l =

√
PB (GrlΦhbr + hbl) su + zl, l ∈ {a, e}, (4)

respectively, where Φ = diag{v} with each element |vn| =
1, ∀n ∈ {1, · · · , N}, is the reflection cofficients matrix of

the RIS. diag(x) and |x| denotes a diagonal matrix and

the modulus of a complex scalar, respectively. In addition,

PB is the transmit power of Bob. The noise follows the

circularly symmetric complex Gaussian distribution, i.e., za ∼
CN (0, σ2

aIM×M ), ze ∼ CN (0, σ2
eIK×K), where σ2

a and σ2
e

are the noise variances of Alice and Eve, respectively. Then,

Alice and Eve perform the least square (LS) estimation1 as

ĥu
l , s∗uy

u
l =

√
PB(GrlΦhbr + hbl) + z̃u

l , l ∈ {a, e}, (5)

respectively, where the estimation noise is z̃u
l = s∗uz

u
l .

Step 2: Downlink channel sounding. Alice sends the pilot

sd ∈ C with s∗dsd = 1, and the signals received at Bob and

Eve are

ydb = (hT
rbΦGar + hT

ab)wsd + zdb , (6)

yd
e = (GreΦGar +Hae)wsd + zd

e , (7)

respectively, where w is the transmit beamforming vector at

Alice that satisfies ||w||2 ≤ PA. || · || denotes the Euclid-

ian norm. zdb and zd
e are the additive Gaussian noise with

zdb ∼ CN
(
0, σ2

b

)
and zd

e ∼ CN
(
0, σ2

eIK×K

)
. After the LS

estimation, Bob and Eve obtain the channel estimates as

ĥb , s∗dy
d
b = (hT

rbΦGar + hT
ab)w + z̃b, (8)

ĥd
e , s∗dy

d
e = (GreΦGar +Hae)w + z̃u

e , (9)

1The LS is adopted since it has been widely used in practical systems [1].



respectively, where the noises are z̃db = s∗dz
d
b and z̃u

e = s∗dz
u
e ,

respectively.

Step 3: Reciprocal components acquisition. Since the esti-

mations obtained by Alice and Bob, as shown in (5) and (8),

are quite different, we multiply Alice’s channel estimation ĥu
a

by w to obtain the combined reciprocal channel gain as

ĥa , wT ĥu
a =

√
PBw

T (GraΦhbr + hba) + za, (10)

where the noise is za = wT z̃u
a .

Consequently, Alice’s combined channel gain, ĥa, and

Bob’s channel gains, ĥb, are highly correlated. After the fol-

lowing procedures of the PKG, i.e., quantization, information

reconcilation, and privacy amplification, the channel gains are

finally converted into secret keys [7]. Since these steps are

similar to those used in existing PKG methods, in this paper,

we focus on the channel probing step, where the transmit and

reflective beamforming are optimized to maximize the KGR.

III. PROBLEM FORMULATION

In this section, we formulate an optimization problem to

find the optimal transmit beamforming w and the reflective

beamforming v by deriving the closed-form KGR expression.

First, the secret key rate is defined as the conditional mutual

information of legitimate parties’ channel estimations given

the observation of Eve [1], which is expressed as

RSK , I
(
ĥa; ĥb|ĥu

e , ĥ
d
e

)
, (11)

where I(X ;Y ) is the mutual information of random variables

X and Y . In this paper, we assume that Eve is located

at least half-wavelength away from Alice and Bob. Hence,

the eavesdropping channels are independent of the legitimate

channels2. In this case, the KGR is given by [1]

RSK = I
(
ĥa; ĥb

)
= log2

Ra,aRb,b

det (Rab)
, (12)

where Ri,j = E{ĥiĥ
H
j }, i, j ∈ {a, b}, det(·) is the matrix

determinant, E{·} denotes the statistical expectation, and

Rab =

[
Ra,a Ra,b

Rb,a Rb,b

]
. (13)

Substituting the channel estimations into (12) and assuming

σ2
a = σ2

b = σ2 for simplicity, RSK is expressed as (14) at the

top of the next page, where R̃I = RT
I ◦ RI , βr = βarβbr,

and ◦ denotes Hadamard product.

Proof: See Appendix A.

Thus, the beamforming design can be formulated as

P : maximize
w,v

RSK (15)

subject to |vn| = 1, ∀n ∈ {1, · · ·N}, (15a)

||w||2 ≤ PA, (15b)

where (15a) represents the unit modulus constraint of each

reflection coefficient, while (15b) indicates the transmit beam-

forming is constrained by the maximum transmit power.

2Due to the space limitation, the case where Eve experiences a correlated
channel will be investigated in the extended journal version.

IV. PROPOSED SOLUTION TO PROBLEM P
In this section, we jointly optimize the transmit beam-

forming w and the reflective beamforming v to maximize

the KGR. To tackle the non-convex problem in (15), we

decompose the problem into two sub-problems and optimize

them to obtain the globally optimal solution.

A. Problem Decomposition

It could be found that in problem P , the objective function

(14) contains high-order terms in w and v, while the unit

modulus constraint (15a) and quadratic equality constraints

(15b) are both non-convex and the optimization variables

are coupled. To tackle this problem, we first decompose the

problem into two sub-problems with respect to w and v,

respectively, using the following Lemma.

Lemma 1. The objective function in P increases monotoni-

cally with wTRsw
∗(βrv

HR̃Iv + βba).

Proof: See Appendix B.

Since wTRSw
∗ and (βrv

HR̃Iv + βba) are both positive,

solving problem P is equivalent to maximize these two terms

separately.

B. Transmit Beamforming Optimization

One of the sub-problems is to optimize the transmit beam-

forming vector, which is expressed as P1 by denoting w̄ =
w∗:

P1 : maximize
w̄

w̄HRSw̄ (16)

subject to ||w̄||2 ≤ PA. (16a)

By using the Rayleigh quotient, the optimal solution to P1 is

w̄opt =
√
PAuλmax

, (17)

where uλmax
is the dominant eigenvector of the matrix RS

corresponding to its maximum eigenvalue λmax.

C. Reflective Beamforming Optimization

After deriving the optimal transmit beamforming vector, we

aim to optimize the reflection coefficients at RIS. With Lemma

1, the problem of optimizing v is equivalent to

P2 : maximize
v

vHR̃Iv (18)

subject to |vn| = 1, ∀n ∈ {1, · · · , N}. (18a)

It is noted that the unit modulus constraints in (18a) are

intrinsically non-convex [1]. Therefore, it is challenging to

solve this problem. Nevertheless, we note that each element

in R̃I = RT
I ◦RI is a positive number since the covariance

matrix RI is real symmetric. Based on this observation, the

optimal solution is given as follows.

Theorem 2. The optimal solution to problem P2 is the case

where all elements of v adopt the same phase, i.e.,

θn = θ, ∀n ∈ {1, · · · , N}, (19)

where θ could take on any value in interval [0, 2π).



RSK = log2
(PBw

TRSw
∗(βrv

HR̃Iv + βba) + ||w||2σ2)(wTRSw
∗(βrv

HR̃Iv + βba) + σ2)

(||w||2 + PB)σ2wTRSw∗(βrvHR̃Iv + βba) + ||w||2σ4
. (14)

Proof: The objective function (18) could be calculated as

vHR̃Iv =
N∑

n=1

[R̃I ]n,n +
N∑

j=1

N∑

i=1

[R̃I ]i,jviv
∗
j

=

N∑

n=1

[R̃I ]n,n +

N∑

j=1

N∑

i=1,i>j

2[R̃I ]i,j cos (θi − θj).

(20)

Since cos (θi − θj) ≤ 1, the maximum value could be ob-

tained when θi = θj , ∀i, j. This completes the proof.

In the case of optimal w and v, the KGR only depends

on the large-scale path loss, indicating the maximum KGR

is dependent on the distance between Alice, Bob, and the

RIS. Moreover, in the spatially correlated channel model, the

optimal beamforming are determined by the spatial correlation

matrices at the BS and the RIS, which could be obtained

effectively by existing methods, such as [6] and [8].

V. IMPACT OF DIFFERENT BEAMFORMING METHODS ON

PKG PERFORMANCE

In this section, we aim to compare the PKG performance

under the assumptions of the i.i.d. channel model and the

spatially correlated channel model.

A. KGR under Different Assumptions of Channel Model at BS

As shown in Lemma 1, the KGR is proporational to

wTRSw
∗. Under the assumption of the i.i.d. model, the

spatial correlation matrix RS is considered as an identity

matrix. In this case, the design of transmit beamforming is

independent of KGR. As such, random beamforming w̃ =√
PAw̃0/||w̃0|| is applied without loss of generality, where the

entries in w̃0 are i.i.d. random variables with zero mean. Then,

the expectation of the objective function in P1 is calculated

as E{w̃TRSw̃
∗} = PA, which is independent of the antenna

number and the spatial correlation at the BS.

To investigate the performance loss caused by the de-

sign based on the i.i.d. channel assumption, we focus on

a typical implementation model of multiple antennas for

massive multiple-input multiple-output (MIMO). We consider

a general uniform planar array (UPA) model, where the spatial

correlation matrix can be approximated as RS ≈ Rh⊗Rv [9],

where Rh and Rv are the covariance matrices of the horizon-

tal and the vertical uniform linear array (ULA), respectively.

The ULA spatial correlation is modeled as a Toeplitz matrix

with each element [Rl]i,j = ρ|i−j|, l ∈ {h, v}, where ρ is

the correlation index among the antennas. Given the optimal

transmit beamforming (17), we have the following lemma.

Lemma 3. For a UPA model, the upper and lower bounds

for the wT
optRSw

∗
opt are given by

fl(N
t
H, N

t
V, ρ) ≤ wT

optRSw
∗
opt ≤ fu(N

t
H, N

t
V, ρ), (21)

where fl(N
t
H, N

t
V, ρ) = PA

(

Nt

H
(1−ρ2)−2ρ(1−ρN

t
H )

)

Nt

H
Nt

V
(1−ρ)4 ×(

N t
V(1− ρ2)− 2ρ(1− ρN

t

V)
)

and fu(N
t
H, N

t
V, ρ) =

PA
(1+ρ2)(1−ρN

t
H

−1)(1−ρN
t
V

−1)
(1−ρ)2 . N t

H and N t
V are the number

of antennas at horizontal and vertical domains, respectively.

Proof: See Appendix C

This lemma shows that the both the upper and lower bounds

increase monotonically with the correlation coefficients ρ,

the number of antennas N t
H, and N t

V. This is because the

SNR of the combined channel gain increases with the spa-

tial correlation. Specifically, when ρ = 0, the bounds are

fl(N
t
H, N

t
V, 0) = fu(N

t
H, N

t
V, 0) = 1, which means the opti-

mal transmit beamforming and random beamforming achieve

the same PKG performance in the i.i.d. fading channels. In

addition, it can be observed that both the upper and lower

bounds converge to PA(
1+ρ
1−ρ

)2 as N t
H → ∞ and N t

V → ∞.

This means when the BS is equipped with a large amount of

antennas, the KGR depends only on the correlations among

the antennas of the BS for a given power. Also, the KGR

increases monotonically with the correlation coefficient ρ.

B. KGR under Different Assumptions of Channel Model at

RIS

In Lemma 1, the KGR is proportional to vHR̃Iv. Under

the assumption of the i.i.d. channel model adopting in existing

works, the spatial correlation matrix is R̃I = I. By employing

the random reflection, the expectation of the objective function

of P2 is E{ṽHR̃I ṽ} = N, where each phase in ṽ can be

drawn from the uniform distribution, i.e., θ̃i ∼ U [0, 2π), i ∈
{1, · · · , N}.

Taking the spatial correlation model into account, the max-

imum value of vHR̃Iv is ||RI ||2F , where || · ||2F denotes

the Frobenius norm. To characterize the impact of spatial

correlation on RIS, we have the following lemma.

Lemma 4. (Proposition 1 in [6]) In isotropic scattering

environments, the spatial correlation of RIS is expressed as

[RI ]n,m = sinc
2 ‖un − um‖

λ
, ∀n,m ∈ {1, · · · , N}, (22)

where ‖un − um‖ denotes the distance between n-th RIS

element and m-th RIS element, λ is the wavelength.

Since the sinc function sinc(x) = sinc(πx)/(πx) is mono-

tonically decreasing in interval [0, 1), the entries in R̃I is

larger as the inter-element spacing becomes smaller, when

the elements distance fulfill ‖un − um‖ ≤ λ
2 . Moreover, the

optimal value of vHR̃Iv satisfies ||RI ||2F > N because the

correlation between the elements always exists in practical

RIS systems [6]. Hence, the KGR performance of the pro-

posed reflective beamforming is better than the counterpart

adopting the assumption of the i.i.d. channel model.
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Fig. 2. The KGR achieved by different beamforming settings when M = 16,
ρ = 0.3, N = 64, and RIS element spacing is λ/2.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

method with the aid of numerical simulations. We assume that

Alice, Bob, and RIS are located at (0 m, 0 m), (70 m, 0 m),

and (50 m, 10 m), respectively3 [10]. Alice is equipped with a

UPA antenna. The RIS is a uniform rectangular array (URA)

with N r
H elements per row and N r

V elements per column. The

large-scale path loss βba =
√
ζ0d

−αba

ba , where dba, ζ0, and αba

are the distance, path loss at 1 m, and the path loss exponent,

respectively. The transmit power are PA = PB = P [1], [2],

and the simulation settings are αba = 4, αbr = αar = 2,

ζ0 = −30 dB, and σ2 = −80 dBm [10].

A. Optimality of the Proposed Method

In Fig. 2, the KGR versus the transmit power, P , is plotted

for different transmit and reflective beamforming settings.

First, we observe that the KGR at all settings increases with

the transmit power, since the negative impacts of noises are

reduced. For comparison, the benchmarks are random beam-

forming based on the i.i.d. channel model and the case without

RIS. It is noted that the proposed optimal design outperforms

these benchmarks. Specifically, when P ≥ 20 dBm, the

optimal setting achieves about 5 dB and 11 dB transmit power

gain compared to the beamforming scheme under the i.i.d.

channel assumption and the optimal transmit beamforming

without RIS, respectively. This is because when correlations

exist between the BS antennas and the RIS elements, the i.i.d.

model fails in capturing this characteristic which degrades

the KGR performance. In contrast, the proposed scheme can

effectively exploit the properties of the channels to perform

precise beamforming. Finally, the KGR gain of optimizing w

is larger than that of optimizing v. Indeed, optimizing w is

more effective than that of v in combating the noises in RSK,

and this aligns with the analysis in (14).

3Since the eavesdropping channels are independent of the legitimate
channels in this paper, the exact location of Eve and the number of Eve’s
antennas has no impact on the KGR.
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N = 64, P = 20 dBm, and RIS element spacing is λ/2.

B. The Impact of RIS Elements Number and Size

Fig. 3 shows the KGR of different spatial correlations at

RIS versus the number of RIS elements N . It is observed

that the KGR of all of these cases increases with the number

of RIS elements. As more elements are placed, more elec-

tromagnetic signals are reflected by the RIS to realize better

KGR performance. Moreover, we notice that with the elements

spacing becomes smaller, the KGR increases significantly.

This is because with smaller elements spacing, the values

of the spatial correlation matrix RI are larger, contributing

to a higher KGR. Also, it is found that even with λ/2 RIS

element spacing, the KGR of the proposed method is still

slightly superior than that adopting the i.i.d. assumption. In

fact, the correlation among the RIS elements is weak in λ/2
spacing, although it always exists if N r

H > 1 and N r
V > 1,

which can be exploited by the proposed method.

C. The Impact of BS Antennas Number and Correlation

Fig. 4 shows the KGR versus the number of the antennas at

the BS. As can be observed, the KGR of the design method



based on the i.i.d. fading model is identical to that of the

proposed design when ρ = 0, which is independent of antenna

number at the BS. For the cases of ρ > 0, the proposed method

can achieve higher KGR gain, since the upper and lower

bounds of the KGR both increase with the spatial correlation

between antennas. Moreover, with the number of antennas

increases, the KGR increases with diminishing returns. This

is due to the channel hardening and the limited transmit power

at the BS.

VII. CONCLUSION

In this paper, we introduced a novel transmit and pas-

sive beamforming based RIS-assisted PKG method in multi-

antennas spatially correlated channels. We formulated the

optimization problem and obtained a globally optimal solution

to maximize the KGR. We compared the KGR performance

under the assumptions of the i.i.d. channel model and the

spatially correlated channel model. We found that in spa-

tially correlated channels, the proposed beamforming design

achieves higher PKG than that under the i.i.d. channel model

assumption. Simulation results confirmed the performance of

the proposed method and the analysis of the spatial correla-

tion.

APPENDIX A

COVARIANCE CALCULATION

First, we calculate the covariance of channel ĥa as

Ra,a = PBw
T
E{GraΦhbrh

H
brΦ

HGH
ra}w∗

+ PBw
T
E{hbah

H
ba}w∗ + ||w||2σ2

a. (23)

Assuming the BS has obtained the RS by employing [8], we

can calculate the first term in (23) as

E{GraΦhbrh
H
brΦ

HGH
ra} (24)

= βrRSE{vec{h̃H
brR

1

2

I Φ
HR

1

2

I }Hvec{h̃H
brR

1

2

I Φ
HR

1

2

I }}
(25)

= βrRSE{vH((R
1

2

I )
T ⊙ (R

1

2

I ))
H(h̃∗

br ⊗ IN )

× (h̃T
br ⊗ IN )((R

1

2

I )
T ⊙ (R

1

2

I ))v} (26)

= βrRSv
H((R

1

2

I )
T ⊙ (R

1

2

I ))
H((R

1

2

I )
T ⊙ (R

1

2

I ))v (27)

= βrRSv
H(RT

I ◦RI)v, (28)

where ⊗ and ⊙ denote the Kronecker product and Khatri-Rao

product, respectively, vec(X) denotes the vectorization of a

matrix, and ◦ denotes Hadamard product. Then, the second

term in (23) is calculated as E{hbah
H
ba} = βbaRS . Other

covariances can be calculated similarly and are omitted here.

APPENDIX B

PROOF OF LEMMA 1

We first denote w =
√
Pw0 with ||w0||2 = 1. Since

dRSK

dP
≥ 0, the optimal P is PA. Then, consider the function

f(x) =
(PBx+ PAσ

2)(x + σ2)

(PAσ2 + PBσ2)x+ PAσ4
, (29)

that is monotonically increasing for x > 0, since

df(x)

dx
=

PB

σ2

(PA + PB)x
2 + 2PAσ

2x

((PA + PB)x+ PAσ2)2
> 0. (30)

Denote x = wTRsw
∗(βrv

HR̃Iv + βba) and the objective

function is RSK = log2 f(x). This completes the proof.

APPENDIX C

PROOF OF LEMMA 3

Since wT
optRSw

∗
opt = PAλmax(RS), we have [9]

λmax(RS) ≈ λmax(Rh)λmax(Rv), (31)

where λmax(·) returns the maximun eigenvalue of the input

matrix. Then, we extend Rl, l ∈ {h, v} to a circulant matrix

Rc
l =




1 ρ · · · ρN
t

l
−1 ρN

t

l
−2 · · · ρ2 ρ

ρ 1 · · · ρN
t

l
−2 ρN

t

l
−1 · · · ρ3 ρ2

...
... · · · . . .

...

ρ ρ2 · · · ρN
t

l
−2 ρN

t

l
−3 · · · ρ 1


 ,

where N t
l ∈ {N t

H, N
t
V} and Rl is in the first N t

l rows and N t
l

columns. According to the Cauchy Interlace Theorem [11],

λmax(Rl) ≤
1

2N t
l − 1

uH
maxR

c
lumax =

(1 + ρ)(1 − ρN
t

l
−1)

1− ρ
,

where umax = [1, · · · , 1]T . Let x0 = 1√
Nt

l

[1, 1, · · · , 1]T and

λmax(Rl) ≥ xH
0 Rlx0 =

1 + ρ

1− ρ
− 2ρ(1− ρN

t

l )

N t
l (1− ρ)2

. (32)
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