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Abstract—Optimizing data transfers is critical for improving
job performance in data-parallel frameworks. In the hybrid data
center with both wired and wireless links, reconfigurable wireless
links can provide additional bandwidth to speed up job execution.
However, it requires the scheduler and transceivers to make joint
decisions under coupled constraints. In this work, we identify that
the joint job scheduling and bandwidth augmentation problem is
a complex mixed integer nonlinear problem, which is not solvable
by existing optimization methods. To address this bottleneck, we
transform it into an equivalent problem based on the coupling of
its heuristic bounds, the revised data transfer representation and
non-linear constraints decoupling and reformulation, such that
the optimal solution can be efficiently acquired by the Branch and
Bound method. Based on the proposed method, the performance
of job scheduling with and without bandwidth augmentation is
studied. Experiments show that the performance gain depends on
multiple factors, especially the data size. Compared with existing
solutions, our method can averagely reduce the job completion
time by up to 10% under the setting of production scenario.

Index Terms—Job scheduling, hybrid data center networks,
job completion time, directed acyclic graph, mixed integer
programming, cloud computing.

I. INTRODUCTION

Data transfer has a significant impact on application perfor-
mance in data-parallel computing frameworks such as MapRe-
duce [1], Pregel [2] and Spark [3]. These computing frame-
works all implement a data partitioning model, in which jobs
are decomposed into finer-grained tasks, and massive amounts
of intermediate data between their computation stages need to
be transferred through the network before generating the final
results. For many applications in production environment, the
data transfers account for more than 50% of the job completion
times [4]. With the rapid growth of the processed data size,
the network resource has become an increasingly significant
bottleneck in the performance of cloud computing.

Traditional data center networks (DCNs) which consist of
copper and optical fiber cables provision the link capacity
between racks in a fixed manner. During a job’s execution,
however, data flows trend to be bursty when multiple tasks
are ready for data transmission and hence exhibit dynamic
patterns. When the traffic between two racks exceeds the
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provisioned capacity, congestion will occur. Such static link
capacity allocation restrict the support of parallel data transfer
and therefore slow down the subsequent tasks’ execution
duration the job execution.

To support the dynamic allocation of network resources,
many efforts have recently been made to deploy the wireless
communication technologies into wired DCNs to enable dy-
namic bandwidth augmentation, such as mmWave links [5]
and free-space optics (FSO) [6]. 60GHz antennas and FSO
transceivers can provide Gigabit transmission capability with
low-latency switching time. By leveraging mmWave MIMO
beamforming, a large number of beams can be scheduled with
extremely small switching delay [7]. And the reconfiguration
delay of FSO was shown to be only 12 µs while supporting
18,432 fanouts [8]. As a result, these reconfigurable wireless
technologies demonstrate the potential for providing additional
bandwidth by dynamically establishing wireless links on de-
mand to offload traffic and reduce the job completion time.

In order to intuitively show both the advantages and chal-
lenges of using wireless transmission for reducing job com-
pletion time, an example job consists of five tasks is presented
in Fig. 1. Assume the transmission capacity of all wired links
and wireless transceivers between racks are 10 Gbps. With
only wired links, the intermediate data during each stage
must be transmitted sequentially, resulting the prolonged job
completion time. By using dynamically established wireless
links to transmit data on task1 −→ task4 and task2 −→
task5, 16% of the job completion time can be reduced. Thus,
an appropriate wireless bandwidth augmentation scheme can
greatly speed up the job execution. However, it also requires
the job scheduler and transceivers to make joint decisions
under coupled computing and communication constraints.

In our previous work [9], a flow routing and antenna
scheduling scheme is proposed for hybrid DCNs without
considering computing tasks. There are many important works
focus on enhancing flow scheduling performance using wire-
less technologies, with the aim of minimizing the network
congestion [10], relieving hotspots [11], enhancing the net-
work flow throughput [12], or reduce the length of flow paths
[13]. However, these studies assume that the computing tasks
have already been assigned and hence the endpoints of flows
are predetermined, without jointly scheduling the computation
and communication. The most related work to ours is [14].978-1-6654-3540-6/22/$31.00 © 2022 IEEE
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Scenario-1: Job scheduling with only wired links.
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Fig. 1. An example to illustrate the advantages and challenges of using
dynamically established wireless links to reduce job completion time.

Reference [14] studies the joint wireless links scheduling and
computing task assignment problem and obtains substantial
performance gain. However, its model assumes tasks are
independent and can be processed simultaneously, without
considering dependency constraints between adjacent tasks.

In this work, we aim to jointly schedule dependency con-
strained tasks and wireless transceivers in hybrid DCN. We
identify that such a problem is a complex mixed integer non-
linear programming problem, which is not solvable by existing
optimization methods. To overcome this, we transform it into
an equivalent problem based on the coupling of its bounds,
the revised data transfer model and non-linear constraints
reformulation, such that the optimal solution can be acquired
efficiently by the Branch and Bound method. Through numer-
ical experiments, we find the performance gain introduced by
wireless augmentation depends on multiple factors, especially
the data size. Compared with existing solutions, our method
can averagely reduce the job completion time by up to 10%
under the setting of production scenario.

II. SYSTEM MODEL

Consider a hybrid DCN consists of a set of racks. Each
rack is composed of a number of servers for computation and
storage, and equipped with reconfigurable wireless transceiver
for bandwidth augmentation. The racks are connected with
both the wired links with fixed capacity and the dynamically
established wireless links. We assume the orthogonal channel
allocation and progressive directional antenna are used, such
that the total wireless bandwidth is shared by wireless links
among racks via FDMA without interference.

In this work, we consider periodic jobs, which are loaded
everyday and their detailed knowledge can be profiled from
historical logs1. Each job is described by a directed acyclic

1According to [15], periodic jobs can be optimized and account for 80%
of the workload in Hadoop cluster at Taobao.

graph (DAG) G = (V, E), as in job scheduling systems like
Fuxi [16]. V is the set of computing tasks, and E is the set of
directed edges representing the dependency between adjacent
tasks. Each task v ∈ V specifies its unit size of resources,
e.g., {1 core CPU, 1GB Memory}, thus its processing time
can be measured as pv . Each edge (u, v) ∈ E specifies the
data size d(u,v) from task u to task v. The required bandwidth
of transmitting data across racks is specified as Bs.

Upon receiving the job, the job scheduling system will
check the free resources among racks, and try to allocate
computing and bandwidth resources which meet the job’s
resource requirements. Let M = {1, 2, ...,M} be the set
of feasible racks. The allocated wired bandwidth between
each pair of racks must be guaranteed as Bs. For wireless
resources, the available wireless bandwidth is divided into
multiple orthogonal subchannels denoted by a set K, and each
subchannel k ∈ K has a bandwidth of B. With the allocated
bandwidth resources, the transferring time of the data on edge
(u, v) ∈ E through wired links is calculated as q(u,v) =

d(u,v)

Bs
,

and the transferring time through wired links is calculated
as q̌(u,v) =

d(u,v)

B . Otherwise, if adjacent task u and v are
assigned to the same rack, the delay of transferring the data
locally is denoted as r(u,v).

III. PROBLEM FORMULATION

A. Common Constraints for Computing Task Assignment

We define the binary variable xvi and the continuous
variable sv for each task v ∈ V . Specifically, xvi = 1 means
task v is assigned to rack i, and sv denotes task v’s start time.
Inherently, the following constraints must be satisfied:

1) Non-repetition Constraints: Each task v ∈ V must be
assigned to one rack and processed only once, namely,∑

i∈M
xvi = 1,∀v ∈ V. (1)

2) Non-preemption Constraints: To prevent computing re-
source overload, each rack is allowed to process the job’s one
task at a time. Once started, a task cannot be interrupted by
any others until its completion. For ∀v, v′ ∈ V, v 6= v′,

sv+pv ≤ sv′ or sv′+pv′ ≤ sv, if
∑
i∈M

ixvi =
∑
i∈M

ixv′i︸ ︷︷ ︸
C1

. (2)

Expression
∑

i∈M ixvi,
∑

i∈M ixv′i in C1 represent the se-
lected rack for task v, v′, respectively. Constraint (2) guaran-
tees if two computing tasks v and v′ are assigned to the same
rack, there is no resource competition between them.

3) Precedence Constraints: A computing task only starts
after the completion of all its precedent tasks, namely,

su + pu ≤ sv,∀(u, v) ∈ E . (3)

Remark 1: Note that constraint (3) is relatively slack, due to
the fact that it ignores the data transfer time between adjacent
tasks, which will be discussed in the next subsection.



B. Constraints for Intermediate Data Transfers

Coupled with the assignment decisions of computing tasks,
the intermediate data among tasks may be transfered locally
without occupying cross-rack links, or be transmitted exter-
nally through either wired or wireless links. For clarity, we
define binary variable z(u,v) for each edge (u, v), namely,

z(u,v) := 0, if
∑
i∈M

ixui =
∑
i∈M

ixvi,∀(u, v) ∈ E , (4)

where z(u,v) = 0 means task u and v are assigned to the same
rack. In this case, the data on edge (u, v) will be transferred
locally (i.e., within a rack) with delay r(u,v), namely,

su + pu + r(u,v) ≤ sv,∀(u, v) ∈ E , if z(u,v) = 0. (5)

Otherwise, if z(u,v) = 1, task u and v will be assigned to
different racks, and the network flow between racks will occur.

Heterogeneous network flow scheduling constraints: We
define binary variables α(u,v) and y(u,v),k, in which α(u,v) = 1
means the data on edge (u, v) is transferred via wired links.
y(u,v),k = 1 means the data is assigned to wireless subchannel
k. The start time of data transmission from task u to v is
denoted as the continuous variable s(u,v). Firstly, the data on
edge (u, v) can only start to be transmitted until the completion
of computing task u, namely,

su + pu ≤ s(u,v),∀(u, v) ∈ E , if z(u,v) = 1. (6)

1) Data Transmitted Through Wired Links: If the data on
edge (u, v) is transmitted through wired links, the subsequent
task v can only start after it receives all the data, namely,

s(u,v) + q(u,v) ≤ sv,∀(u, v) ∈ E , if z(u,v) = α(u,v) = 1. (7)

To prevent congestion, for each pair of different network flow
(u, v) and (u′, v′) transferred via wired links, there is

s(u,v) + q(u,v) ≤ s(u′,v′) or s(u′,v′) + q(u′,v′) ≤ s(u,v), (8)

where z(u,v) = α(u,v) = z(u′,v′) = α(u′,v′) = 1 is required.
2) Data Transmitted Through Wireless Links: Similarly, if

the data is transmitted through wireless subchannels, the subse-
quent task must wait until the data transfer ends. ∀(u, v) ∈ E ,

s(u,v) + q̌(u,v) ≤ sv, if z(u,v) = 1 and α(u,v) = 0. (9)

To prevent wireless interference, each subchannel is allowed
to transfer one network flow during any period of time, and
once started, the data transmission cannot be interrupted until
its completion. For ∀(u, v), (u′, v′) ∈ E , (u, v) 6= (u′, v′),

s(u,v) + q(u,v) ≤ s(u′,v′) or s(u′,v′) + q(u′,v′) ≤ s(u,v),

if
∑
k∈K

ky(u,v),k =
∑
k∈K

ky(u′,v′),k︸ ︷︷ ︸
C2

and α(u,v) = 0. (10)

Expression
∑

k∈K ky(u,v),k,
∑

k∈K ky(u′,v′),k in C2 indicate
the selected subchannel for transferring data on edge (u, v),
(u′, v′), respectively. Therefore, constraint (10) guarantees if
two network flows are transferred over the same subchannel,
there is no interference during their transmission.

C. Problem Formulation

The objective is to minimize the job completion time. Thus
the original problem can be formulated as follow,

OP : min
s,x,y

max{sv + pv | ∀v ∈ V}

s.t. (1)− (10),

where s = {sv,∀v ∈ V} ∪ {s(u,v),∀(u, v) ∈ E}, x =
{xvi,∀v ∈ V,∀i ∈ M} and y = {y(u,v),k,∀(u, v) ∈ E ,∀k ∈
K}.

It is observed that OP is a complex Mixed Integer Non-
linear Programming (MINLP) with a large number of coupled
constraints, which is not directly solvable by existing optimiza-
tion methods. The exhaustive search for the optimal solution is
intractable, due to the huge solution space imposed by logical
and disjunctive constraints. Even for a common scale OP (e.g.,
job size ≤ 10 in production cases [15]), searching for the
optimal solution is non-trivial, and the time complexity is
unacceptable. In the next section, we will transform OP into
an equivalent problem based on combination of multiple steps,
which paves the way for adopting the sophisticated optimiza-
tion methods to acquire its optimal solution efficiently.

IV. THE OPTIMAL JOB SCHEDULING AND BANDWIDTH
AUGMENTATION SCHEME

To make it possible to solve OP within a reasonable time,
we first use heuristics to estimate its upper and lower bound.
Next, we introduce the generalized data transfer model to
linearize the coupled constraints between task assignment
decisions and data transfers. Then, disjunctive reformula-
tion technique combined with multiple auxiliary variables is
adopted to convert the resource constraints of problem OP into
their linearized forms, which allows us to acquire its optimal
using the Branch and Bound method.

A. Heuristic-based Bounds Estimation

Upper Bound: For any given job, a feasible scheduling
scheme can be obtained by assigning all its tasks to a sin-
gle rack. In this case, tasks are processed in a topological
sort order without cross-rack data transmission. Thus its job
completion time can be calculated as Tmax =

∑
v∈V pv +∑

(u,v)∈E r(u,v). We define Tmax as the upper bound of OP by
assuming any ”good” scheduling schemes cannot be worser
than this scheme, namely, max{sv + pv| ∀v ∈ V} ≤ Tmax.

Lower Bound: The lower bound of OP can be obtained
by summing up the processing time of computing tasks and
the local data transfer delays along the longest branch of the
given job. For simplicity of illustration, we present an example
in Fig. 2. Fig. 2(a) is an example DAG job graph, while Fig.
2(b) is the converted cost graph by transforming all of the
node’s cost into their outgoing edge’s costs. Then the longest
path algorithm can be used to calculate the distance from start
node to each task v (i.e., the earliest start time of task v) as
dist(v). Finally, the longest branch length can be obtained as
Tmin = maxv∈V{dist(v) + pv}, which is the lower bound of
OP. The detailed procedure is presented in Algorithm 1.
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Algorithm 1 The Longest Branch Algorithm
Input: Job G = (V, E), pv,∀v ∈ V , and r(u,v),∀(u, v) ∈ E .
Output: The longest branch length of job G.
1: Define c(u,v) as the cost of edge (u, v) ∈ E .
2: for each task v ∈ V do
3: Initialize dist(v) = 0 as the distance from start to v.
4: for each outgoing edge (v, x) of task v do
5: Set c(v,x) = pv + r(v,x).
6: Topologically sort V in G.
7: for each task v ∈ V in topological sort order do
8: Update dist(v) = max(u,v)∈E{dist(v) + c(u,v)}.
9: return maxv∈V{dist(v) + pv}.

B. Generalized Representation of Data Transfer

Depending on the assignment decisions of adjacent tasks,
the intermediate data on each edge between adjacent tasks is
either available in local disks, or transferred through wired or
wireless links. To eliminate the logical constraints associated
with variables z(u,v) and cover different cases of data transfers,
we devise the generalized representation of data transfer model
by introducing the virtual channel c with infinite bandwidth
and the wired channel b, in which each edge is associated with
a ”single pole triple throw switch”. As illustrated in Fig. 2, the
case of local availability of data is viewed as data transmitted
over an infinite channel without resource conflict but a constant
delay, since there is no cross-rack data transmission needed
when the adjacent tasks are assigned to the same rack. Thus,
for each intermediate data, it will be transferred through a
channel from there types of network resources denoted by the
set {b, c}∪K. By adopting the generalized data transfer model,
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Fig. 3. Illustration of generalized data transfer model.

the intermediate data on edge (u, v) ∈ E must be transferred
on one of communication channels from {b, c} ∪ K, namely,∑

k∈{b,c}∪K

y(u,v),k = 1,∀(u, v) ∈ E , (11)

where y(u,v),k = 1 indicates the intermediate data on edge
(u, v) is transferred via communication channel k.

Therefore, if the data on edge (u, v) is transferred through
wired links,

∑
k∈{b} y(u,v),k = 1; if the data is transferred

through wireless subchannel, y(u,v),b = 1; otherwise, the data
is transferred through local disk and then y(u,v),c = 1.

C. Constraints Decoupling and Reformulation

With the bounds and the generalized data transfer model,
we can linearize OP based on the disjunction reformulation
technique. We define auxiliary variable x̃vi ∈ [0, Tmax] for each
xvi, in which x̃vi = τ denotes task v is assigned to rack i and
begins to process at time τ , otherwise x̃vi = 0. Similarly, we
define ỹ(u,v),k ∈ [0, Tmax] as auxiliary variable for y(u,v),k
in which ỹ(u,v),k = τ denotes that the intermediate data on
edge (u, v) is assigned to channel k ∈ {b, c} ∪ K and begins
to transfer at time τ , otherwise ỹ(u,v),k = 0. The following
constraints can bind these variables, ∀v ∈ V,∀e ∈ E ,

x̃vi − 1 ≤ xvi · Tmax − (1− xvi) · ε, ∀i ∈M. (12)

ỹek − 1 ≤ yek · Tmax − (1− yek) · ε,∀k ∈ K ∪ {b, c}. (13)

Here Tmax acts as a big constant, and ε ∈ (0, 1) is a small con-
stant commonly used in the logical constraints reformulation
of MINLP and can be set as 0.1 in practice.

Next, let ψvv′ ∈ {0, 1}|M| be the task assignment indicator.
Specifically, ψvv′i = 1 indicates that task v and v′ are assigned
to the same rack i, otherwise ψvv′i = 0. Further, let σvv′ ∈
{0, 1} be the precedence indicator such that, if task v starts
no later than v′, σvv′ = 1. Similarly, for data transmission,
we define the binary variables χee′ ∈ {0, 1}|{b}∪K| as the
contention indicator, χee′k = 1 if the data on edge e and
e′ compete for the network channel k; and φee′ ∈ {0, 1}
as precedence indicator between network flows such that, if
the data on e begins to transfer no later than the data on e′,
φee′ = 1, where e, e′ ∈ E , e 6= e′. Eventually, the following
constraints are required to construct the indicator variables.∑

i∈M
ψvv′i ≤ 1,∀v, v′ ∈ V, v 6= v′ (14)

∑
k∈K∪{b}

χee′k ≤ 1,∀e, e′ ∈ E , e 6= e′. (15)

0 ≤ xvi + xv′i − 2 ·ψvv′i ≤ 1,∀i ∈M (16)

0 ≤ yek + ye′k − 2 · χee′k ≤ 1,∀k ∈ K ∪ {b} (17)



1) Computing resource constraint reformulation: To ensure
the execution of any two computing tasks on the same rack
does not overlap, the computing resource constraints can be
linearized by utilizing disjunctive programming formulation
technique as follows, i.e., ∀v, v′ ∈ V, v 6= v′,∑

i∈M
x̃v′i −

∑
i∈M

x̃vi ≤ Tmax · σvv′ − ε · (1− σvv′) (18)

∑
i∈M

x̃vi + pv−
∑
i∈M

x̃v′i ≤ Tmax(2−σvv′ −
∑
i∈M

ψvv′i) (19)

2) Communication resource constraint reformulation: Sim-
ilarly, to ensure the data transmission does not conflict over
wired links or wireless subchannels, constraints (20)-(23)
should be satisfied, i.e., ∀e, e′ ∈ E , e 6= e′,

ỹe′b − ỹeb ≤ Tmax · σee′ − ε · (1− σee′) (20)

ỹeb + qe − ỹe′b ≤ Tmax · (2− φee′ − χee′b) (21)∑
k∈K

ỹe′k −
∑
k∈K

ỹeb ≤ Tmax · σee′ − ε · (1− σee′) (22)

∑
k∈K

ỹek + q̌e −
∑
k∈K

ỹe′k ≤ Tmax(2− φee′ −
∑
k∈K

χee′k) (23)

3) Precedence constraints reformulation: To coordinate the
computing task execution and bandwidth augmentation and
maintain the consistency of task and data transfer decisions,
each task or data transfer can only start after all of its precedent
tasks are completed, i.e.,∑

i∈M
x̃vi + pv ≤

∑
k∈K∪{b,c}

ỹ(uv),k (24)

∑
k∈K∪{b,c}

ỹ(uv),k + quvy(uv),b + q̌uv
∑
k∈K

y(uv),k

+ ruvy(uv),c +
∑
i∈M

x̃vi ≤
∑
i∈M

x̃vi,
(25)

where y(uv),b +
∑

k∈K y(uv),k + y(uv),c = 1 is explicitly
guaranteed earlier in constraint (11). Additionally, since if
the adjacent tasks of an edge (u, v) are assigned to the same
rack, the intermediate data will be transferred locally without
occupying network resources. Thus, the coupling constraints
between the assignment of tasks and data transfer can be
written as: ∑

i∈M
ψuvi = y(uv),c,∀(u, v) ∈ E . (26)

As such, all of the constraints in OP are linearized and the
problem can be reconstructed as follow,

RP : min Cmax

s.t. (11)− (26),

Tmax ≥ Cmax ≥ Tmin ≥
∑
i∈M

x̌vi + pv,∀v ∈ V.

As a result, we transform the MINLP into a linearized
one with the help of its bounds and the generalized data
transfer model, thus the OP can be solved by solving RP.

Note that, OP and RP are equivalent since the satisfaction
of all constraints in RP indicate the satisfaction of the ones
of OP, and vice versa. RP can be optimally solved by the
Branch and Bound (B&B) algorithm [17], making it possible
to jointly schedule jobs and wireless transceivers efficiently.

D. Decomposition and Acceleration

To further speed up the solving procedure of using the B&B,
we decompose the RP into multiple feasibility sub-problems.
The feasibility sub-problems are derived from RP conditioned
on the moving upper bound Tmax, which is formulated as

FP :find x, x̃,y, ỹ

s.t. constraints in RP,
set Tmax = `, and ` ∈ [Tmin, Tmax],

where ` is the updated upper bound of Cmax. During each
iteration, we assume that the sub-problem is feasible, and start
with an interval [Tmin, Tmax] which is known to contain the
optimal solution value C∗max. We then solve the feasibility sub-
problem at its midpoint ` = Tmin+Tmax

2 to determine whether
the optimal solution is in the lower or upper half of the
interval, and narrow the interval accordingly. Each iteration
the interval is bisected, so the width of the interval after g
iterations is 2−g(Tmax − Tmin). Repeat this procedure until
the width of the interval is small enough. Eventually, the s
in OP can be acquired as sv =

∑
i∈M x̃vi,∀v ∈ V , and

s(u,v) =
∑

k∈K∪{b,c} ỹek,∀(u, v) ∈ E .

V. SIMULATION RESULTS

We implemented the proposed method using Gurobi [18]
and evaluated the performance gain introduced by wireless
links through numerical simulations. Similar to [19], we
randomly generated three types of jobs, i.e., simple MapRe-
duce workflows, one-stage MapReduce workflows and random
workflows with computing tasks whose processing time are
uniformly chosen from [1,100]. The network factor ρ, which
represents the ratio between the average data transfer time
and the average processing time, is defined to set data transfer
time. The larger the network factor, the higher the data size.
As in [10], [11], [13], we assume both wired and wireless links
have a transmission rate of 10 Gbps, and focus on scenarios
where each of allocated wireless subchannels can fulfill the
job’s specified bandwidth requirement as the wired links.

In Fig. 4, we compare our method with six different wired-
links-only job scheduling baselines in terms of job completion
time. Specifically, the Random Scheduling scheme distributes
computing tasks randomly, while the List Scheduling scheme
is from [20]. The Partition Scheduling, Generalized List (G-
List) Scheduling and G-List-Master Scheduling schemes are
from [19]. The Optimal Scheduling scheme with only wired
links is derived from our method by dropping wireless re-
sources. We fix the network factor ρ = 0.5 to mimic the
scenario where approximately half of the time is spent on data
transfers as reported in [4]. The task number of each job is
chosen from [5, 10], aligning with the production job statistics
from [15] that the majority of jobs contain tasks less than 10. It
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can be observed that when the racks (computing resources) are
insufficient, the performance gain introduced by wireless links
is relatively small. As the available rack number increases,
adding wireless sub-channels can reduce the job completion
time by up to 10%. However, adding more than one wireless
subchannel contributes relatively less to job performance.

In Fig. 5, we fix the available rack number as |V|, and
vary the network factor from 0.1-10 to show the impact of the
increased data size on average performance gain. As is seen
from the figure, with the increase of the network factor, the
performance gain increases at first and then decreases. The
reason is when data size is small, the benefit of optimizing
data transfer is slight. Under this scenario, increased data size
may cause worser tardiness and thus wireless augmentation
can bring higher benefits. As the network factor continues to
increase, the data transfer time becomes even longer than task
processing time, in this scenario, it might be better to assign all
computing tasks of a job to a single rack to avoid data transfer.
Besides, with fixed network factor (e.g., the red dashed vertical
line), the larger the task number, the higher the performance
gain can be achieved by wireless bandwidth augmentation.

And adding more wireless resources brings reduced gains.

VI. CONCLUSION

In this work, we investigated the joint job scheduling and
bandwidth augmentation in hybrid data centers. We observed
the wireless-augmented job scheduling problem is an MINLP,
which is not solvable by existing optimization methods. Thus,
we linearized the original model with help of its bounds, the
revised data transfer model and the disjunctive reformulation
technique, such that it can be solved optimally by the Branch
and Bound method. Simulation results showed that jointly
scheduling the tasks and wireless transceivers can significantly
reduce the job completion time. In our future work, we will
study job scheduling problems that involving more real-world
constraints for online scenarios.
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