
List Autoencoder: Towards Deep Learning Based
Reliable Transmission Over Noisy Channels

Hamid Saber
Samsung Semiconductor Inc

San Diego, USA
hamid.saber@samsung.com

Homayoon Hatami
Samsung Semiconductor Inc

San Diego, USA
h.hatami@samsung.com

Jung Hyun Bae
Samsung Semiconductor Inc

San Diego, USA
jung.b@samsung.com

Abstract—In this paper, we present list autoencoder (listAE) to
mimic list decoding used in classical coding theory. With listAE,
the decoder network outputs a list of decoded message word
candidates. To train the listAE, a genie is assumed to be available
at the output of the decoder. A specific loss function is proposed
to optimize the performance of a genie-aided (GA) list decoding.
The listAE is a general framework and can be used with any AE
architecture. We propose a specific architecture, referred to as
incremental-redundancy AE (IR-AE), which decodes the received
word on a sequence of component codes with non-increasing
rates. Then, the listAE is trained and evaluated with both IR-
AE and Turbo-AE. Finally, we employ cyclic redundancy check
(CRC) codes to replace the genie at the decoder output and obtain
a CRC aided (CA) list decoder. Our simulation results show
that the IR-AE under CA list decoding demonstrates meaningful
coding gain over Turbo-AE and polar code at low block error
rates range.

Index Terms—Auto-encoder, Deep learning, List decoding

I. INTRODUCTION

Reliable transmission over noisy channels has been an active
research area for the past decades. Channel coding is the
main tool to achieve reliable transmission by finding higher
dimensional representations of the input data. In his seminal
work [1], Shannon proved the existence of capacity-achieving
sequence of codes by random construction of an ensemble
and investigating the conditions for the feasibility of reliable
communication. Design of channel codes that approach or
achieve the channel capacity has since then been an elusive
goal. Among most landmark codes designed thus far are
Turbo, LDPC and polar codes [2]-[4].

Traditionally, an (N,K) channel code is constructed by
designing an encoder that maps a set of 2K binary message
words of length K to a set of 2K codewords of length N
for transmission over the channel. Typically, mathematical
analysis is used to tailor the encoder and decoder to one
another. For instance, under the maximum a posteriori (MAP)
decoder which minimizes the block error rate (BLER), the
encoder is designed such that the pairwise distance properties
of the code is optimized. MAP decoding is almost never
used unless when the code is very short, or can be described
via a trellis diagram with rather a small size, similar to
convolutional codes. It is also possible to design the decoder
first. Polar code design typically follows this approach, where
the encoder design, suitably defined in [4], is carried out

to optimize the performance under a successive cancellation
(SC) decoder. Details aside, almost all classical code design
approaches heavily rely on an information-theoretically well-
defined channel model, which in most cases is additive white
Gaussian noise (AWGN) channel, and employing mathemat-
ical analysis as an essential tool. More importantly, the code
design progress has thus far been sporadic and heavily relying
on the ingenuity of humans.

There has been a growing interest in automating the design
of encoder and decoders using deep learning framework. A
deep-learning based framework allows for design of encoder
and decoder for channels that cannot be described by a
well-defined model or can be described but the model is
too complex for code design. Although the ultimate goal of
deep learning based design is envisioned to be for arbitrary
channels, a first step towards this end can be designing codes
which can compete with the state-of-the-art classical channel
codes over the AWGN channel. The code design essentially
can be applied to any channel provided that a sufficient number
of transmissions over the channel are performed to construct
a sufficiently large training set.

Deep learning has been employed to design decoders for
the classical encoders [5]-[9]. It has also been used to design
both encoder and decoder based on autoencoders (AEs). AEs
are powerful deep learning frameworks with a wide variety
of applications which fall into two categories: under-complete
and over-complete AEs. An under-complete AE is used to
learn latent representation of the input data by transforming
it to a smaller latent space. Under-complete AEs are used for
numerous tasks including denoising, generative models and
representation learning [10]-[14]. On the other hand, over-
complete AEs add redundancy to the input data to transform
it to a higher dimension. One of the main application of over-
complete AEs is that the higher-dimensional representation
can be transmitted over a noisy channel allowing the receiver
to reliably decode the input data [15]-[21]. In particular, the
authors in [21] used convolutional neural network (CNN) and
recurrent neural network (RNN) to mimic the architecture of
classical turbo encoder and decoder. The proposed Turbo-AE
is reported to have competitive performance to the state-of-
the-art classical codes while being trainable for an arbitrary
channel model.

This paper is a further attempt to improve the design of AEs

ar
X

iv
:2

11
2.

11
92

0v
2

 [
cs

.I
T

]
 3

 A
ug

 2
02

2

for reliable communication over noisy channels and is based
on the concept of list decoding in the classical coding theory.
Our contributions are:
• We present list autoencoder (listAE) as a general deep

learning framework applicable to any AE architecture.
With listAE, the decoder network outputs a list of de-
coded message word candidates. The listAE mimics the
list decoding in classical coding theory.

• We provide a specific loss function which operates on
the output list. The loss function aims to optimize the
performance of a genie-aided (GA) decoder. We assume
a genie is available at the decoder output and, whenever
the transmitted message word is present in the list, it
informs us which candidate it is. In other words, with the
GA decoder, a block error event is counted if and only
if the transmitted word is not present in the output list.
During the testing phase, the functionality of the genie
is emulated by using cyclic redundancy check (CRC)
code. CRC is appended to the message word prior to
encoding by the encoder network. At the decoder, CRC
check is carried out for each output candidate to select a
single candidate as the final output of the decoder. The
concept of CRC-aided (CA) list decoding in widely used
in classical coding theory.

• listAE can be applied to any AE architecture. With the
promising performance of Turbo-AE, it is natural to
use its architecture in the listAE framework. While we
train and evaluate the performance of listAE with this
architecture, we also propose a more general architec-
ture that decodes the received word on a sequence of
component codes with non-increasing rates. The architec-
ture, referred to as incremental redundancy AE (IR-AE),
illustrates improvement over Turbo-AE architecture for
smaller list sizes while having comparable performance
at large list sizes.

II. PROBLEM DEFINITION

The problem of reliable transmission over a noisy channel
can be defined as follows. As can be seen in Fig. 1, a
message word of K bits is formed as u = [u1, . . . , uK],
where the ui take binary values from {0, 1}. The message
word is encoded using an encoder neural network with an
encoding function fθ(.) to obtain real-valued codeword x =
[x1, . . . , xN] = fθ(u) where the θ denotes the weights of the
encoder neural network and N denotes the code length. A
power normalization block is applied to x to give a codeword
with zero mean and unit variance code symbols, i.e. E(xi) = 0
and E(x2i) = 1 for i = 1, . . . , N . The codeword x is
transmitted over the channel.

The channel takes the codeword x as input and outputs a
noisy version y = [y1, . . . , yN], where the yi take real values.
As mentioned before, having an information-theoretically de-
fined channel model is not necessary, but if there is such a
model, it is typically defined as a vector channel with tran-
sition probability density function (pdf) WN (y|x). A widely
used channel among researchers for code design is additive

Channel

Decoder Encoder

𝐮̂ 𝐮

𝑓𝜃(.) 𝑔𝜙(.)

𝐱 𝐲

Fig. 1. Channel coding as an auto-encoder.

white Gaussian noise (AWGN) channel for which the output
yi = xi + wi where wi is Gaussian random variable with
zero mean and variance σ2. For AWGN channel WN (y|x) =∏N
i=1W (yi|xi), where W (y|x) = 1

σ
√
2π

exp−
(y−x)2

2σ2 . The de-
coder network receives the channel output vector y and applies
a decoding function gφ(.) to give the decoded message word
û = [û1, . . . , ûK] = gφ (y) where the φ denotes the weights
of the decoder neural network. The encoder and decoder
networks together form an AE. The goal is to minimize the
BLER or BER for different levels of impairment, e.g. SNR
defined as 10log101/σ

2 for the AWGN channel.

III. LISTAE

Although designing new AE architectures can be a direction
to improve the error correction performance, we choose to
tackle the problem with a different approach. We posit that
it may be too difficult for the decoder network to reliably
decide which message word has been transmitted by only one
guess. Therefore, we propose a framework which allows the
decoder network to output a list of L candidates. Figure 2
shows a general listAE with a list size L. A conventional AE
is a special case of listAE with a list size of L = 1. The
concept of list decoding is well studied in the classical coding
theory and, to a great deal, we have borrowed from that field.
For example, successive cancellation list (SCL) of polar codes
and its different variants have been well studied theoretically
and also implemented for practical wireless communication
systems [22]-[23].

Since, in the testing phase, the decoder must output a single
candidate û, there must be a selection process where a single
candidate is chosen from the list. A GA decoder outputs û = u
if u is equal to one of the rows of û(list), otherwise it outputs
a randomly chosen row of û(list). In other words,

û =

{
u if û(list)

j = u for any j ∈ {1, . . . , L}
û
(list)
r otherwise

(1)

where r is a random number chosen uniformly from 1 to L.
During the training phase, the value of each element of vectors
in the output list û(list) is made to take a real number between
zero and one, for example by passing through a Sigmoid
activation. In the testing phase the outputs are rounded to the
nearest integer to give binary values. It is also possible to
select a single candidate by replacing the genie with CRC as
it will be demonstrated later.

Channel

Decoder Encoder

𝐮̂(list) = [
𝐮̂1
(list)

⋮

𝐮̂𝐿
(list)

] 𝐮

𝑓𝜃(.) 𝑔𝜙(.)

𝐱 𝐲

Fig. 2. A general listAE framework.

A. Loss Function

For a conventional AE, a number of loss functions, such as
mean square error (MSE) and binary cross entropy (BCE), are
more suitable for BER optimization. Although BER optimiza-
tion indirectly optimizes the BLER, finding BLER-specific
loss functions with rather efficient training complexity remains
an open problem.

With GA decoding, the performance metric to optimize
is BLER which is calculated between u and û given by
(1). The challenge for defining a loss function which is
tailored to the GA decoding of the listAE lies in how to
mathematically model the genie operation. One may think of
the genie operation as a processing block which takes the
list of candidates as well as the transmitted message word
and outputs a single candidate depending on the presence of
the message word in the list. The condition for checking this
presence involves rounding the candidate message words in
the list to take binary values and then comparing them to the
transmitted word. This operation a) introduces zero derivative
in the back propagation, and b) additionally complicates it
due to the comparisons. To tackle this problem, we propose
a modified loss function that some how reflects how “close”
the output list is to the message word without involving the
precise genie operation. The loss function should take small
values when the message word is close to any candidate in
the list and is defined as follows.

loss
(
û(list),u

)
= minl∈{1,...,L}ρ

(
û
(list)
l ,u

)
(2)

where ρ is the average BCE loss function which takes two
vectors x̂ and x of length K.

ρ (x̂,x) =
1

K

K∑
k=1

bce (x̂k, xk)

= − 1

K

K∑
k=1

xklogx̂k + (1− xk)log(1− x̂k) (3)

It is noteworthy that the function min(a, b) is in general
non-differentiable as the derivative does not exist at points
where a = b. Similarly, the derivative of the loss function
does not exist at points where an equality holds between the
input arguments. Such points happen with zero probability,
so they do not cause any issue to the backpropagation of the
gradients during the training, as we will see later.

With CA decoding and a Z bit CRC generated by a
polynomial g(x) = g0+g1x+. . .+gZx

Z a word of K−Z bits
is generated and is passed to the CRC calculator to generate

Z CRC bits. The CRC bits are appended to the end of the
message word to give the length-K vector u as the encoder
input. At the decoder side, each candidate in the list is checked
for passing CRC equations. Among the candidates which pass
the CRC, one is randomly chosen as the final output of the
decoder.

To train listAE under CA decoding, we treat the CRC bits
as information bits. In other words, the correlation between
the bits of u is not taken into account to minimize the loss
function. The reason is similar to those which leaded to
employing the proposed loss function and avoiding the precise
genie operation. Similarly, checking CRC involves binary
Galois field operations which complicates the loss function
and training. Therefore, we use the loss function given in (2)
for training both GA and CA decoding.

It is also noteworthy to mention that adding CRC to the
message bits reduces the effective code rate by a factor
of Z/K. To avoid rate reduction, one possible approach is
to follow the SCL decoding of polar codes and assign a
scalar metric ρl, l = 1, . . . , L, to each candidate in the list.
Unfortunately we have not observed promising training results
with this approach for listAE. However we think that this
method is worth more investigation.

B. An architecture for listAE: IR-AE

In this section we present the IR-AE architecture. The
encoder of IR-AE is essentially the same as Turbo-AE ar-
chitecture and the decoder, too, relies on similar information
exchange between the decoding blocks [21]. Roughly speaking
a rate 1/n IR-AE uses n encoding blocks which are applied
to interleaved length-K message words and give the length-
N , N = nK, codeword x = [x1, . . . ,xn] after proper power
normalization. Like Turbo-AE, IR-AE decoder consists of I
iterations. At iteration i, a series of decoding blocks which
are serially concatenated take a certain subset of {y1, . . . ,yn}
with applicable interleavers and a list matrix as input and out-
put an updated list matrix. The same architecture is replicated
in every iteration, but with independent learnable weights. If
a decoding block takes a subset of {y1, . . . ,yn} consisting
of k vectors, i.e. {yi1 , . . . ,yik}, we say that the decoding
block is a rate-1/k decoding block as one may associate it
with an effective encoder which outputs the corresponding k
vectors {xi1 , . . . ,xik}. An AE described as above is said to
be an IR-AE if in an iteration each decoding block has a rate
which is smaller or equal to the rate of the previous block.
The heuristic motivation behind IR-AE architecture is to allow
more powerful codes with smaller rates to attempt decoding
the message word based on an improved list matrix given by
previous weaker codes with higher rates. In this paper we
mainly train and evaluate the performance of a rate-1/3 IR-
AE. The detailed encoder and decoder architecture and training
methodology is as follows.

1) Rate-1/3 IR-AE: Fig. 3 shows a rate-1/3 IR-AE. The
encoder is identical to the rate-1/3 Turbo-AE encoder [21].
The output of the encoder is the length-N = 3K codeword
with normalized power x = [x1, . . . ,x3]. The interleaver π

𝑓1,𝜃

𝑓2,𝜃

𝑓3,𝜃 𝜋

𝐮

𝐛1

𝐛2

𝐛3

𝐱1

𝐱2

𝐱3

𝐲1

𝐲2

𝑃𝑖−1

𝑔1,𝜙𝑖
 𝑔2,𝜙𝑖

 𝑔3,𝜙𝑖

𝑔4,𝜙𝑖

𝜋

𝜋(𝐲1)

𝐲3 𝐲3

𝜋(𝐲2) 𝜋(𝐲2)

𝜋(𝐲1)

𝐲3

𝜋−1

Sigmoid

𝑃𝑖

𝐮̂(list)

Fig. 3. Rate-1/3 IR-AE encoder and decoder at iteration i; The path of Sigmoid block only exists for the last iteration

takes the length-K word and outputs an interleaved word.
The decoder consists of I serially concatenated iterations. As
can be seen, each iteration consists of four decoding blocks
with rates (1/2, 1/2, 1/2, 1/3), taking the inputs {y1,y2},
{y1,y3}, {y2,y3} and {y1,y2 y3}, respectively with appli-
cable interleavers. An iteration i also takes a list matrix Pi−1
of size K × L as an input and outputs a list matrix Pi
for iteration i + 1. When taking a K × L matrix as input,
the interleaver π or deinterleaver π−1 is applied on each
column and generate a matrix of the same size. The list matrix
PI , output by iteration I , is additionally passed through a
Sigmoid function and gives the output list of message word
candidates. Our observation shows that the intermediate list
matrices can be thought as the log-likelihood ratios (LLRs)
of the message bits; as we move from the output of the
first iteration to the next iterations, the BER resulting from
the list matrices decreases. The interleavers are employed to
mimic their role on enhancing the distance properties of the
code by introducing long term memory [21]. At the decoder
side, deinterleavers are applied similar to Turbo-AE and turbo
codes.

2) Power normalization: The output b = [b1, . . . ,b3] is
given to a power normalization block giving the codeword
x = h (b) to meet the power constraint requirements. Nor-
malization can be done on code symbols, codewords or a
batch of codewords [21]. In this paper we use the batch-wise
normalization. With a batch size of B, and codewords of length
N , there are B.N code symbols. Each codeword is normalized
as x = b−µ

γ where µ is the mean of the B.N code symbols
and γ is the standard deviation of the B.N code symbols. This
normalization method places the set of B.N code symbols in
the batch on an B.N -dimensional sphere with radius

√
B.N .

In the testing phase, µ and γ can be pre-computed from a
large batch and be directly used on a single message word.

3) Training methodology and hyper parameters: Fully con-
nected neural network (FCNN), CNN and RNN are natural
choices to employ in Fig. 3. Our experiments show that FCNN
is more difficult to train and provides inferior performance
to CNN. RNN models such as Long-Short Term Memory
(LSTM) and Gate Recurrent Unit (GRU) can bring global

dependency, which in turn may improve the Euclidean distance
properties of the code. However, according to our experiments,
CNN models were easier to train and had superior performance
to FCNN and RNN. Therefore, in this paper we mainly present
the result for CNN-based IR-AE.

Table I shows the details of the training and hyper param-
eters of our best IR-AE model. The model is trained for a
maximum number of 500 epochs. At each epoch, we train the
encoder Tenc times while freezing the weights of decoder, and
then train the decoder Tdec times while freezing the weights
of encoder. This specific scheduled training was proposed in
[21] to avoid getting stuck in local minima. With a batch
size of B, for each training a set of B randomly generated
message words of length K = 100 are generated and encoded
by the encoder network. A set of B noise vectors of length-
N are generated and added to the codewords corresponding
to the message words. Following the methodology in [21],
a fixed SNR is used for training encoder while a range of
SNR is used to train the decoder. For the latter, for each noise
vector a SNR value is randomly picked from the range and
is used to generate the noise vector. Sufficiently large batch
sizes with small learning rates are needed for fine tuning the
model and are implemented according to [20]. To decouple
our investigation from interleaver design problem and for
the sake of simplicity, in this paper a random interleaver is
generated and fixed during the training and testing phase.
There are existing works in the literature on interleaver desig
of Turbo-AE which can be applicable to IR-AE. For instance,
it is possible to design interleavers with uniform positional
BER for Turbo-AE, which in turn may improve the overall
performance. Interested readers are referred to [24] for more
details.

IV. EXPERIMENT RESULTS

In this section, we present the performance results for
the listAE with both Turbo-AE and IR-AE architectures and
compare the results with the classical codes. For IR-AE, the
hyper parameters are given in Table I. The parameters for
Turbo-AE are the same as the relevant blocks of the IR-
AE, i.e. the first two decoding blocks. Figures 4 and 5 show

TABLE I
HYPERPARAMETERS OF THE LIST IR-AE WITH K = 100 AND N = 300

Encoder block fk,θ(.) for k = 1, 2, 3 5 layers 1D-CNN plus one linear layer, kernel size 5, CNN output channels 100
First three decoding block gk,φi for
k = 1, 2, 3

5 layers 1D-CNN plus one (100, L) linear layer, the input and output channels of the CNN layers are
(L+ 2, 100) and (100, 100) for the first and next layers respectively, kernel size 5

Fourth decoding block g4,φi 5 layers 1D-CNN plus one (100, L) linear layer, the input and output channels of the CNN layers are
(L+ 3, 100) and (100, 100) for the first and next layers respectively, kernel size 5

(learning rate, batch size B) (.0001, 500) gradually changing to (.000001, 10000)
Encoder and decoder training SNR 1dB for encoder and [−1.5, 2] dB for decoder
Activation function Elu for CNN layers and Linear for the linear layers
Optimizer, (Tenc, Tdec), Iterations Adam, (100, 500), 6

0 100 200 300 400 500 600

epoch

10
-4

10
-3

10
-2

10
-1

10
0

te
s
t

lo
s
s

Fig. 4. Test loss trajectory for List Turbo-AE with different list sizes.

the resulting test loss for List Turbo-AE and List IR-AE
respectively. For each epoch, after the model is trained, the test
loss is calculated for a new set of training examples generated
for the training SNR of 1 dB. An interesting observation is
that Turbo-AE appears to be more sensitive to the list size.
When we change the list size from 8 to 64, the converged
value of loss drops almost one order of magnitude for Turbo-
AE while the change is quite smaller for IR-AE. This would
suggest an advantage of the latter over the former at smaller
list sizes. Also, as expected, the test loss generally decreases
from a smaller list size to a larger one. However, this trend
does not hold at every epoch, which is probably because the
optimizer needs to observe more data/epochs to train for a
larger list size due to the increased model size.

Fig. 6 demonstrates the BLER of the List Turbo-AE and
List IR-AE under GA decoding for different list sizes. As
shown, the performance for each architecture follows the
trend given by the test loss trajectory. The trajectory also
implies that for larger list sizes the IR-AE and Turbo-AE have
similar performances, whereas for smaller list sizes IR-AE
outperforms Turbo-AE. The improvement comes at the price
of more than twice decoding network size as the Turbo-AE.
For the remainder of the paper we focus on List IR-AE.

0 50 100 150 200 250 300 350 400 450 500

epoch

10
-4

10
-3

10
-2

10
-1

10
0

te
s
t

lo
s
s

Fig. 5. Test loss trajectory for List IR-AE with different list sizes.

-2 -1 0 1 2 3 4

SNR (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
L

E
R

Fig. 6. Performance comparison of List IR-AE and List Turbo-AE for K =
100 and N = 300

Next, we evaluate the performance of the List IR-AE under
CA decoding and compare it to classical codes and Turbo-

4.5 5 5.5 6 6.5 7

10
-3

10
-2

10
-1

B
L

E
R

Turbo-AE [21]

Polar CA-SCL=32

Polar CA-SCL L=64

CA List IR-AE L=32

CA List IR-AE L=64

Fig. 7. Performance comparison between List IR-AE, Turbo-AE and polar
code

AE [21]. The code dimensions for the Turbo-AE and polar
codes are (N = 300,K = 100). The polar codes are designed
according to 3GPP NR reliability sequence and rate matching.
For IR-AE a length-8 CRC generated by polynomial g(x) =
1+x2+x4+x6+x7+x8 is appended to the K = 92 message
bits before encoding. To have a fair comparison due to slight
rate reduction by CRC, we look at Eb/σ2 instead of SNR for
a code of rate R where Eb/σ

2 = SNR − 10log10(R). The
result of the comparison is shown in Fig. 7 only for large list
sizes for the best performance. As can be seen, List IR-AE
with a list size of 64, outperforms Turbo-AE and the polar
code at BLERs smaller than 0.03. At high SNRs, the coding
gain can be as large as 0.5 dB and 0.3 dB over Turbo-AE and
polar code, respectively.

V. CONCLUSION

In this paper, we presented listAE motivated by the goal
of bringing the list decoding in classical coding theory into
the area of deep learning based channel encoder and decoder
design. To the best of our knowledge, this is the first work
that introduces list decoding in the field of deep learning based
channel code design. Our simulation results show performance
gain over Turbo-AE and polar code which is promising and
calls for future research. This work sets the stage to design
AEs which can compete or outperform classical codes. For
future directions, we note that the current choice of the loss
function was somewhat heuristic and intended to optimize
the performance under GA list decoding. Finding better loss
functions to reflect the performance under CA list decoding is
an interesting future direction.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379-423, 1948.

[2] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes. 1,” in Proc. IEEE
International Conference on Communications (ICC), pp. 1064-1070,
vol.2, 1993.

[3] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT
Press, 1963

[4] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009

[5] A. Hamalainen and J. Henriksson, “A recurrent neural decoder for
convolutional codes,” in Proc. IEEE International Conference on Com-
munications (ICC), vol. 2, pp. 1305–1309, 1999.

[6] T. Gruber, S. Cammerer, J. Hoydis, and S. t. Brink, “On deep learning
based channel decoding,” in Proc. 51st Annual Conference on Informa-
tion Sciences and Systems (CISS), 2017, pp. 1–6.

[7] H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and P.
Viswanath,“Communication algorithms via deep learning,” in Proc.
international conference on representation learning (ICLR), 2018.

[8] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in Proc. 54th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp. 341–346, 2016

[9] S. Cammerer, T. Gruber, J. Hoydis, and S. ten Brink, “Scaling deep
learning-based decoding of polar codes via partitioning,” in Proc. IEEE
Global Communications Conference (GLOBECOM), pp. 1–6, 2017

[10] A. Makhzani and B. Frey, “K-sparse autoencoders,” arXiv preprint
arXiv:1312.5663, 2013.

[11] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[12] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P.
Abbeel, “Infogan: Interpretable representation learning by information
maximizing generative adversarial nets,” in Advances in neural informa-
tion processing systems, 2016, pp. 2172–2180.

[13] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proc. of
the 25th international conference on Machine learning, ACM, 2008, pp.
1096–1103.

[14] A. Krizhevsky and G. E. Hinton, “Using very deep autoencoders for
content-based image retrieval”, in ESANN, 2011.

[15] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. Cognitive Communications and Networking,
vol. 3, no. 4, pp. 563–575, 2017.

[16] Z. Qin, H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep learning in physical
layer communications,” IEEE Wireless Communications, vol. 26, no. 2,
pp. 93–99, 2019.

[17] H. Ye, L. Liang, and G. Y. Li, “Circular convolutional auto-encoder for
channel coding,” in Proc. 20th IEEE International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC), 2019, pp.
1–5.

[18] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath,
“Learn codes: Inventing low-latency codes via recurrent neural networks,”
in Proc. IEEE International Conference on Communications (ICC), 2019,
pp. 1–7.

[19] A. Felix, S. Cammerer, S. D¨orner, J. Hoydis, and S. Ten Brink, “Ofdm-
autoencoder for end-to-end learning of communications systems,” in Proc.
19th IEEE International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), 2018, pp. 1–5.

[20] M. V. Jamali, H. Saber, H. Hatami and J. H. Bae, “ProductAE: Towards
training larger channel codes based on neural product codes,” arXiv
preprint arXiv:2110.04466, 2021.

[21] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, P. Viswanath, “Turbo
Autoencoder: Deep learning based channel codes for point-to-point
communication channels”, in Proc. 33rd Conf on Neural Information
Processing Systems (NeurIPS 2019).

[22] I. Tal and A. Vardy, “List Decoding of Polar Codes,” in IEEE Trans.
Inf. Theory, vol. 61, no. 5, pp. 2213-2226, May 2015.

[23] K. Niu and K. Chen, “CRC-Aided Decoding of Polar Codes,” in IEEE
Communications Letters, vol. 16, no. 10, pp. 1668-1671, October 2012

[24] H. Yildiz, H. Hatami, H. Saber, Y. Cheng and J. Bae, “Interleaver
Design and Pairwise Codeword Distance Distribution Enhancement for
Turbo Autoencoder,” in Proc. IEEE Global Communications Conference
(GLOBECOM) 2021

http://arxiv.org/abs/1312.5663
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2110.04466

	I Introduction
	II Problem definition
	III ListAE
	III-A Loss Function
	III-B An architecture for listAE: IR-AE
	III-B1 Rate-1/3 IR-AE
	III-B2 Power normalization
	III-B3 Training methodology and hyper parameters

	IV Experiment Results
	V Conclusion
	References

