
A Joint PHY and MAC Layer Design for
Coded Random Access with Massive MIMO

Lorenzo Valentini, Marco Chiani, Enrico Paolini
CNIT/WiLab, DEI, University of Bologna, Italy

Email: {lorenzo.valentini13, marco.chiani, e.paolini}@unibo.it

Abstract—Grant-free access schemes are candidates to support
future massive multiple access applications owing to their capa-
bility to reduce control signaling and latency. As a promising
class of grant-free schemes, coded random access schemes can
achieve high reliabilities also with uncoordinated transmissions
and therefore in presence packet collisions. In this paper, an
analysis tool for coded random access, based on density evolution,
is proposed and exploited for system design and optimization.
In sharp contrast with the existing literature, where such tools
have been developed under simplified channel assumptions, the
proposed tool captures not only MAC layer features, but also the
physical wireless fading channel and a realistic physical layer
signal processing based on multiple antennas and randomly-
chosen orthogonal pilots. Theoretical results are validated by
comparison with symbol-level Monte Carlo simulations.

I. INTRODUCTION

The ever-growing spread and pervasiveness of machine-type
communications and of the Internet of Things has recently
boosted the attention towards massive multiple access (MMA)
problems, where a massive number of devices, each with a
sporadic but unpredictable activity, transmit short packets to a
common base station (BS) [1]–[3]. A main target for MMA
protocols is to achieve a very high scalability, defined as the
number of simultaneously active users that the system can
support, in presence of latency and reliability constraints [4]–
[6]. In this context, grant-free multiple access schemes (as
opposed to grant-based ones) can drastically reduce control
signalling for connection establishment, bringing benefits in
terms of both scalability and latency.

A class of grant-free medium access control (MAC)
schemes that has attracted an increasing interest in the past
few years, both in satellite and terrestrial applications, is that
of coded random access (CRA) schemes [7], [8]. Based on
a very simple uncoordinated access mechanism on the device
side and on successive interference cancellation (SIC) across
different slots on the BS side, they are intrinsically related
to iterative decoding of codes on sparse graphs. Instances of
CRA schemes include contention resolution diversity slotted
ALOHA (CRDSA) [9], irregular repetition slotted ALOHA
(IRSA) [10], and coded slotted ALOHA (CSA) [11].

While several works on CRA have addressed the collision
channel model owing to its amenability to analysis, more
recently the focus has been shifted to wireless channels models
with realistic physical (PHY) layer processing. In this respect,
an important direction of investigation focuses on CRA in
contexts where the receiver is a BS with a massive number of

antennas (e.g., [3], [12]–[14]). This interest is justified by the
possibility to exploit massive multiple input multiple output
(MIMO) to implement forms of multi-packet reception (MPR),
meaning that multiple packets can be correctly decoded in a
single slot with a consequent substantial boost in scalability.

To achieve a high scalability under tightening reliability
constraints, CRA schemes necessitate of a careful design. For
example, with reference to the IRSA scheme, this typically
means finding an optimum probability distribution for the
packet repetition rate employed by the generic active user. The
solution to this problem benefits from the bridge with codes on
sparse graphs, so that it is usually tackled by tools developed
in coding theory, like density evolution [15]. So far, the design
of CRA schemes is well-established over channel models, such
as the collision channel [10], [11] or its MPR extension [16],
where the communication process over the PHY channel as
well as signal processing at PHY layer are modeled in a very
simple, often idealized, way.

In this paper we aim at addressing this problem by extending
the density evolution analysis of IRSA to a more realistic
setting. More specifically, we consider IRSA over a Rayleigh
block fading channel with a massive MIMO BS and power
control and we show that it is possible to tailor density
evolution analysis, and consequent system optimization, to this
channel model and to a specific PHY signal processing based
on randomly-chosen orthogonal pilots for channel estimation
and maximal ratio combining (MRC). Notably, the results are
easily extendable to the more general CSA setting. The main
contributions of the paper can be summarized as follows:
• We extend the simple collision channel to the case where

orthogonal resources are available within each slot.
• We generalize CRA density evolution analysis to capture

both PHY processing and Rayleigh fading.
• We show that IRSA distributions that are optimum over

the collision channel may turn sub-optimum when a
realistic setting is considered.

The paper is organized as follows. Section II introduces
preliminary concepts, the system model, and some background
material. Section III addresses density evolution generaliza-
tions. Numerical results are provided in Section IV. Finally,
conclusions are drawn in Section V.

II. PRELIMINARIES AND BACKGROUND

We assume that the time is organized in MAC frames,
each composed by Ns slots. In a frame time, Ka active users
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(with Ka random and unknown to the receiver) contend for
transmission of one information packet each. Considering an
IRSA access protocol, the generic user sends r replicas of its
packet (or “burts”) in r randomly-chosen slots. For all users,
r is generated randomly according to the same probability
distribution. As remarked later, although we stick to IRSA,
the developed results have a broader applicability to CRA
schemes.

A. Density Evolution over the Collision Channel

This section reviews density evolution equations for IRSA
over the collision channel [10]. The system can be represented
by a bipartite graph where Ka user nodes, also known as burst
nodes (BNs), are connected with Ns slot nodes, also referred
to as sum nodes (SNs). A BN corresponding to an active
user sending r packet replicas has r edges towards the r SNs
associated with the chosen slots. The repetition degree r is
a random variable with probability generating function (PGF)
Λ(x) =

∑
r Λrx

r, independently drawn by each active user.
Then, the probability that an edge is connected to a degree-r
BN, λr, is given by

λr =
Λr r

Λ′(1)
. (1)

On the other hand, a SN has c edges representing the number
of users that have selected the corresponding slot to transmit
a packet replica. We denote by ρc the probability that an edge
is connected to a SN of degree c; this is given by

ρc =
Ψc c∑
h Ψh h

(2)

where Ψc is probability that c users performed a transmission
in the considered slot.

The PGF Λ(x), or BN degree distribution (or simply IRSA
distribution), is under the control of the system designer.
This is indeed not the case for the SN degree distribution
Ψ(x) =

∑
c Ψc x

c, that is fully defined by the system load G
and by the average burst repetition rate,

∑
r rΛr = Λ′(1). In

particular, for a large users’ population size K, it is licit to
assume that the number of transmissions in a slot follows a
Poisson distribution. Specifically, we can write

Ψc =
(GΛ′(1))c

c!
exp(−GΛ′(1)) (3)

which also yields

ρc =
(GΛ′(1))c−1

(c− 1)!
exp(−GΛ′(1)). (4)

The collision channel assumptions can be summarized as:
Assumption 1: If the number of arrivals in a slot is larger
than one, then the receiver is unable to successfully decode
any of these bursts. Assumption 2: If there is only one
arrival in a slot, then the burst is successfully decoded with
zero error probability and perfectly subtracted from the slot.
Assumption 3: Whenever a burst is successfully decoded in a
slot, the interference generated by each of its replicas can be
perfectly subtracted from the corresponding slots.

Under these assumptions, let q(r)` be the probability that an
edge, connected to a degree-r BN, is unknown at the end of
SIC iteration `. Let us also define p(c)` as the probability that
an edge, connected to a degree-c SN, is unknown at the end of
SIC iteration `. We can exploit the edge-oriented probabilities
λr and ρc to define the average probabilities q` and p` as

q` =
∑
r

λr q
(r)
` and p` =

∑
c

ρc p
(c)
` . (5)

Next, consider a degree-r BN. An edge is revealed whenever
any of the other edges connected to the same BN has been
revealed. Thus, the probability that a burst has not yet been
retrieved by the “MAC layer repetition code” is

q
(r)
` = pr−1`−1 . (6)

Similarly, consider a degree-c SN. An edge is revealed when-
ever all the other edges have been revealed due to the collision
channel assumptions. Hence, the probability that a burst in a
slot has not yet been cancelled by SIC is

p
(c)
` = 1− (1− q`)c−1 . (7)

Combining equations from (4) to (7) leads to the density
evolution recursion over the collision channel in the form

p` = 1− exp
(
−G

∑
r

rΛrp
r−1
`−1

)
(8)

with initial condition p0 = 1 (there are no revealed edges at
the beginning of the process). The asymptotic packet loss rate
at SIC iteration ` is given by

Q` =
∑
r

Λrp
r
` . (9)

Finally, the asymptotic load threshold of an IRSA distribution
Λ(x) is defined as

G∗ = sup{G > 0 : Q` → 0 as `→∞} (10)

where we note that Q` → 0 if and only if p` → 0. Here,
“asymptotic” refers to the fact that density evolution recursion
assumes statistical independence of messages along the edges
of the graph, a condition that is met in the limit as K →∞,
Ns →∞, and the ratio K/Ns being constant.

Remark. We highlight that, in density evolution recursion of
CRA protocols, q` depends on the MAC layer, while p` on the
channel model and PHY layer processing. For this reason, the
results developed in this paper, aimed at evaluating p` over a
realistic channel model and PHY processing, are amenable to
extension to other MAC CRA protocols such as CSA [11].

B. Scenario Definition

The availability of a BS with a massive number of antennas
is a key feature to enable MPR (i.e., decoding of multiple
packets in the same slot even without SIC across slots) at the
receiver. A simple approach to achieve MPR is represented by
use of orthogonal pilots in combination with massive MIMO
processing [3], [13], [14]. Since in MMA applications the
number of users is typically extremely large compared with



the number of available pilots, NP, it is however not possible
to pre-assign one specific pilot to each user. Rather, each
active user may pick one pilot randomly from the set of
NP orthogonal ones, without any coordination with the other
users (hence, possibly yielding pilot collisions in a slot). In
combination with IRSA, this approach was dubbed “coded
pilot random access” in [3].

Next, we review the PHY layer model and processing
adopted in this paper, which is the one also considered in
[13], [14]. The model may be summarized as follows:
• The channel is a Rayleigh block fading channel with

power control and coherence time equal to the slot time.
• The receiver has M antennas, each with independent

fading coefficient per user.
• An active user picks, for each burst, a pilot uniformly at

random from a set of NP orthogonal ones for channel
estimation purposes.

• Quadrature phase-shift keying (QPSK) modulation with
Gray mapping and hard decision is employed.

• The payload is composed by ND symbols and protected
using a Bose–Chaudhuri–Hocquenghem (BCH) code able
to correct up to t errors per codeword.

• The receiver performs a “channel hardening-based” SIC
processing, as described in [3], [13], [14].

Then, the received signal in a slot may be expressed as
[P ,Y ] ∈ CM×(NP+ND) where

P =
∑
k∈A

hks(k) +Zp and Y =
∑
k∈A

hkx(k) +Z. (11)

In (11), A is the set of users transmitting a burst in the
considered slot; hk = (hk,1, . . . , hk,M )T ∈ CM×1 is the k-th
user channel coefficient vector, whose elements are indepen-
dent and identically distributed (i.i.d.) random variables with
distribution CN (0, σ2

h) for all k ∈ A due to power control.
Without losing generality it is assumed σ2

h = 1. Moreover,
s(k) ∈ C1×NP and x(k) ∈ C1×ND are the pilot sequence and
payload transmitted by user k. Finally, Zp ∈ CM×NP and
Z ∈ CM×ND are matrices of Gaussian noise samples.

The processing is split into two phases. In phase 1, all
slots are processed in order. In each slot, the BS first at-
tempts channel estimation for all possible pilots by computing
φj ∈ CM×1 and consequently attempting payload estimation,
for all j ∈ {1, . . . , NP}, as

φj =
P sHj
‖sj‖2

=
∑
k∈Aj

hk + zj and x̂j =
φH

j Y

‖φj‖2
. (12)

Here, Aj is the set of active users employing pilot j in the
current slot, sj ∈ C1×NP is the j-th pilot sequence, and zj ∈
CM×1 is a noise vector.

If a generic user ` is the only one picking pilot j in the
currently processed slot (Aj = {`}) and if the number of
antennas M is large enough, then x̂j approximates the user’s
payload x(`). Upon successful channel decoding performed
on x̂j , the packet symbols are stored in a buffer waiting for
the SIC phase.

In phase 2, SIC is performed across slots relying on in-
formation about replica number and positions along with the
employed pilots for each of them retrieved in the decoded
payload. This can be implemented, for example, by letting the
number of replicas, their positions, and their pilot indexes be
functions of the random message. By subtracting interference,
it is possible that new users can be found re-attempting
channel decoding procedure. Then, whenever a new user is
successfully decoded its information is stored and phase 2
iterates until the buffer contain no more users. More details
on the SIC and channel model, here omitted for space reasons,
are available in [3], [13], [14].

III. DENSITY EVOLUTION WITH REALISTIC PHY LAYER

In this section we develop a density evolution analysis for
IRSA over the realistic channel model and PHY processing
that was reviewed in Section II-B. This analysis is presented
in Section III-B. Before that, in Section III-A, we extend the
above-reviewed density evolution analysis over the collision
channel to the case of a collision channel featuring NP

orthogonal resources per slot. To keep a clean and compact
notation, we denote the probability that a random variable A
takes the value a, Pr(A = a), as P (a). Similarly, we write
P (a, b|c) to indicate the probability Pr(A = a,B = b |C = c),
and P (E) to denote the probability that an event E occurs.

A. Collision Channel with Orthogonal Resources
Consider a simple extension of the collision channel in

which NP orthogonal resources are available in each slot of
the frame. In IRSA over this channel, an active user gener-
ates its repetition rate r according to the distribution Λ(x),
chooses r slots uniformly at random (without replacement),
then chooses one resource per slot uniformly at random, and
finally transmits r replicas of its packet into these slot-resource
pairs. For this channel, Assumptions 1-3 listed in Section II-A
remain valid, upon simply replacing “slot” with “slot-resource
pair”. Note that the collision channel corresponds to NP = 1.

To extend IRSA density evolution equations to this channel,
we initially observe that ρc in (4), q` in (5), and q

(r)
` in (6)

remain unchanged as they only depend on the IRSA multiple
access protocol. To update the expression of p(c)` , consider
a slot with c burst arrivals. Consider any such burst and let
H, 0 6 H 6 c − 1, be a random variable representing the
number of interferers not yet recovered in the slot at the current
iteration `. Defining the failure event F` = {The replica of an
edge is not yet decoded at iteration `}, we have

p
(c)
` = P (F`|c) =

c−1∑
h=0

P (h)P (F`|c, h)

=

c−1∑
h=0

(
c− 1

h

)
qh` (1− q`)c−1−h

[
1−

(
1− 1

NP

)h]
= 1−

(
1− q`

NP

)c−1
. (13)

where the factor [1 − (1 − 1/NP)h] is the probability that
at least one of the h interferers collides with the considered



burst in the same resource. Repeating the steps reviewed for
the collision channel, we obtain density evolution recursion

p` = 1− exp
(
− G

NP

∑
r

rΛr p
r−1
`−1

)
. (14)

From (14) and (8) we deduce that, over the collision channel
with NP orthogonal resources per slot: (i) the asymptotic
threshold G∗ of a distribution Λ(x) is NP times larger than
the threshold over the collision channel for the same distri-
bution; (ii) for a given average number of replicas Λ′(1), the
distribution that maximizes the threshold G∗ over the collision
channel remains optimum also on the collision channel with
NP orthogonal resources per slot.

B. MIMO Block Fading Channel with Realistic Processing

In this section we extend density evolution equations to the
scenario described in Section II-B. Referring to the collision
channel assumptions, pointed out in Section II-A and general-
ized in Section III-A to NP > 1, we note that Assumption 1
still holds due to the hypothesis of power control. On the other
hand, Assumptions 2 and 3 do not hold any more because of
the realistic payload and channel estimations. As the PHY
processing and interference cancellation in a slot are captured
by (7), next we focus on p(c)` under realistic assumptions.

In density evolution, the probability p(c)` is associated with
the occurrence of the event that a packet replica, arriving in a
slot where c users have transmitted (i.e., with c−1 interfering
bursts), is not successfully decoded in that slot at iteration `.
From a user’s viewpoint, we can therefore define the random
variable I, representing the number of other interfering bursts
that have picked the same pilot (pilot-colliding bursts). The
random variable I is considered to account for the behaviour
explicitly shown in [14] in which the probability to fail the
decoding of a user packet depends on the initial number of
user choosing the same pilot. We can write the probability
that a user has exactly i pilot-colliders, given c total arrivals
in the slot and NP available pilots, as

P (i|c) =

(
c− 1

i

) (
1

NP

)i (
1− 1

NP

)c−1−i

. (15)

Since to successfully decode a burst within a slot it is
necessary that it is the only one with a given pilot, we
define the random variable S as the number of pilot-colliding
bursts that have been subtracted so far. Then, considering
that from previous interference cancellations bursts can be
subtracted with probability 1− q`, the probability that exactly
s subtractions have been performed, given i pilot-colliding
users, is

P (s|i) =

(
i

s

)
(1− q`)s qi−s` . (16)

Noting that P (s|i, c) = P (s|i), we can write

p
(c)
` =

∑
i

∑
s

P (F`|i, s, c)P (s|i)P (i|c) . (17)

Since it is not possible to successfully decode a pilot-
collided replica due to the power control hypothesis, we have
P (F`|i, s, c) = 1, for all s 6= i. On the other hand, when
s = i and a realistic channel is considered, there is a non-
zero probability to successfully decode the burst. Using the
approximation analytically derived in [14], we can write

P (F`|i, s, c) =

{
Pfail((i+ 1)c− 1), s = i

1, s 6= i
(18)

where

Pfail(n) = 1−
t∑

d=0

(
ND

d

)
P d
e (n) (1− Pe(n))

ND−d (19)

and

Pe(n) = erfc

(√
M

2n

)
− 1

4
erfc2

(√
M

2n

)
. (20)

It is possible to note that Pfail depends on the number of
payload symbols ND, the number of antennas M , the error
correction capability t of the PHY channel code, and the
number of interfering users. Finally, we can write

p
(c)
` = 1−

(
1− q`

NP

)c−1

+

c−1∑
i=0

(1− q`)i Pfail((i+ 1)c− 1)P (i|c) . (21)

Using p
(c)
` from (21) instead of (7) in the density evolution

recursion, allows us evaluating the asymptotic threshold G∗ of
an IRSA distribution Λ(x) over the realistic wireless channel
and signal processing.

Remark. Equation (18) accounts for the fact that, in realistic
settings, the above collision channel Assumptions 2 and 3 do
not hold. In this respect we note that, letting P (F`|i, s, c) =
1 − δi,s where δi,s is the discrete delta function, it is easy
to retrieve (13). This observation confirms that the procedure
derived in this section can be seen as a “generalization” of the
density evolution over collision channel.

IV. PERFORMANCE EVALUATION

As main outcomes of our analysis: (i) we use the de-
veloped analysis tool with differential evolution optimization
[17] to derive optimal Λ(x) distributions; (ii) we verify the
consistency between the optimization results and Monte Carlo
simulations (with both PHY and MAC layers); (iii) we show
that an over-simplification of the PHY channel model may lead
to a wrong design when adopted in a realistic system. Before
presenting the results, we briefly review differential evolution
and the PHY layer aware system adopted to verify the theo-
retical results, respectively in Section IV-A and Section IV-B.

A. Differential Evolution Optimization

We search for the optimal Λ(x) distribution which maxi-
mizes G∗ in (10). The optimization problem is constrained
by imposing the average number of transmitted packets Λ′(1),



related to the average energy spent per user packet. We solved
the optimization problem using differential evolution [17], an
evolutionary, population-based metaheuristic search algorithm
used to find the global minimum of a real-valued function of a
vector of continuous parameters. The main steps are similar to
those of evolutionary optimization algorithms [18]. An initial
population of vectors, each representing a Λ(x) distribution,
is first generated. A competitor for each population element is
then constructed by mutation and crossover over the current
vector population. Next, each population element is compared
with its own competitor and only one is selected, resulting in
an evolved population. The mutation, crossover and selection
steps are iterated until a certain stopping criterion is fulfilled.
Differential evolution was proposed for the optimization of
low-density parity-check (LDPC) codes degree profile in [19]
and for IRSA and CSA optimization in [10] and [11].

B. Simulation Setup

With reference to Section II-B, we consider a system where
users transmit payloads encoded with an (n = 511, k =
421, t = 10) binary BCH code. Part of the information bits
are used to validate the decoded packets, for example by
cyclic redundancy check (CRC). After zero padding the BCH
codeword with a final bit, we map the encoded bits onto a
QPSK constellation with Gray mapping, obtaining ND = 256
symbols per codeword. Simulations have been carried out with
symbol rate Bs = 1 Msps and M = 256 BS antennas.
Imposing a maximum latency constraint of Ω = 50 ms, we
compute the number of slots per frame Ns as [13]

Ns =

⌊
ΩBs

2 (NP +ND)

⌋
(22)

where the number of orthogonal pilot symbols, NP, equals the
total number of available pilot sequences. These sequences are
constructed using Hadamard matrices. In particular, we assume
NP = 64, resulting in a number of slots Ns = 78.

C. Numerical Results

We start by presenting numerical results that illustrate the
accuracy of the proposed threshold analysis. To this aim, we
ran Monte Carlo simulations for some IRSA distributions Λ(x)
over both the collision channel with orthogonal resources and
the MIMO block fading channel with actual signal processing,
and performed threshold analysis for the same distributions
over these channels. In practice, we declared a value of G as
achievable (i.e., G < G∗) when density evolution recursion
yielded Q` < 10−4 after a sufficiently large number of
iterations.

In Fig. 1 and Fig. 2 we report simulation results (in terms
of packet loss rate versus the number of active users over
the frame) in solid lines, while thresholds are marked by
dashed vertical lines. In these figures, the “thresholds” are
defined as K∗a = NsG

∗, which represents an approximation
of the number of simultaneously active users the scheme can
support. Fig. 1 shows that the IRSA distribution with average
packet repetition rate Λ′(1) = 3 and maximum repetition
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Fig. 1. Packet loss rate comparison between the IRSA distribution with
Λ′(1) = 3 and maximum repetition degree 6 being optimal over the
collision channel (with or without orthogonal resources) and the concentrated
distribution Λ(x) = x3. Channels: Collision channel with NP orthogonal
resources and MIMO block fading channel with realistic signal processing.
Parameters: NP = 64, Ns = 78, M = 256. Dashed lines: Values of G∗Ns.
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Fig. 2. Packet loss rate comparison between concentrated distributions
characterized by different repetition rates r ∈ {2, 3, 4, 5} over realistic
channel. Solid: Monte Carlo simulations. Parameters: NP = 64, Ns = 78,
and M = 256. Dashed lines: NsG∗.

rate 6, having the largest threshold over the collision channel
model [11], becomes sub-optimal when the realistic channel
and signal processing is considered. In fact, its threshold is out-
performed by that of the distribution with a constant repetition
rate Λ(x) = x3 (that is, CRDSA with repetition rate 3). Very
remarkably, as predicted by our threshold analysis, this result
is in perfect agreement with the Monte Carlo simulation. Fig. 2
shows similar results for other distributions, which again reveal
the effectiveness and reliability of the proposed analysis over
massive MIMO block fading channels and realistic PHY layer
processing. Note that all concentrated (CRDSA) distributions
considered in Fig. 2 exhibit the best threshold constrained



TABLE I
ASYMPTOTIC THRESHOLDS OBTAINED THROUGH DENSITY EVOLUTION

UNDER REALISTIC CHANNEL ASSUMPTIONS.

IRSA Distribution Λ′(1) G∗

Λ(x) = x2 2 7.64
Λ(x) = x3 3 6.99
Λ(x) = x4 4 6.15
Λ(x) = x5 5 5.48
Λ(x) = 0.55x2 + 0.26x3 + 0.19x6 3 5.49
Λ(x) = 0.50x2 + 0.50x3 2.5 6.64
Λ(x) = 0.51x2 + 0.27x3 + 0.22x8 3.6 4.63
Λ(x) = 0.55x2 + 0.16x3 + 0.29x6 3.3 4.97

to the corresponding integer Λ′(1). Looking again at Fig. 2
we can see that, as expected, the proposed density evolution
analysis is unable to capture error floor phenomena such as the
one affecting the distribution Λ(x) = x2. In Table I we list
the thresholds estimated through density evolution for some
Λ(x) distributions with the previous choice of the system
parameters.

Lastly, we show in Table II the results of another analysis
we carried out using the proposed tool. For a constrained
average repetition rate Λ′(1) = 3, we let the number of
BS antennas M vary, searching for the optimum distribution
(in terms of G∗) for each considered M . For all values
of M , differential evolution optimization returned the same
distribution Λ(x) = x3. It is interesting to observe that, while
the asymptotic threshold G∗ increases monotonically with
M , the ratio G∗/M (which represents a sort of efficiency
per antenna) is not monotonically increasing but exhibits a
maximum value. We attribute the decrease of G∗/M for large
M to the constant number of orthogonal pilots NP = 64.

V. CONCLUSIONS

The increasing interest on grant-free protocols for massive
multiple access in next generation wireless networks requires
reliable design tools in order to optimize and compare different
solutions. We propose a joint PHY and MAC layer design tar-
geting a massive MIMO system over Rayleigh fading channel.
The design is presented step-by-step to facilitate extending
the analysis to other PHY processing strategies and channel
assumptions. As a main outcome of our analysis we show that
IRSA distributions, optimum over the simple collision channel
model, may turn suboptimum under a realistic setting.
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