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Abstract—The Unmanned Aerial Vehicle (UAV) swarm net-
works will play a crucial role in the B5G/6G network thanks to
its appealing features, such as wide coverage and on-demand
deployment. Emergency communication (EC) is essential to
promptly inform UAVs of potential danger to avoid accidents,
whereas the conventional communication-only feedback-based
methods, which separate the digital and physical identities (DPI),
bring intolerable latency and disturb the unintended receivers. In
this paper, we present a novel DPI-Mapping solution to match the
identities (IDs) of UAVs from dual domains for visual networking,
which is the first solution that enables UAVs to communicate
promptly with what they see without the tedious exchange of
beacons. The IDs are distinguished dynamically by defining fea-
ture similarity, and the asymmetric IDs from different domains
are matched via the proposed bio-inspired matching algorithm.
We also consider Kalman filtering to combine the IDs and predict
the states for accurate mapping. Experiment results show that
the DPI-Mapping reduces individual inaccuracy of features and
significantly outperforms the conventional broadcast-based and
feedback-based methods in EC latency. Furthermore, it also
reduces the disturbing messages without sacrificing the hit rate.

Index Terms—UAV networks, Emergency communication, Dig-
ital and physical identities, Visual networking, Low latency.

I. INTRODUCTION

To provide wide coverage and on-demand deployment

services for B5G/6G mobile communication and wireless

networking, the Unmanned Aerial Vehicle (UAV) network has

been envisioned as a promising solution for public safety and

disaster relief [1]. However, UAVs are continuously exposed

to events that might cause severe collisions [2]. For instance,

dozens of UAVs crashed into a building during a show in

China’s Chongqing city last year, and most of them might

have been avoided if they had been notified of the potential dis-

aster from nearby UAVs and responded promptly. Therefore,

the need for communication-assisted collaborative perception

naturally arises in UAV emergency communication (EC) [3].

The EC between UAVs has been conventionally achieved

via broadcasting. It generally causes confusion and disturbance

at unintended receivers, as well as broadcast storm issues

in large-scale networks [4]. Therefore, unicast and multicast,

which allow UAVs to communicate following a specific digital

identity (D-ID), e.g. unique IP address, are crucial for EC.

Note that it is not sufficient to only be aware of the D-ID,

UAVs should have the capability to perceive the neighbor’s

physical identity (P-ID), e.g. location and velocity, since P-

ID is more valuable than D-ID in EC. For instance, a UAV

with obstacles ahead would like to alert the approaching ones

behind, regardless of their IP addresses.

Building upon the communication-only feedback-based pro-

tocols, the conventional methods of P-ID acquisition require

UAVs to periodically exchange beacons embedded with feature

information [5]. However, it tends to be performed frequently

in high-mobility scenarios to ensure sensing accuracy, which

causes large EC latency and overhead. Developing a state

prediction scheme can solve this issue to a certain extent,

whereas the benefit depends on the accuracy of target’s P-ID

[6]. For instance, the positioning error may probably achieve

several meters [7]. Essentially, the above issue arises since

the P-ID is passively “heard” from the radio domain, and we

thus vividly call it an auditory domain (AD) in the following.

The sender should have the ability of active sensing to satisfy

the low-latency requirement. At the time of writing, state-of-

the-art techniques, such as circular scanning millimeter-wave

(CSM) Radar, Lidar, laser range finder and zoom/wide camera,

have been utilized on UAVs to sense the environment actively,

we thus would say it is more like a visual domain (VD) relative

to AD. Although it enhances the capability of recognition

accuracy, perception range, spatial resolution, and robustness

in extreme situations [8], the difficulty in identifying D-ID

is a common drawback of the VD-only sensing approaches.

As a result, research efforts toward combining the sensing

information from dual domains are well underway, and such

examples can be found in [9] and [10]. Although the sensing

ability has been enriched, the digital and physical identities

(DPI) are still separated thus far, which may cause intolerable

delays and disturb the unintended receivers.

To tackle the above problems, UAVs in EC are supposed to

be endowed with an advanced capability: opening their eyes

when communicating with neighbors by mapping DPI in AD

and VD, which will bring the following benefits. First, having

the combined IDs from dual domains may significantly reduce

individual inaccuracy and unreliability while improving the

overall performance. Moreover, it can provide the following

service: given a specific P-ID, the D-ID of the matching UAV

will be determined promptly and vice versa. Accordingly, alert

messages can be accurately sent to UAVs of specific P-ID with

the lowest latency and the least disruption to unintended UAVs.

Nevertheless, it is not trivial to match what the UAVs hear and

see due to the following challenges.

• Asynchrony: Generally, the IDs observed from VD have

http://arxiv.org/abs/2306.16304v1


collision

…

… 

… 

…

…

…

P-IDs obtained from AD

P-IDs observed from VD

Longitude and latitude

Relative speed and direction …

D-IDs obtained from AD

IP address

Fig. 1. The typical scenario for emergency communication in UAV networks.

a higher refresh rate than IDs obtained from AD, it thus

may cause poor mapping performance since the matching

of P-ID and D-ID cannot be performed at any time.

• Asymmetry: Due to the different sensing results and

range of AD and VD, UAVs would “see” but not “hear”

others and vice versa, which causes matching difficulty.

• Similarity: The features tend not to differ much some-

time or somewhere, making it difficult to distinguish

multiple UAVs. For instance, location is not an ideal P-ID

if UAVs are close to each other or visually occluded.

In this paper, we present a novel DPI-Mapping approach,

the first solution that enables UAVs to communicate instantly

with what they see without the tedious exchange of beacons.

To tackle the Asymmetry issue, we proposed a bio-inspired

matching (BIM) algorithm to associate the ID pairs obtained

from VD and AD and exploit them for prompt EC. We further

consider a Kalman filtering (KF) scheme for tracking and

predicting the state before obtaining the next D-ID to address

the Asynchrony challenge. The P-IDs are distinguished via

dynamic weight and associated accurately in different epochs

to solve the Similarity problem. Experiment results show that

our DPI-Mapping can remove the EC latency and minimize the

disturbance rate without sacrificing the hit rate when compared

to its broadcast and feedback-based counterparts.

II. GENERAL FRAMEWORK OF DPI-MAPPING

A. Motivation Scenario

As shown in Fig. 1, we consider a self-organized UAV

swarm network where UAVs with obstacles ahead would like

to alert the intended neighbors to avoid potential accidents.

Each UAV measures several features constantly for itself

and its neighbors. The unique IP address, longitude, latitude,

height, speed and motion direction are embedded in beacons

with a few bytes, which are broadcast periodically at an

adaptive interval [11] to allow UAV to be discovered and

recognized by neighbors from AD. Moreover, the relative

distance, direction and relative velocity of neighbors can be

observed from VD. Aiming at alerting intended neighbors

promptly without disturbing the unintended receivers, UAVs

should have the ability to communicate instantly with what

they see without exchanging beacons tediously. This motivates

us to present the following novel DPI-Mapping approach.
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Visual Feature from VD

P-IDs from AD and VD
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Fig. 2. The framework of DPI-Mapping. The critical steps are shown in red
and will be discussed further in the section III.

B. Framework of the Proposed DPI-Mapping

As shown in Fig. 2, the framework of our proposed DPI-

Mapping is mainly composed of three modules: i) feature

collector, ii) DPI match engine and iii) P-ID processing unit.

1) Feature collector: The UAVs first receive the features

from AD passively and detect the feature from VD actively via

the feature collector. In addition to the D-IDs, DPI-Mapping

also uses P-ID, namely a set of physical features to describe a

UAV. Such features include wing type, body color, relative

position and velocity, etc, whose reliability relies on their

prevalence. For instance, the relative distance could distinguish

UAVs in different positions while the relative velocity will be

inoperative if they are relatively stationary. Assuming that at

the nth epoch, a UAV observes Kv and Ka neighbors’ physical

features from VD and AD, respectively, we denote VFn =
{vfn(i), i = 1, ...,Kv} and AFn = {afn(j), j = 1, ...,Ka}
as their P-IDs in VD and AD, where vfn(i, k) and afn(j, k)
denote the kth physical feature (k = 1, ...,Kf ) of ith and

jth neighbor, respectively. Then they will be assigned with

dynamic weights based on prevalence to calculate similarity,

which will be discussed further in III-A.

Remark 1: The definition of P-ID is not limited to the

mentioned example, any distinguishable feature is included in

its connotation. The P-IDs could be observed from both VD

and AD while the D-IDs will only be obtained from AD.

2) DPI match engine: The D-IDs together with the P-

IDs will be fed into the bipartite graph matching model

shown in Fig. 3, where the edge’s weight is defined as

the matching cost cn(i, j) = sn(i, j)
−1, namely the recip-

rocal of similarity between vfn(i) and afn(j). The opti-

mization target of P-ID pairs matching problem is given by

min(f1 + f2), where f1 = 1

N

∑Kv

i=1

∑Ka

j=1
an(i, j)cn(i, j)

and f2 = 1

N

√

∑Kv

i=1

∑Ka

j=1
(an(i, j)cn(i, j)− f1)

2
denote the

sub-problems of minimizing the overall cost and equalizing

the individual cost, respectively, where N = min(Ka,Kv).
The constraints of

∑Kv

i=1
an(i, j) = 1, j = 1, ...,Ka and

∑Ka

j=1
an(i, j) = 1, i = 1, ...,Kv indicate that any P-ID in

AD can only be matched with one in VD and vice versa.

An is the assignment matrix, where an(i, j) = 1 if vfn(i) is

matched with afn(j), otherwise an(i, j) = 0. Then the BIM

algorithm (as presented in III-B), which matches neighbor’s

P-IDs in VD and AD according to similarity, is executed to

solve the above optimization problem.
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Fig. 3. Bipartite graph model for matching identity pairs in VD and AD.

3) P-ID processing: Based on the matching results of the

BIM algorithm, D-IDs from AD are successfully mapped with

P-IDs in VD since they have been naturally associated with

P-IDs in AD. Then the mapped P-ID pairs from dual domains

are combined via the KF method to obtain a more accurate

result. The BIM algorithm will not be re-executed until new

P-IDs arrive, and the KF will also be exploited to combine and

predict P-IDs (see more details in III-C). Finally, the P-IDs

obtained from VD at different epochs are associated to avoid

the mapping errors, which will be introduced in III-D.

III. MATCHING, PREDICTION AND ASSOCIATION OF IDS

IN DPI-MAPPING

In order to describe the above key steps of DPI-Mapping in

detail and tackle the Asynchrony, Asymmetry and Similarity

issues, we present the corresponding approaches as follows.

A. Distinguish Features via Dynamic Weight

Given two P-IDs vfn(i) and afn(j), we want to calculate

sn(i, j), namely the probability that they correspond to the

same UAV in reality. However, it is particularly challenging

due to the Similarity issue, namely their distinguishability

generally depends on the dynamic environment. For instance,

the difference in relative velocity is more distinctive if UAVs

are flying freely, and the relative position has low importance

in distinguishing when UAVs are close to each other. This

motivates us to present a novel dynamic weight for various

physical features based on their prevalence.

We define a cosine similarity function D (fn(a), fn(b)) =
fn(a) · fn(b)/ ‖fn(a)‖ ‖fn(b)‖ to denote the similarity of two

physical features fn(a) and fn(b). When they come from

the same domain, it represents the similarity of two dif-

ferent UAVs. When they come from various domains, it

describes how likely they are two measurements of the same

UAV. Without loss of generality, we assume that vfn(k) =
{vfn(i, k), i = 1, ...,Kv} denotes a vector of all measurement

of the kth physical feature on Kv neighbors. The weight

of vfn(k) is assigned as wk = 1

Kv

∑Kv

i=1
pn(i, k), where

pn(i, k) =
∑

j 6=i D(vfn(i, k), vfn(j, k))
∏

m 6=j,m 6=i(1 −
D(vfn(i, k), vfn(m, k))) denotes the distinguishability of

vfn(i, k), namely the probability that vfn(i, k) is different

from other features in vfn(k). Then the similarity of vfn(i)
and afn(j) is defined as the harmonic mean of individuals

sn(i, j) =

{

∑Kf

k=1
w′

k/D (vfn(i, k), afn(j, k))

}−1

, (1)

where w′
k is the normalized weight.

In this way, the features are distinguished dynamically via

their prevalence. Moreover, if two UAVs have high dissimilari-

ties in most features, the similarity will be low despite the large

weights of others, and the outliers could also be mitigated.

B. Match D-ID and P-ID Pairs by BIM Algorithm

This subsection proposes a bio-inspired matching (BIM)

algorithm to accurately match the P-IDs and D-IDs pairs. Vam-

pire bats have various interests in different preys depending

on tastes and hunting risk. They tend to compete for favorite

prey when hunting in groups, whereas feeding the extra food

back to companions in starvation according to kinship [12].

The above selfish and altruistic behavior actually achieves the

maximization of group income and the balance of individual

benefits, which is similar to our aim that achieving the overall

minimization and the individual equalization of matching cost

without restriction on the number equality of P-ID parties.

For the task of mapping P-ID pairs from VD and AD, we

regard VFn and AFn as vampire bats and preys, respectively,

and present a specific mapping process as follows.

1) Initially match P-IDs in VD and AD: Note that a bat

cannot catch multiple preys at a time, and a prey cannot be

shared by multiple bats, despite the probably unequal number

of bats and prey. Each bat thus evaluates the benefits of all

accessible preys and selects the one with the highest profit as

the initial competitive target before hunting.

Inspired by the bio-behavior, the cost of matching vfn(i) ∈
VFn and afn(j) ∈ AFn, ∀i, j will be calculated via cn(i, j) =
sn(i, j)

−1, where sn(i, j) is the similarity defined in (1). Even

if there are differences between measurements in AD and VD

due to the Asymmetry issue, we believe that two P-IDs will be

“close to” each other if they belong to the same UAV. Thus the

one with the lowest cost, namely the best matching of vfn(i)
is determined by

i = argmin
j=1,...,Ka

cn(i, j) = argmin
j=1,...,Ka

sn(i, j)
−1. (2)

Remark 2: Note that the Asymmetry issue will also arise

when fewer P-IDs are observed in one domain (deficient

domain Dd) than in the other (complete domain Dc). To

equalize their numbers, the cost matrix is augmented by adding

virtual P-IDs in Dd, whose matching costs to P-IDs in Dc are

set to infinity, thus the superfluous P-IDs in Dc will not be

mapped erroneously.

2) Competition: There are always competitions between

bats since their favorite prey often conflicts, and the expected

benefit of their favorite prey will be decreased gradually during

competition. A bat will find another better prey if the current

benefit is no longer the best, and then continue to compete

until all prey no longer conflict.

Similarly, the conflict also occurs once a P-ID (e.g. afn(j))
in a domain corresponds to the best matching of several P-IDs

in the other domain (e.g., vfn(i), i ∈ Φn, where Φn denotes

the set of conflicting P-IDs), which is common after step 1).



Inspiring by the competitive behavior of bats, we update the

mapping cost to remove the conflict via

ct+1
n (i, j)← ctn(i, j)

+ α

[

min
i∈Φn

ctn(i, j)− min
i′ 6=i,i′∈Φn

ctn(i
′, j) + ǫt

]

,
(3)

where α is the competing rate. The first two items in paren-

theses denote the minimum and second minimum cost of

matching afn(j) from vfn(i), i ∈ Φn, and ǫ is set to avoid

the update failure due to their equality. The competition will

not be terminated until the conflict no longer exists.

3) Exchange the matching results: Although the overall

income of all bats is maximized after the competition, the

individual benefits are not equal. Interestingly, a satiate bat will

vomit excess blood to a proper companion based on kinship.

Analogously, let’s exchange the matching results after step

2) to balance the matching cost. For any two P-ID pairs

that have been successfully matched, e.g. vfn(i) and afn(j),
vfn(p) and afn(q), the assignment matrix will be updated

by an(i, j) = an(p, q) = 0 and an(i, q) = an(p, j) = 1
if condition cn(i, j) ≥ max {cn(i, q), cn(p, j)} is met. We

collect the matching pairs that satisfy the above condition in

a set Ψi,j and find the best one with the minimum lost by

j = argmin
m∈Ψi,j

(max {cn(i, qm), cn(pm, j)}) . (4)

In this way, the assignment matrix namely the best mapping

results of P-ID pairs can be determined. The pseudo-code of

the BIM is presented in Algorithm 1.

Finally, based on the above matching results and the natural

association between D-IDs and P-IDs in AD, the D-IDs from

AD are successfully mapped with P-IDs in VD.

Algorithm 1 BIM algorithm

Input: P-IDs from AD and VD

Output: Assignment matrix An

1: while mapping conflicts exist do

2: for i from 1 to max{Kv,Ka} do

3: Find the best matching results of vf i,n via (2)

4: end for

5: for all P-IDs in Φn do

6: Update the mapping cost based on (3)

7: end for

8: end while

9: while the exchange condition is met do

10: for all P-IDs in Ψn do

11: Find the optimum pair via (4)

12: Update the assignment matrix

13: end for

14: end while

C. Combination and Prediction of P-ID for a Single UAV

Recall in II-B, we usually only have P-IDs from VD owing

to the Asynchrony issue, thus the BIM algorithm will not

be re-executed until a new P-ID is obtained from AD. The

matched P-IDs should be combined after BIM to obtain more

accurate results and then predicted to ensure the accuracy until

the next BIM process arrives. To this end, we consider a KF

approach for P-ID combination and estimation.

Assuming a constant velocity mobility model, the evolu-

tion and measurement of UAV’s state are given by xn =
Fxn−1 + un−1 and yn = Hxn−1 + zn−1, where xn =
[pn(1), pn(2), pn(3), vn(1), vn(2), vn(3)]

T denotes the posi-

tion and speed. xn−1 denotes the state information embedded

in beacons or predicted at the last epoch. u and z are zero-

mean Gaussian distributed noise. The measurement of P-IDs,

such as distance r, azimuth angle θ and elevation angle ϕ, is

generally performed in a polar coordinate system while the

state evolution model is generally established in a Cartesian

one. Therefore, before using the standard KF procedure, the

measurement information should be converted via pn(1) =
rcosϕcosθ, pn(2) = rcosϕcosθ and pn(3) = rsinϕ.

Considering that the conversion error will lead to a biased

estimation, which will degrade filtering performance [13]. We

thus propose a modified unbiased converted measurements KF

(MUCM-KF) approach that enables unbiased conversion. The

modified unbiased conversion for measurement can be given

by pn(1) = λ−1
ϕ λ−1

θ rcosϕcosθ, pn(2) = λ−1
ϕ λ−1

θ rcosϕsinθ

and pn(3) = λ−1

θ rsinϕ. Then the measurement-conditioned

mean of the converted measurement error is given by µ =
E [pn|r, θ, ϕ] = [(λ−1

θ λ−1
ϕ − λθλϕ)rcosθcosϕ, (λ−1

θ λ−1
ϕ −

λθλϕ)rsinθcosϕ, (λ−1
ϕ − λϕ)rsinϕ]T , and the symmetric co-

variance matrix R3×3 is given by






























































































R(1, 1) = (r2 + σ2
r)(1 + λ′

θcos2θ)(1 + λ′
ϕcos2ϕ)/4

− λ2
θλ

2
ϕr

2cos2θcos2ϕ

R(1, 2) = (r2 + σ2
r)λ

′
θsin2θ(1 + λ′

ϕcos2ϕ)/4

− λ2
θλ

2
ϕr

2sinθcosθcos2ϕ

R(1, 3) = (r2 + σ2
r)λθλ

′
ϕcosθsin2ϕ/2

− λθλ
2
ϕr

2cosθsinϕcosϕ

R(2, 2) = (r2 + σ2
r)(1 + λ′

θcos2θ)(1 + λ′
ϕcos2ϕ)/4

− λ2
θλ

2
ϕr

2sin2θcos2ϕ

R(2, 3) = (r2 + σ2
r)λθλ

′
ϕsinθsin2ϕ/2

− λθλ
2
ϕr

2sinθsinϕcosϕ

R(3, 3) = (r2 + σ2
r)(1 − λ′

ϕcos2ϕ)/2− λ2
ϕr

2sin2ϕ

, (5)

where λx = e−σ2

x/2, λ′
x = e−2σ2

x , and σx denotes the standard

deviation of x.

The proposed MUCM-KF is designed by applying the

unbiased conversion and covariance matrix to the standard

KF for feature estimation, whose specific steps will not be

introduced here due to page limitations, and readers can refer

to our recent work [11] for more details.

D. P-ID Association for Multiple UAVs

Another critical issue raised in the multi-UAV scenario is

to distinguish multiple neighbors accurately to realize the

following two aims: i) to send the correct EC message to the

intended UAVs and ii) to correctly match the measurement



CSM Radar

GimbalZoom Camera

Wide Camera

Laser Range Finder

Infrared Sensing System

Antennas

FPV Camera

(a) DJI M300 RTK (b) Detection result of ZF-F1200

Fig. 4. UAV-based testbed for real-world experiments.

to the corresponding predicted state. Note that the mapping

results might be disrupted later due to the Similarity issue, we

thus propose a simple P-ID association approach as follows.

At the nth epoch, the UAV detects Kv neighbors from VD

via feature collector, which are processed to formulate Kv

measurements yn(i), i = 1, ...,Kv. The estimate x̂n(i) would

be no longer accurate once the yn(i) is wrongly associated

with a state prediction x̂n|n−1(j), j 6= i. Accordingly, the

prediction at the (n + 1)th epoch would be erroneous. Note

that yn(i) and x̂n|n−1(i) will not be “far from” each other, we

first calculate all the estimation of measurement of Kv state

predictions by ŷn|n−1(j) = Hx̂n|n−1(j), j = 1, ...,Kv. For

the measurement yn(k) of kth neighbor, the difference be-

tween yn(k) and each ŷn|n−1(j) is calculated by associating

them via the smallest cosine distance principle

i = argmin
j

D
(

yn(k),Hx̂n|n−1(j)
)

, (6)

where the cosine similarity function is defined in III-A.

In this way, the state predictions at nth and (n+1)th epochs

are correctly associated. x̂n|n−1(i) will be updated according

to the correct measurement with the maximum accuracy while

the D-IDs can be mapped to the correct P-IDs accordingly,

which achieves the above-mentioned aims.

IV. EXPERIMENT AND SIMULATION

A. Real-World Experiments

For the real-world experiments, a DJI Matrice 300 (M300)

RTK carrying CSM Radar, infrared sensing system and Zen-

muse H20 gimbal & camera system is used to detect potential

dangers and alert neighbors, as shown in Fig. 4(a). We applied

You Only Look Once version 5 (YOLOv5) to detect ZF-F1200

(a six-rotor UAV with black color as shown in Fig. 4(b))

from the video captured by M300 to build a VD-only sensing

method. To realize the AD-only method, an Ettus USRP B210

connected to a mini-computer with an Intel Core i7-1165G7

CPU with OpenAirInterface platform was deployed in the pod

of ZF-F1200. A Samsung Galaxy S6 is fixed in the pod of

M300 to measure the Received Signal Strengthen Indicator

(RSSI) via Cellular-Z. As shown in Fig. 5(a), we’ve performed

a lot of tests to establish the relationship between RSSI and

distance in our target environments, which provides a basis

for the RSSI-based AD-only ranging method.
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Fig. 5. Real-world experiment results of RSSI and ranging error.

By showing the cumulative distribution functions (CDF) of

the average error of ranging, Fig. 5(b) presents how DPI-

Mapping improves the sensing accuracy. During the evalu-

ation, M300 and ZF-F1200 hover at a height of 15m and

10m respectively, and the latter is 8m horizontally behind the

former. Then we let them move towards the positive direction

of M300 at 2m/s and 2.5m/s and ascend vertically at 2m/s

and 2.5m/s respectively within 10s. The above trajectory is

repeated 10 times with different initial locations. The proposed

DPI-Mapping performs much better than AD-only and VD-

only ranging methods since it combines P-IDs from dual

domains and predicts the state accurately via MUCF-KF. The

inferior performance of the VD-only method comes from the

coordinate system conversion error and the accuracy of camera

calibration. The worse results occur in the AD-only method

due to the error of RSSI-based ranging. More specifically, with

the indication of a laser range finder as the reference value, a

90 percentile errors of 0.68m are achieved by DPI-Mapping,

which are lower than AD-only and VD-only ranging methods

by 51.18% and 25.49%, respectively.

B. Large-Scale Simulations

It is difficult to verify EC latency and disturbance rate in the

real world since we currently only have two UAVs. Therefore,

we conduct large-scale simulations according to the simulation

environment in [11], namely 40∼140 UAVs are moving with

the random waypoint model in a 600m×600m×150m region.

The lowest speed is 5m/s while the highest speed varies from

20m/s to 60m/s. EC messages are randomly generated on

10 UAVs per second, and the approaching neighbors behind

are denoted as intended receivers. The AD-based ranging is

achieved based on RSSI, whose standard deviation is set as

5/
√
10 [9]. The visual appearances are simulated by image

samples from datasets in [14] and we scale them according

to the relative distance [9]. We run 200 simulations and the

results with 90% confidence interval are presented in Fig. 6.

α = 1 and ǫ = 0.02 are set in BIM.

Fig. 6(a) illustrates the EC latency, namely the time duration

from the generation of the EC message to the successful

reception by the intended UAV. There will be a worse latency

in higher mobility since more beacons will be exchanged when

the maximum speed increases. The broadcast has a superior

latency of under 10ms since messages are sent to all nearby
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Fig. 6. Comparison results of the proposed DPI-Mapping and feedback and
broadcast based methods in EC latency, disturbance rate and hit rate.

nodes without judging whether they are intended. Thanks to

the accurate matching results of DPI-Mapping, UAVs could

communicate instantly with what they “see” without the

tedious exchange of beacons. The feedback-based approach

requires UAVs to interact with neighbors before sending EC

messages to confirm the D-ID, which inevitably causes extra

latency. Although the EC latency rises in denser networks due

to the increased exchanging of beacons and queuing latency,

DPI-Mapping could bring down the latency to under 20ms

since beacons are no longer required once the mapping is

completed. As a result, the EC latency is reduced by 66.54%

on average when compared to the feedback-based method.

Although the latency of DPI-Mapping is slightly worse than

broadcast, the cost is still acceptable since it remarkably

reduces the unnecessary disturbances, as described below.

For all the EC messages that have been sent, we denote the

number of messages received by the intended and unintended

UAVs as RI and RU, and the number of EC messages not

received by them as NI and NU. Hr = RI/(RI + NI) and

Dr = RU/(RU+RI) denote the hit rate and disturbance rate

of EC messages, respectively.

Fig. 6(b) compares DPI-Mapping, the broadcast-based and

the feedback-based approaches in terms of the performance

of Hr and Dr. As expected, all techniques show a better

performance in the low-density network since high density

means a high probability of confusing the intended UAVs with

the unintended ones. We find that both the DPI-Mapping and

the broadcast-based scheme are likely to hit a similar number

of intended UAVs while the feedback-based one has a poor Hr

since it generally misjudges the intended UAVs due to severe

sensing error. It is worth highlighting that in our RSSI error

model with 5/
√
10 standard deviation, the feedback-based

method will disturb a large number of unintended UAVs while

the broadcast one enables all nearby UAVs within the commu-

nication range to receive the EC messages. DPI-Mapping is

considerably better than them since it provides an interesting

service, namely accurately confirming the D-ID according to

the intended P-ID. It minimizes Dr without sacrificing Hr and

thus outperforms the feedback-based approach by 36.29% and

16.14% in Dr and Hr, respectively, and reduces Dr by 75.72%

when compared with the broadcast-based method.

V. CONCLUSION

In this paper, we have presented how to enable UAVs

to communicate instantly with what they see in EC. The

proposed DPI-Mapping approach distinguishes features by

dynamic weight, maps D-IDs and P-IDs via the BIM algo-

rithm, and combines and tracks the feature by the MUCM-KF.

Experiment results show that it yields better sensing precision

and lower latency, and significantly outperforms the broadcast

and feedback based schemes in reducing disturbing messages

without sacrificing the hit rate. Given the page limit, we

designate multi-features-based P-ID definition, complexity and

extra energy/computing consumption as our future work.
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