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Abstract—Hybrid beamforming has evolved as a promis-
ing technology that offers the balance between system per-
formance and design complexity in mmWave MIMO systems.
Existing hybrid beamforming methods either impose unit-
modulus constraints or a codebook constraint on the analog
precoders/combiners, which in turn results in a performance-
overhead tradeoff. This paper puts forth a tensor framework
to handle the wideband hybrid beamforming problem, with
Vandermonde constraints on the analog precoders/combiners.
The proposed method strikes the balance between performance,
overhead and complexity. Numerical results on a 3GPP link-level
test bench reveal the efficacy of the proposed approach relative
to the codebook-based method while attaining the same feedback
overhead. Moreover, the proposed method is shown to achieve
comparable performance to the unit-modulus approaches, with
substantial reductions in overhead.

I. INTRODUCTION

Millimeter wave (mmWave) has emerged as a powerful

technology, that can handle the unprecedented demands on

wireless connectivity, through offering large available band-

width [1]. However, the high propagation loss inherent to

mmWave bands, if not mitigated, can severely impact the

system performance. Large antenna arrays which achieve high

beamforming gains are used to compensate the propagation

loss [2].

Large scale antenna systems implementation, on the other

hand, incurs several practical challenges including the high

energy consumption and cost of radio frequency (RF) chains,

as each antenna element requires a dedicated RF chain. Such

hurdles limit the possibility of employing a fully digital

beamforming design. As an efficient surrogate, hybrid (ana-

log/digital) beamforming has been introduced in [3], [4] as

means of attaining favorable complexity-performance tradeoff

in mmWave multicarrier massive MIMO systems. Hybrid

beamforming relies on using a small number of RF chains to

design high-dimensional analog precoders (implemented with

only phase shifters) together with a low-dimensional (digital)

baseband precoder. The combination of analog and digital

precoders has the potential to approach the performance of

a purely digital solution while providing substantial savings

in energy consumption and design complexity.

Although maximizing the system spectral efficiency in the

case of digital beamforming design admits a simple algebraic

solution via singular value decomposition (SVD) [5], hybrid

beamforming yields a highly non-convex problem that requires

joint optimization of the hybrid precoders and combiners [3].

A more tractable formulation is to transform the hybrid beam-

forming design to a matrix factorization problem. In particular,

the optimal SVD-based digital solution is first derived to

maximize the spectral efficiency. Then, the hybrid beamform-

ing is posed towards factorizing the fully digital precoder

(combiner) as the hybrid precoding (combining) components.

The factorization is usually solved either under unit modulus

constraints [3], [6] or with codebook constraints [7] on the

analog precoder (combiner), to ensure that the analog precoder

can be modeled using phase shifters. While considering the

unit modulus constraints, in general, result in a much better

solution compared to the codebook constraint [6], the resulting

communication overhead of the latter is considerably lower

[7], rendering it more appropriate for limited feedback systems

[8]. Further, compared to the codebook constraints approach,

the feedback overhead for unit magnitude constraints scales

linearly with the number of Tx/Rx antennas, thereby preclud-

ing its use in massive MIMO systems.

This begs the question whether it is possible to achieve a

comparable performance to the unit-modulus based methods

while yielding the feedback associated with the codebook-

based approaches? This is the central question that this paper

seeks to address. We answer the stated question in the affirma-

tive by modeling the wideband hybrid beamforming as a low

rank tensor decomposition problem with Vandermonde con-

straints on the analog precoders/combiners. Invoking the so-

called parallel factor (PARAFAC) analysis, to decompose the

resulting tensor, we show that PARAFAC yields high-quality

hybrid precoders/combiners, with identifiability guarantees on

the resulting factors. This paper adds to the broad variety

of tensors applications in wireless communications [9]–[11].

Different from all prior hybrid beamforming works that adopt

the spectral efficiency formula for performance evaluation, this

paper evaluates the practical impact of the proposed method

by integrating hybrid beamforming to an end-to-end com-

munication scenario with time-varying channels. Numerical

results demonstrate that the end-to-end performance of the

proposed approach considerably outperforms the codebook

based method while achieving comparable performance to the

unit modulus based approaches. Further, the proposed method

yields significantly lower communication overhead compared
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to unit modulus approaches.

II. SYSTEM MODEL

Consider a downlink transmission in a multi-carrier MIMO

system comprising a base station (BS) and a single user equip-

ment (UE). The BS is equipped with Nt transmit antennas

and NRF
t transmit radio frequency (RF) chains while the UE

is equipped with Nr receive antennas and NRF
r receive RF

chains. The BS aims at communicating Ns data streams to

the UE over K subcarriers, where Ns ≤ NRF
t ≤ Nt and

Ns ≤ NRF
r ≤ Nr [3]. The BS first employs a digital baseband

precoding matrix FBB[k] ∈ CNRF
t

×Ns on the transmitted

symbols s[k] ∈ CNs , ∀k ∈ [K] := {0, · · · ,K − 1}, as

shown in Fig. 1. Then, the data symbols are transformed to

the time domain using N-point inverse fast Fourier transform

(IFFT). After a cyclic prefix (CP) is added to the time-domain

signal, the BS applies an analog precoder FRF ∈ CNt×NRF
t

(implemented using analog phase shifters), i.e., |FRF(i, j)| =
1, ∀i = 0, · · · , Nt − 1 and j = 0, · · · , NRF

t − 1. Notice

that same FRF is applied across all subcarriers, i.e., FRF

is frequency independent. Towards this end, the transmitted

complex signal from the BS can be expressed as,

x[k] = FRFFBB[k]s[k], ∀k ∈ [K]. (1)

It is assumed that i) E[s[k]sH [k]] = α
KNs

INs
, and ii) the

total power budget constraint α is satisfied by enforcing the

constraint ‖FRFFBB[k]‖2F = Ns ∀k ∈ [K].
At the receiver, the UE first employs an analog combiner

WRF ∈ CNr×NRF
r followed by a digital baseband combiner

WBB ∈ CNRF
r

×Ns after CP removal and frequency trans-

formation using N-point FFT. Similar to the unit modulus

constraint on the entries of FRF, it assumed that the (i, j)-
th entry of WRF has a unit modulus, i.e., |WRF(i, j)| =
1, ∀i = 0, · · · , NRF

r − 1 and j = 0, · · · , Nr − 1. Thus, the

Ns-dimensional complex baseband signal at the UE at the k-th

subcarrier is given by,

y[k] = WH
BB[k]W

H
RFH[k]x[k] +WH

BB[k]W
H
RFv[k]. (2)

where H[k] ∈ CNr×Nt represents the downlink channel at the

k-th subcarrier, and v[k] ∈ CNr is the additive white Guassian

noise vector associated with the k-th subcarrier, ∀k ∈ [K].
It is assumed that the entries of v[k] are independent and

identically distributed (i.i.d) random variables with zero mean

and variance σ2, i.e., v[k] ∼ N (0, σ2INr
), ∀i = 0, · · · , Nr −

1. Throughout this work, we assume that the channel matrices

across the subcarriers {H[k]}Kk=1 are perfectly known at the

UE.

Remark 1. It is worth pointing out that, in practical wireless

systems, there is one representative channel matrix for each

group of subcarriers or resource blocks, referred to as subband

size, and hence, there is one baseband precoder/combiner

for each subband as opposed to each subcarrier. The reason

behind that is primarily to reduce the overhead associated

with the channel and/or precoding-related feedback. In the

hybrid beamforming context, this will reduce the overhead

associated with the baseband precoders/combiners, and will
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Fig. 1: Block diagram of OFDM-MIMO system with a BS

and a UE employing hybrid precoding and combining.

also reduce the complexity as obviously smaller number of

baseband precoders and combiners need to be computed.

This fact will be utilized later in the simulations (Section

VI) and also in the overhead computations associated with

the proposed approach and the existing hybrid beamforming

methods.

III. PROBLEM DEFINITION

The wideband hybrid beamforming problem seeks

to find the set of hybrid precoders and combiners

(FRF, {FBB[k]}Kk=1,WRF, {WBB[k]}Kk=1) that can maximize

the spectral efficiency. Assuming the transmitted symbols

follow a Gaussian distribution, the achievable spectral

efficiency associated with the k-th subcarrier can be

expressed as [5]

R[k] = log2(det(INs
+

α

Ns

Γ−1[k]WH
BB[k]W

H
RFH[k]FRFFBB[k]

× FH
BB[k]F

H
RFH

H [k]WRFWBB[k])) (3)

where Γ[k] := σ2WH
BB[k]W

H
RFWRFWBB[k] represents

the covariance matrix of the post-processing noise term

in (2). The goal is then to design the hybrid precoders

(FRF, {FBB[k]}Kk=1,WRF, {WBB[k]}Kk=1) that aim at max-

imizing the overall spectral efficiency while satisfying

the imposed constraints on the analog and digital pre-

coders/combiners. Maximizing the spectral efficiency, though,

yields a highly non tractable optimization problem that re-

quires the hybrid precoders and combiners to be jointly

optimized.

Instead of maximizing the spectral efficiency, one can de-

couple the precoders and combiners design, and formulate the

hybrid beamforming problem as two separate low-rank matrix

factorization problems [3], [6], [12]. The precoder problem

aims at factorizing the optimal digital precoder Fopt[k] ∈
CNt×Ns to FRFFBB[k], where the columns of Fopt[k] are the

Ns dominant right singular vectors of H[k], ∀k ∈ [K]. On the

other hand, the combiner problem seeks to factorize Wopt[k] ∈
CNr×Ns to WRFWBB[k], where Wopt[k] is the WMMSE

solution, i.e., Wopt[k] = (H
H
[k]H[k] + σ2INs

)−1H
H

and

H[k] = H[k]Fopt[k] . Interestingly, it has been shown in

[12] that solving the factorization problems implicitly leads to

maximizing the system spectral efficiency. Since both prob-

lems exhibit similar mathematical formulation, except that the

precoder problem has an additional sum power constraint, we

will focus on the precoder factorization problem. However, the



proposed method may be easily applied to solve the combiner

problem. From an optimization perspective, given the fully

digital SVD-based precoder Fopt[k], the hybrid beamforming

problem can be posed as [3], [6], [12]

min
FRF,{FBB[k]}K

k=1

K∑

k=1

‖Fopt[k]− FRFFBB[k]‖
2
F (4a)

s.t. FRF ∈ F (4b)

‖FRFFBB[k]‖
2
F = Ns, ∀k ∈ [K] (4c)

where F is the feasible set of the analog precoders. In the

wideband hybrid beamforming literature, the feasible set either

includes unit modulus constraints on the entries of FRF [6]

(denoted as FU ), or code-book based selection of the columns

of FRF [7] (denoted as FC ). The two feasible sets yield an

interesting overhead-performance trade-off. While considering

the feasible set FC results in much lower overhead relative to

the set FU , the solution associated with FU performs much

better than that of FC . The intuition is that FU provides a

much wider search space compared to FC , i.e., FC ⊂ FU ,

and hence, better performance is expected.

In this paper, we will introduce a new feasible set (denoted

as FV ) to the wideband hybrid beamforming problem in (4)

by enforcing a Vandermonde structure on the columns of FRF,

i.e., FV := {x ∈ CNt | x = [1, ejφ, · · · , ej(Nt−1)φ]T }, and

φ ∈ [−π, π]. Towards this end, the problem that this paper

seeks to solve is the following low-rank matrix optimization

problem,

Find FRF(φ0, · · · , φNRF−1), {FBB[k]}
K
k=1 (5a)

s.t. Fopt[k] ≈ FRFFBB[k], FRF ∈ FV , ∀ k ∈ [K]. (5b)

Notice that the sum power constraint in (4c) is temporarily

omitted as it has been shown that such a constraint can

be satisfied via a simple normalization step to the resulting

baseband precoders [3]. To our best knowledge, the formu-

lation in (5) has not been considered before in the hybrid

beamforming literature. Such a formulation strikes the bal-

ance between the obtained solution quality and the resulting

overhead. In particular, the resulting solution achieves the

same overhead associated with the FC set while achieving

comparable performance to the solutions associated with the

FU set. In the subsequent section, we will show that (5) can be

reformulated as a tensor factorization problem where efficient

tensor decomposition methods can be applied.

IV. PARAFAC DECOMPOSITION

Before reformulating (5) as a tensor factorization problem

and to facilitate our discussion, we briefly review some key

concepts that will be used in the proposed tensor approach.

A. Tensor Preliminaries

A third order tensor X ∈ CI×J×P is a three way array

whose elements are indexed by three indices (i, j, p). The

so-called Parallel Factor decomposition (PARAFAC), a.k.a

Canonical Polyadic Decomposition (CPD), is one powerful

tensor decomposition method. A tensor X admits a PARAFAC

decomposition if it can be written as the sum of vector outer

products [13],

X =

F∑

f=1

af ◦ bf ◦ cf . (6)

where ◦ denotes the vector outer product, and F is a positive

integer that we refer to as the tensor rank or CPD rank (the

smallest value such that (6) holds). The terms af ∈ CI ,

bf ∈ CJ and cf ∈ CP are the f -th columns of the so-called

low-rank factors A ∈ CI×F , B ∈ CJ×F , and C ∈ CP×F ,

respectively, of the tensor X .

Different from the tensor format in (6), PARAFAC can also

be written in slab format. Let Xp := X (:, :, p) represent the

p-th frontal slab of X , ∀p ∈ [P ] := {0, · · · , P − 1}.1 The

PARAFAC decomposition of X in the slab-format is given by

X (:, :, p) = ADp(C)BT , ∀p ∈ [P ]. (7)

where Dp(C) := Diag(C(p, :)) ∈ CF×F with the elements

on the diagonal be the p-th row of C. Throughout this paper,

we will use the notation X := JA,B,CK to denote (7).

B. Identifiability

One distinctive property of tensors is that the PARAFAC

model is essentially unique under mild conditions even if

F is greater than max(I, J, P ). The definition of essential

uniqueness is presented as follows.

Definition 1. The PARAFAC decomposition of a tensor X is

said to be essentially unique, X := JA,B,CK, if A,B and

C are identifiable up to scaling and permutation. This means

that if X :=
q
A,B,C

y
, for some A ∈ CI×F , B ∈ CJ×F ,

and C ∈ C
P×F , then there exists a permutation matrix Π ∈

RF×F and diagonal scaling matrices {Λi}3i=1 such that,

A = AΠΛ1,B = BΠΛ2,C = CΠΛ3,Λ1Λ2Λ3 = I. (8)

If there is no structure imposed on the low rank factors, then

a generic identifiability condition on PARAFAC uniqueness

is given in [14]. If, however, one or more of the low rank

factor matrices have a Vandermonde structure, then more

relaxed uniqueness conditions based on the Kruskal rank can

be found in [10], [13], [15]. The latest and the most relevant

identifiability results to the problem considered herein is given

as follows.

Theorem 1. [16] Consider the data model in (7) and assume

that the factors A ∈ CI×F and C ∈ CP×F are Vandermonde

and that B ∈ CJ×F is tall and full rank. If,

kA +min(P − 1, F ) ≥ F + 1. (9)

then the PARAFAC decomposition of X in terms of A, B, and

C is essentially unique, where kA denotes the Kruskal rank

(k-rank) of the matrix A.

1Note that we used the MATLAB notation X (:, :, p) to read the frontal
slab of a three-way tensor.



It has been shown in [16] that a matrix with Vandermonde

structure has full k-rank, i.e., kA = min(I, F ). The condition

in (9) will be interpreted later in the context of hybrid

beamforming.

V. HYBRID BEAMFORMING VIA PARAFAC

In this section, it will be shown how the wideband hy-

brid beamforming problem in (5) can be reformulated as

a tensor decomposition problem. Let us define the matri-

ces X = [Fopt[1], · · · ,Fopt[K]] ∈ CNt×KNs and B =

[FT
BB[1], · · · ,F

T
BB[K]]T ∈ CKNs×NRF

t , then it can be easily

seen that (5) can be expressed in more compact form as

Find FRF(φ0, · · · , φNRF
t

−1), B (10a)

s.t. X ≈ FRFB
T , FRF ∈ FV . (10b)

Remark 2. Notice that while (10) assumes a uniform lin-

ear array (ULA) structure on the columns of the analog

beamformer FRF, the proposed tensor method can be further

extended to handle other array structures, for e.g., uniform

planar array (UPA) [16]. In that sense, the proposed method

can be used to recover azimuth and elevation estimates for

each column of FRF. This is in fact a big advantage of the

proposed approach relative to the state-of-the-art. Owing to

space limitations, we will present only the ULA structure here.

Let us construct the following two subarrays,

A = FRF(1 : end− 1, :), (all rows except last) (11a)

A = FRF(2 : end, :), (all rows except first) (11b)

Then, it follows that by exploiting the Vandermonde structure

of the columns of the matrix FRF, the (Nt − 1)×NRF
t matri-

ces A and A are displaced but otherwise identical subarrays,

i.e.,

A = AΦ1. (12)

where Φ1 := Diag([e−φ0 , · · · , e
−φ

NRF
t

−1 ]). Further, for con-

sistency, let A = AΦ0, where Φ0 = INRF
t

. Let C ∈ CP×NRF
t

be a matrix holding the diagonal of Φp on its p-th row,

for p = 0, · · · , P − 1 and P = 2. Then, upon defining

X0 = X(1 : end − 1, :) ∈ C(Nt−1)×KNs , X1 = X(2 : end, :
) ∈ C

(Nt−1)×KNs and Dp(Φ) = Φp, for p = 0, 1, we can

write the following,

X0 = AD0(C)BT , (13)

X1 = AD1(C)BT . (14)

From the PARAFAC decomposition slab format defined in

(7), it is easy to see that (13) and (14) form a two-slab, i.e.,

P = 2, PARAFAC model with Vandermonde structure in one

mode. Thus, solving (10) is tantamount to decomposing the

tensor X ∈ C(Nt−1)×KNs×P with its p-th slab defined as

X (:, :, p) := Xp, for p = 0, · · · , P − 1 and P = 2. From an

optimization perspective, this can be expressed as

min
A,B,C

‖X − JA,B,CK ‖2F (15)

Several algorithms have been developed to tackle the optimiza-

tion problem (15) [17]. In this work, we adopt the trilinear

alternating least square (TALS) algorithm implemented in the

widely known Tensorlab MATLAB toolbox [18].

Considering the condition in (9) in the context of hybrid

beamforming, one can easily see that with P = 2 and given

that A is tall (i.e., Nt ≥ NRF
t +1) and Vandermonde, the con-

dition in (9) is always satisfied.The only requirement though to

ensure essential uniqueness of X is that B ∈ CKNs×NRF
t needs

to be tall and full rank. This requires the number of subcarriers

multiplied by the number of streams be greater than or equal to

the number of transmit RF chains. This renders our proposed

method not applicable for single carrier systems, i.e., K = 1,

with NRF
t > Ns, otherwise, such a condition can be easily

satisfied with a modest number of subcarriers.

Let A ∈ C(Nt−1)×NRF
t , B ∈ CKNs×NRF

t and C ∈ C2×NRF
t

be the resulting solution of (15). The goal now is to find

(φ0, · · · , φNRF
t

−1) and {FBB[k]}Kk=1 given (A,B,C). To do

so, we first recover the NRF
t phases {φi}

NRF
t

−1
i=0 from the

columns of A by simply reading the angles of first elements

of the columns of A.

Algorithm 1 V-TPAR: Vandermonde Two-slab PARAFAC

Input: {Fopt[k] ∈ CNt×Ns}Kk=1, NRF
t ,

Construct X = [Fopt[1], · · · ,Fopt[K]] ∈ CNt×KNs

Construct X ∈ C(Nt−1)×KNs×2 as X (:, :, 1) = X(1 : end −
1, :), and X (:, :, 2) = X(2 : end, :)
Decompose X :=

q
A,B,C

y
using TALS

for i = 0 : NRF
t − 1 do

Recover φi by computing the angle of the first element of

A(:, i)
Form FRF(:, i) = [1, ejφi , · · · , ej(Nt−1)φi ]T

Obtain λi
1 = A(1, i), λi

3 = C(1, i), λi
2 = 1

λi

1
λi

3

Obtain B(:, i) = B(:, i)/λi
2

end

Reshape B to retrieve {FBB[k] ∈ CNRF
t

×Ns}Kk=1.

To obtain {FBB[k]}Kk=1, we need to resolve the complex

scaling ambiguity that is inherent to PARAFAC (see Definition

1 for the essential uniqueness of PARAFAC). Note that we

ignore the permutation ambiguity, as in the hybrid beamform-

ing context, finding the analog and baseband precoders up to

a common permutation ambiguity is irrelevant since it merely

amounts to shuffling the RF chains. The complex scale ambi-

guity though is important as it amounts to entirely changing

the directions of the precoders. Fortunately, since the columns

of both matrices A and C exhibit a Vandermonde structure, the

column-wise scale ambiguity in both matrices can be resolved

by simply dividing the elements of each column by the first

element. Once the complex scale ambiguities associated with

the columns of A and C, denoted as Λ1 and Λ3, respectively,

are resolved, it can be seen from (8) that the column-wise

scale ambiguity of B, denoted as Λ2, can be easily obtained

as Λ2 = (Λ3Λ1)
−1. The above procedures for solving the

wideband hybrid beamforming problem using Vandermonde-
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Parameter Value

Carrier frequency 28 GHz
Subcarrier spacing 60 kHz
Modulation 16-QAM
Code rate 0.49
Number of transmit antennas 32
Number of receive antennas 8
UE speed 0.5 km/hr
Delay spread 300 ns
Channel model CDL-C

TABLE I: Parameter settings for the simulations.

constrained Two-slab PARAFAC (V-TPAR) are outlined in

Algorithm 1.

The complexity of Algorithm 1 is incurred in decomposing

the tensor X using the iterative TALS algorithm. The per

iteration complexity of TALS is equal to the cost of inverting

an (NRF
t )2 × (NRF

t )2 matrix. The overall complexity then

depends on the total number of iterations which in turn

depends on the problem and the size of the tensor (see [17] and

references therein for convergence properties of TALS). As we

will see later, for the considered problem, a few iterations of

TALS seem to be sufficient to obtain hiqh-quality solution.

VI. SIMULATIONS

In this section, we will provide numerical results on 3GPP

link-level channel model to assess the performance of the

proposed method. The adopted simulation parameters are

listed in Table I. We use the CDL-C channel model with the

delay spread set to 300 ns. Both BS and UE are equipped

with uniform linear array where the antenna elements are

separated by a half wavelength. All results are averaged out

over 200 realizations. The number of subbands is set to 30,

i.e., K = 30, where each subband consists of one resource

block (RB), i.e., 12 subcarriers. The channel matrix for each

subband is obtained by averaging out the channels across

the 12 subcarriers. For the proposed method implementation,

we used the TALS algorithm implemented in the Tensorlab

MATLAB toolbox. Finally, all simulations were performed on

an Intel(R) Xeon(R) Gold 6234 CPU.

To benchmark the performance of the proposed method, we

use the manifold optimization (MO) alternating minimization
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Fig. 3: The BER performance NRF = 3 and Ns = 2.

FRF feasible set Fu Fc Fv

Num. of parameters NtN
RF
t

NRF
t

NRF
t

Method MO and PE OMP T-VPAR

TABLE II: Feedback overhead associated with the different

feasible sets of the analog beamformers.

algorithm [6], the phase extraction (PE) alternating minimiza-

tion algorithm [6] and the OMP algorithm [3] as baselines.

Both MO and PE solve the wideband hybrid beamforming

problem (4) with unit modulus constraints on the entries

of the analog beamformers, while the OMP algorithm solve

(4) with codebook constraint on the columns of the analog

beamformers. For OMP, we use the DFT codebook for both

FRF and WRF.

From the feedback overhead perspective, one can see from

Table II that the Vandermonde feasible set (our proposed

method) attains the same overhead of the codebook one

(OMP). In particular, the number of parameters to feed back

is independent of the number of transmit (receive) antennas

and is equal to the number of transmit (receive) RF chains if

the the analog precoders and combiners are computed at the

UE (BS). On the other side, the unit-modulus feasible set (MO

and PE) suffers from the large overhead that scales up with

the number of transmit/receive antennas, thereby limiting their

use in limited feedback systems.

To evaluate the practical impact of the different hybrid

beamforming algorithms, we report the coded BER in an end-

to-end system. First, we consider a scenario with NRF = 2 and

Ns = 1, i.e., NRF = 2Ns, while the rest of the parameters

are as listed in Table I. It is known from [6] that when

NRF = Ns, PE achieves the same performance of MO at

much lower complexity while the performance of the former

degrades when NRF > Ns. Fig. 2 shows the end-to-end coded

BER performance of the different methods. One can see that,

for this case, the proposed method achieves more than 1 dB

SNR gain relative to OMP. More interestingly, the proposed

approach outperforms the PE method with more than an

order of magnitude reduction in BER at -8 dB. Further, when

Ns < NRF < 2Ns as shown in Fig. 3, the performance of the

proposed method significantly outperforms OMP with roughly
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Fig. 4: The BER performance NRF = Ns = 2.

4 dB SNR gain. Finally, one can see that both the tensor

method and PE attain approximately the same performance,

with 1 dB loss relative to MO.

Next, we simulated another scenario with NRF = Ns = 2.

It can be seen that now PE achieves the same performance as

MO while the proposed method incurs roughly 2 dB SNR loss,

as Fig. 4 depicts. In addition, one can see that the proposed

algorithm considerably outperforms the OMP algorithm with

more than an order of magnitude reduction in BER when the

SNR exceeds -10 dB.

Finally, to assess the complexity of the proposed tensor

approach, Fig. 5 depicts the average run time of the proposed

method relative to the considered baselines, when NRF =
Ns = 2 and NRF = 3 and Ns = 2 . We observe that the

run time of the proposed method is comparable to PE while

achieving more than an order of magnitude reduction in run

time compared to MO in both setups. Finally, OMP features

the lowest run time but this obviously comes at the expense

of performance.

VII. CONCLUSIONS

This paper has considered single user hybrid precoding and

combining in wideband mmWave MIMO systems under Van-

dermonde constraints on the hybrid precoders and combiners.

The problem is formulated as a tensor factorization prob-

lem where PARAFAC is invoked to find the Vandermonde-

constrained analog beamformers and the set of baseband

precoders – with identifiability guarantees. Numerical results

on a 3GPP link-level test bench have revealed the superiority

of the proposed method relative to the state-of-the-art. In

particular, the proposed method has shown to be striking the

balance between performance, overhead and complexity. As

a future work, we aim at expanding the applicability of the

proposed framework to other array structures such as uniform

plannar array (UPA). Further, we plan to explore the impact

of increasing the number of subarrays (multi-slab PARAFAC

as opposed to two slab) on the estimation accuracy, and its

trade-off with computational complexity.
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