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Abstract—Climate change due to increasing carbon emissions
by human activities has been identified as one of the most critical
threat to Earth. Carbon neutralization, as a key approach to
reverse climate change, has triggered the development of new
regulations to enforce the economic activities toward low carbon
solutions. Computing networks that enable users to process
computation-intensive tasks contribute huge amount of carbon
emissions due to rising energy consumption. To analyze the
achievable reduction of carbon emissions by a scheduling policy,
we first propose a novel virtual queueing network model that
captures communication and computing procedures in networks.
To adapt to highly variable and unpredictable nature of re-
newable energy utilized by computing networks (i.e., carbon
intensity of grid varies by time and location), we propose a
novel carbon-intensity based scheduling policy that dynamically
schedules computation tasks over clouds via the drift-plus-penalty
methodology in Lyapunov optimization. Our numerical analysis
using real-world data shows that the proposed policy achieves
54% reduction on the cumulative carbon emissions for AI model
training tasks compared to the queue-length based policy.

I. INTRODUCTION

Global warming caused by excessive emissions of carbon
dioxide (e.g., burning fossil fuels for electricity generation)
is the main driver to climate change, which has posed a
significant threat to human society. To limit global warming,
the most essential approach is via carbon neutralization, i.e.,
compensate carbon emissions by acquiring carbon offsets.
Although the offsetting mechanisms for trading carbon credits
(e.g., UN Carbon Offset Platform [1]) have been widely
adopted globally, it has been shown that such mechanisms
have limitations to effectively reduce the emissions [2]. To
achieve carbon neutrality, it is important to reduce the carbon
emissions in the first place rather than offset them later.

Due to recent advancements in computing networks that
enable users to offload computation-intensive tasks to clouds,
service demands for computing and communication resources
in networks have been dramatically rising since 2010 [3].
Thus, carbon emissions due to increasing energy consumption
in computing networks become a matter of concern. To reduce
their carbon footprint and limit their environmental impacts,
clouds have been pushed to use more renewable energy, e.g.,
Amazon AWS’s goal of 100% renewable energy by 2025 [4].

Electricity generation is from energy sources (e.g., gas,
coal, wind energy) with different levels of carbon emissions.
In particular, due to the highly variable and unpredictable
nature of renewable energy sources (e.g., solar energy), carbon
intensity (i.e., average carbon emissions per unit of energy
consumption) of electricity grid varies considerably by time
and location [5], [6]. Thus, to guarantee the reduction of

carbon emissions in computing networks, there is a critical
need to design a task scheduling policy for networks, which ac-
counts for temporal and spatial dimensions of energy sources.

In this paper, we consider the problem of task scheduling
over computing networks with focus on the reduction of
carbon emissions. More precisely, the considered computing
network model is composed of an edge server and multiple
clouds, in which the offloaded tasks arrive to the edge dynam-
ically and then are dispatched to clouds accordingly. The edge
server is responsible for sending data of tasks to clouds, and
the energy consumption of edge server depends on which type
of tasks it is sending. Each cloud is responsible for processing
tasks, and the energy consumption of a cloud depends on
which type of tasks it is processing. Subject to the energy
consumption constraints, we assume that the edge server and
each of clouds use different electricity grid, i.e., have different
carbon intensity. To design an efficient scheduling policy that
minimizes the carbon emissions from computing networks, we
aim at exploiting the workload flexibility in both when and
where the computation tasks are executed.

To analyze the carbon emissions from the network, we first
propose a novel virtual queueing network model that captures
the communication and computing procedures in the network.
Then, in order to adapt to varied carbon intensity of electricity
grids, we introduce the drift-plus-penalty methodology of
Lyapunov optimization [7], whose idea is to minimize an upper
bound on the drift-plus-penalty term (i.e., a linear combination
of drifts and the carbon emissions with positive sign) at
each time slot. Under the i.i.d assumption of the number of
arriving tasks and the carbon intensity of edge and clouds,
the introduced drift-plus-penalty methodology provides the
guarantee on mean-rate stability of queues and achieves time-
average carbon emissions arbitrarily close to optimal.

The minimization for the upper bound of drift-plus-penalty
in our scheduling problem, however, is shown to be a NP-hard
unbounded Knapsack problem. Through the greedy approach
for minimizing the upper bound of drift-plus-penalty, we pro-
pose an efficient dynamic carbon-intensity based scheduling
policy. Using the randomly generated data and the real-world
data (from National Grid ESO [8]) of carbon intensity, we
conduct the numerical studies for the case of AI model training
tasks. We show that the proposed carbon-intensity based policy
can significantly outperform the queue-length based policy
in terms of cumulative carbon emissions, while ensuring the
mean-rate stability of queues.

Related Works: We provide a literature review that covers
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the works of online scheduling and carbon-aware network.
The online scheduling problem aims to dynamically sched-

ule jobs that arrive to the network according to a stochastic
process. One of the main goals is to find a throughput-
optimal policy [9], i.e., a policy that stabilizes the network,
whenever it can be stabilized. For instance, Max-Weight type
policy [10] has shown to be throughput-optimal for wireless
networks, flexible queueing networks [11] and dispersed com-
puting networks [12]. Furthermore, Lyapunov optimization is
a technique that minimizes drift-plus-penalty to ensure the
network stability and the maximization of stochastic utility [7].

Carbon-aware network has been widely investigated in
recent years to mitigate the global warming issue due to
the escalating carbon emissions. One of key approaches for
the reduction of carbon emissions is to do task scheduling
by considering the temporal and spatial dimensions of en-
ergy sources [13]–[15]. Based on the information of carbon
intensity, [13] formulated a static scheduling problem for
the resources usage and the placement of virtual machines
via mixed-integer linear programming, and proposed a multi-
level approach to minimize the carbon emissions of data
centers. [15] proposed a Lyapunov-based algorithm for clouds
that minimizes electricity cost and poses a limit on the carbon
emissions. By delaying temporally flexible compute workloads
based on the forecast of next day’s carbon intensity, [14] in-
troduced a Carbon-Intelligent Compute Management to reduce
carbon footprint of clouds. To distinguish from these carbon-
aware approaches, with an objective to minimize carbon
emissions, our proposed policy decides when and where to
execute computation tasks dynamically. Furthermore, without
any a-priori statistical knowledge and future predictions, the
proposed policy is only based on the current state of computing
network, i.e., number of arriving tasks, number of waiting
tasks and real-time carbon intensity.

Notation: We denote by [N ] the set of {1, 2, . . . , N} for any
positive integer N . We denote by N0 the set of non-negative
integers, i.e., N0 = {0, 1, . . .}.

II. SYSTEM MODEL

We consider a computing network in which there is an edge
server connecting to some clouds. Users offload their computa-
tion tasks to the edge server in an online manner, and then each
computation task is executed by one of clouds. In particular,
the electricity grids of network generate carbon emissions, due
to the energy consumption for providing services.

In the network, there is one edge server and N clouds. We
consider M types of computation tasks, which are possibly
offloaded to the system by users. We consider the system in
discrete time (i.e., t = 0, 1, . . .). Let am(t) be the number of
type-m tasks that arrive to the edge at time t. For each type
m ∈ [M ], we denote by pe

m the energy consumption incurred
by the edge server for sending a type-m task to one of clouds.
We denote by pc

m,n the energy consumption incurred by cloud
n for processing an offloaded type-m task. At each time slot,
we assume that the edge server has constant energy constraint

P e for communicating data to clouds, and each cloud n ∈ [N ]
has constant energy constraint P c

n for processing tasks.
Carbon intensity, defined as the amount of carbon emissions

per unit of energy consumption (e.g., gCO2 per kW·h) is used
to estimate the amount of carbon emissions incurred by the
computing and communication procedures in the network. We
assume that the edge server and each cloud utilize different
energy sources including non-renewables (e.g., fossil) and re-
newables (e.g., wind), which have variation in carbon intensity.
Specifically, we denote by Ce (t) the carbon intensity of grid
utilized by the edge server at time t, and denote by Cc

n (t) the
carbon intensity of grid utilized by cloud n ∈ [N ] at time t.

A. Problem Statement
In the task scheduling problem of computing network, a

scheduling policy determines the followings: 1) when each
task is sent to one of clouds, 2) the destination of each task,
and 3) when each task is processed. Concretely, we define the
following terms to characterize a scheduling policy. We denote
by dm,n(t) the number of type-m tasks that are sent to cloud n
at time t, and denote by wm,n(t) the number of type-m tasks
that are processed by cloud n at time t. That is, at time t, a
scheduling policy determines an action which is composed of
{dm,n(t)}∀m∈[M ], ∀n∈[N ] and {wm,n(t)}∀m∈[M ], ∀n∈[N ]. Let
P e

total(t) be the total energy consumption by the edge server
and P c

n,total(t) be the total energy consumption by cloud n,
which can be written as follows:

P e
total(t) =

M∑
m=1

N∑
n=1

dm,n(t)pe
m; (1)

P c
n,total(t) =

M∑
m=1

wm,n(t)pc
m,n, ∀n ∈ [N ]. (2)

An action is feasible if the constraints on energy consump-
tion are satisfied1, i.e.,

P e
total(t) ≤ P e; (3)

P c
n,total(t) ≤ P c

n, ∀n ∈ [N ]. (4)

We denote by C(t) the carbon emissions of the computing
network at time t. Based on carbon intensity Ce(t) and Cc

n(t)
at time t, C(t) can be written as follows:

C(t) = Ce (t) · P e
total(t) +

N∑
n=1

Cc
n (t) · P c

n,total(t). (5)

Definition 1 (Time-Average Carbon Emissions). Given car-
bon emissions C(t) at each time t, the time-average carbon
emissions, denoted by C̄, is defined as follows:

C̄ = lim sup
T→∞

1

T

T−1∑
t=0

E [C (t)] . (6)

Based on the above system model, our main goal is to design
a scheduling policy that chooses a feasible action on both when
and where the computation tasks are executed at each time to
minimize time-average carbon emissions C̄.

1We assume that the scheduled tasks will be successfully communicated
(processed) if the energy constraint of edge server (cloud) is satisfied.



III. VIRTUAL QUEUEING NETWORK MODEL

To analyze the resulting carbon emissions using a schedul-
ing policy, we model a virtual queueing network that encodes
the state of the computing network. Then, we introduce an
optimization problem that ensures the minimization of carbon
emissions and the mean-rate stability of queues.

As shown in Fig. 1, the proposed virtual queueing network
consists of two kinds of queues, edge queue and cloud queue,
which are modeled in the following manner:
• Edge Queue: We maintain one virtual queue called edge

queue m for type-m tasks located in the edge server.
• Cloud Queue: We maintain one virtual queue called cloud

queue (m,n) for type-m tasks processed by cloud n.
We describe the dynamics of the virtual queues in the

network. The type-m tasks are sent to edge queue m when
arriving to the edge server. The tasks in edge queue m are
sent to cloud queue (m,n) if the type-m tasks are scheduled
on cloud n for processing. We denote by Qe

m(t) the length
of edge queue m and denote by Qc

m,n(t) the length of cloud
queue (m,n) at time t. We state the dynamics of the proposed
queueing network as follows. For ∀m ∈ [M ], we have

Qe
m(t+ 1) = max(Qe

m(t)−
N∑
n=1

dm,n(t), 0) + am(t). (7)

For ∀m ∈ [M ],∀n ∈ [N ], we have

Qc
m,n(t+ 1) = max(Qc

m,n(t)− wm,n(t), 0) + dm,n(t). (8)

Now, we introduce an optimization problem called carbon-
aware queueing network planning problem (CQNPP) that
minimizes time-average carbon emissions C̄ and stabilize all
the queues in the virtual queueing network:
Carbon-Aware Queueing Network Planning Problem

min C̄ (9)

s.t. lim
T→∞

E[Qe
m(T )]

T
= 0, ∀m ∈ [M ]; (10)

lim
T→∞

E[Qc
m,n(T )]

T
= 0, ∀m ∈ [M ], ∀n ∈ [N ]; (11)

P e
total(t) ≤ P e; (12)
P c
n,total(t) ≤ P c

n, ∀n ∈ [N ]; (13)

dm,n(t), wm,n(t) ∈ N0, ∀m ∈ [M ], ∀n ∈ [N ]. (14)

In CQNPP, (10) and (11) indicate that we make each queue
mean-rate stable; (12), (13) and (14) define the space of fea-
sible actions. The proposed CQNPP is a sequential decision-
making problem, which is in general challenging to solve.

IV. CARBON-INTENSITY BASED SCHEDULING POLICY

In this section, we introduce the drift-plus-penalty method-
ology in Lyapunov optimization [7] to effectively minimize the
carbon emissions and make queues mean-rate stable. Then, we
design an efficient carbon-intensity based scheduling policy
which dynamically decides "where" and "when" tasks are
processed based on the current state of network, without any
a-priori statistical knowledge and future predictions.

Fig. 1: The illustration of proposed queueing network. For each task
type m ∈ [M ], we maintain an edge queue m and cloud queues
(m,n), ∀n ∈ [N ]. At time t, am(t) number of type-m tasks arrive
to edge queue m. Based on a scheduling policy, dm,n(t) number of
type-m tasks in edge queue m arrive to cloud queue (m,n), and
wm,n(t) number of type-m tasks depart from cloud queue (m,n).

A. Drift-Plus-Penalty Methodology

We now introduce the drift-plus-penalty methodology for
the proposed CQNPP. As a measure of congestion in virtual
queues, Lyapunov function L(t) is defined as follows:

L(t) =
1

2

(
M∑
m=1

Qe
m(t)2 +

M∑
m=1

N∑
n=1

Qc
m,n(t)2

)
. (15)

Then, we define the drift of Lyapunov function L(t) as follows

∆(t) = L(t+ 1)− L(t). (16)

To stabilize all the queues and minimize the carbon emis-
sions, the key idea is to minimize the drift-plus-penalty, which
is a weighted sum of drift and scaled penalty. Consider a non-
negative number V , we formally define the drift-plus-penalty
as ∆(t) + V C(t), where the penalty term at time t is carbon
emissions C(t). Rather than directly minimize ∆(t) + V C(t)
every slot t, we minimize an upper bound on this drift-plus-
penalty expression. The following lemma provides an upper
bound on the drift-plus-penalty.

Lemma 1 (Drift Bound). Suppose am(t) is upper-bounded for
all m and all t. For any scheduling policy, drift-plus-penalty
∆(t) + V C(t) can be upper-bounded as follows

∆(t) + V C(t) ≤ B +

M∑
m=1

Qe
m(t)am(t)

+

M∑
m=1

N∑
n=1

(
V Ce(t)pe

m +Qc
m,n(t)−Qe

m(t)
)
dm,n(t)

+

M∑
m=1

N∑
n=1

(
V Cc

n(t)pc
m,n −Qc

m,n(t)
)
wm,n(t) (17)

where B is a constant such that
M∑
m=1

am(t)2 +

M∑
m=1

(
N∑
n=1

dm,n(t)

)2

+

M∑
m=1

N∑
n=1

dm,n(t)2 +

M∑
m=1

N∑
n=1

wm,n(t)2 ≤ 2B, ∀t. (18)



The proof of Lemma 1 is provided in Appendix A.

Remark 1. We note that constant B defined in (18) must exist
since am(t) is assumed to be upper-bounded and dm,n(t) and
wm,n(t) are subject to the constraints defined in (12) and (13).

At each time t, given number of arriving tasks am(t), virtual
queue-lengths Qe

m(t), Qc
m,n(t) and carbon intensity Ce(t),

Cc
n(t), a policy denoted by η aims at choosing a feasible

action that minimizes the upper bound defined in (17). This
is equivalent to minimize

M∑
m=1

N∑
n=1

(
V Ce(t)pe

m +Qc
m,n(t)−Qe

m(t)
)
dm,n(t)

+

M∑
m=1

N∑
n=1

(
V Cc

n(t)pc
m,n −Qc

m,n(t)
)
wm,n(t) (19)

where dm,n(t) and wm,n(t) are subject to (12), (13) and (14).
The following theorem shows that the theoretical guarantees

provided by policy η when the number of arriving tasks and
the carbon intensity are i.i.d over time slots.

Theorem 1. Suppose am(t) is upper-bounded for all m and
all t. If am(t),∀m, Ce(t) and Cc

n(t),∀n are i.i.d over time
slots, scheduling policy η with a non-negative number V that
minimizes (19) provides the following guarantees:

• Performance Guarantee. The achieved time-average car-
bon missions C̄η satisfies

C̄η ≤ C̄opt +
B

V
(20)

where B is the constant such that (18) is satisfied for all
t, and C̄opt is the infimum time-average carbon emissions
achievable by any policy.

• Stability Guarantee. All queues are mean-rate stable.

The proof of Theorem 1 follows the similar arguments in
[7], and we thus omit it due to the page limit.

Remark 2. Theorem 1 shows that policy η achieves the time-
average carbon emissions which deviates from the optimal
value by no more than B

V .

Now, we show that the minimization of (19) can not be
solved efficiently. Since the edge server and the clouds have
independent constraints (12) and (13), minimizing (19) can be
decoupled into some independent optimization problems. For
the edge server, we have the problem defined as

min

M∑
m=1

N∑
n=1

bm,n(t)dm,n(t); (21)

s.t.

M∑
m=1

N∑
n=1

dm,n(t)pe
m ≤ P e; (22)

dm,n(t) ∈ N0, ∀m ∈ [M ], ∀n ∈ [N ]; (23)

and for each cloud n, we have the problem defined as

min

M∑
m=1

cm,n(t)wm,n(t); (24)

s.t.

M∑
m=1

wm,n(t)pc
m,n ≤ P c

n; (25)

wm,n(t) ∈ N0, ∀m ∈ [M ], ∀n ∈ [N ] (26)

where bm,n(t) = V Ce(t)pe
m+Qc

m,n(t)−Qe
m(t) and cm,n(t) =

V Cc
n(t)pc

m,n − Qc
m,n(t) are fixed numbers after knowing all

the queue-lengths and carbon intensity at time t.
Since the problem defined in (21) to (23) aims at minimiz-

ing an objective function, the optimal solution requires that
dm,n(t) = 0 if bm,n(t) > 0. After dropping bm,n(t)dm,n(t)’s
with bm,n(t) > 0 by setting dm,n(t) = 0, the problem in (21)
to (23) with remaining variables is an unbounded Knapsack
problem which has been shown NP-hard [16]. The similar
arguments also hold for the problem defined in (24) to (26).

B. Description of the Proposed Policy

We propose a carbon-intensity based scheduling policy (see
Algorithm 1), whose idea is to greedily schedule tasks starting
from the tasks with the most negative values contributed to
(19) per energy unit. The proposed policy at each time t
is dominated by the sorting procedures, which can be done
efficiently (with the complexity almost linear in MN ). Now,
we provide more details of the proposed policy:
• Edge Server: For each m, we find n1(m) such that
V Ce(t)pe

m + Qc
m,n1(m)(t) − Q

e
m(t) is the smallest among

all n (equivalent to find n1(m) such that Qc
m,n1(m)(t) is

the smallest among all n). Then, we sort the task types
in increasing order of ratio

V Ce(t)pe
m+Qc

m,n1(m)(t)−Q
e
m(t)

pe
m

(equivalent to sort the task types in increasing order of
ratio

Qc
m,n1(m)(t)−Q

e
m(t)

pe
m

). Subject to energy constraint P e,
the edge server sends as many as possible of type-m tasks to
cloud n1(m) with the smallest value of

Qc
m,n1(m)(t)−Q

e
m(t)

pe
m

while V Ce(t)pe
m +Qc

m,n1(m)(t)−Q
e
m(t) is negative.

• Cloud: For each cloud n, we sort the task types in increasing
order of ratio

V Cc
n(t)p

c
m,n−Q

c
m,n(t)

pc
m,n

(equivalent to sort the

task types in decreasing order of ratio
Qc

m,n(t)

pc
m,n

). Subject to
energy constraint P c

n, the cloud n processes as many as
possible of type-m tasks with the largest value of

Qc
m,n(t)

pc
m,n

while the value of V Cc
n(t)pc

m,n −Qc
m,n(t) is negative.

V. NUMERICAL ANALYSIS

In this section, we demonstrate the impact of the proposed
carbon-intensity based scheduling policy by simulation stud-
ies. We evaluate the effectiveness of the proposed policy in
terms of the cumulative carbon emissions. We consider a
network composed of an edge server and 5 clouds. The edge
server has energy constraint P e = 4000 kW·h, and each cloud
n has energy constraint P c

n = 30000 kW·h. We consider
M = 5 types of AI model training tasks on ImageNet [17],



Algorithm 1: Carbon-Intensity Based Policy
Input: V , M , N , P e, P c

n, pe
m, pc

m,n;
Initialization: dm,n(t) = 0, wm,n(t) = 0;
for t← 0, 1, . . . do

Observe Ce(t), Cc
n(t) and am(t);

n1(m)← argminn∈[N ] Q
c
m,n(t);

Sort:
Qc

1,n1(1)(t)−Qe
1(t)

pe
1

≤ · · · ≤
Qc

M,n1(M)(t)−Qe
M (t)

pe
M

;
P ← P e;
for m← 1 to M do

if b P
pe
m
c > 0 then

if V Ce(t)pe
m +Qc

m,n1(m)
(t)−Qe

m(t) < 0 then
dm,n1(m)(t)← min(Qe

m(t), b P
pe
m
c);

P ← P − b P
pe
m
cpe

m;
else

break;
end

end
end
for n← 1 to N do

P ← P c
n;

Sort:
Qc

1,n(t)

pc
1,n

≥ · · · ≥
Qc

M,n(t)

pc
M,n

;

for m← 1 to M do
if b P

pc
m,n
c > 0 then

if V Cc
n(t)p

c
m,n −Qc

m,n(t) < 0 then
wm,n(t)← min(Qc

m,n(t), b P
pc
m,n
c);

P ← P − wm,n(t)pc
m,n;

else
break;

end
end

end
end
Update Qe

m(t+ 1) and Qc
m,n(t+ 1) according to (7) and (8)

end

whose computation and communication consumption are sum-
marized in Table I.2 For each m, am(t) is randomly chosen
from {0, 1, . . . , 400} at each time t.

We compare the proposed policy with a queue-length based
policy that makes decisions based on queue lengths: At each
time t, the edge server sends as many as possible of the tasks
that are located in the longest edge queues to the shortest
cloud queues, and each cloud processes as many as possible
of tasks located in its longest cloud queues. Then, we consider
two scenarios for carbon intensity:

1) Random: At each time t, each of carbon intensity Ce(t)
and Cc

n(t) is randomly chosen from {0, 1, . . . , 700}.
2) Real World: National Grid ESO [8] provides the regional

carbon intensity data in the UK (per 30 mins), where 6
regions’ data are used to represent the carbon intensity of
the edge server and 5 clouds.

Fig. 2 and Fig. 3 provide the normalized cumulative carbon-

2The estimation of P c
n is based on the annual energy consumption of

Google [18]. The estimation of P e is based on the assumptions: the bandwidth
of 100 GB/s for edge and the energy efficiency of 0.023 kW·h/GB for data
transmission [19]. The estimation of pe

m and pc
m,n are based on the size

of ImageNet dataset [17] and the inference complexity of each model [20]
respectively.

Type Model pc
m,n (kW·h) pe

m (kW·h)
m = 1 ResNet50 74 3.45
m = 2 InceptionV3 97 3.45
m = 3 DenseNet121 54 3.45
m = 4 SqueezeNet 16 3.45
m = 5 MobileNetV2 5.8 3.45

TABLE I: Summary for the energy consumption of AI training tasks.
It is assumed that clouds are homogeneous, i.e., pc

m,1 = · · · = pc
m,5.
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Fig. 2: Numerical evaluations for cumulative carbon emissions (nor-
malized) with the random carbon intensity.

emissions comparison with the queue-length based policy.3

Fig. 4 provides the comparison of average length of edge
queue m = 1 under the scenario of random carbon intensity.
Then, we conclude the followings:
• For the random case, the proposed policy with V = 0.05

reduces the cumulative carbon emissions by 63%, and also
ensures the mean-rate stability of queues.

• For the real-world carbon intensity data, the proposed policy
with V = 0.05 reduces the cumulative carbon emissions by
54%, which demonstrates the effectiveness of the carbon-
intensity based policy in the real-world scenarios.4

• Fig. 2 and Fig. 4 indicate a tradeoff between carbon emis-
sions and queueing delay provided by the underlying dirft-
plus-penalty methodology.

VI. CONCLUSION

In this paper, we proposed a online carbon-intensity based
scheduling policy for computing networks, which utilizes
the temporal and spatial information of carbon intensity to
effectively reduce carbon footprint of computing and commu-
nication procedures in the networks. Moreover, the leveraged
drift-plus-penalty methodology provides the tradeoff between
the reduction of carbon emissions and queueing delay. The
numerical analysis in our paper demonstrates that the proposed
scheduling policy can effectively reduce the overall carbon
emissions by 54% for AI model training tasks in the scenario
of real-world carbon intensity. It is critical to take the carbon-
related information into account when designing the communi-
cation and computation procedures of next-generation network
in order to achieve the objective of carbon neutrality.

3The amount of carbon emissions will scale up in the sizes of energy
consumption and energy constraint. Thus, we only focus on the normalized
cumulative carbon emissions for the analysis.

4As indicated in [21], the total carbon emissions attributed to data centers
in 2018 was 3.15×107 tons in the US. Thus, it is potential to reduce million
tons of carbon emissions via our policy.
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Fig. 3: Numerical evaluations for cumulative carbon emissions (nor-
malized) with the carbon intensity from National Grid ESO [8].
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APPENDIX A
PROOF OF LEMMA 1

We first derive an upper bound on the sum of queue-length
squares as follows:

M∑
m=1

Qe
m(t+ 1)2 +

M∑
m=1

N∑
n=1

Qc
m,n(t+ 1)2 (27)

≤
M∑
m=1

Qe
m(t)2 +

M∑
m=1

N∑
n=1

Qc
m,n(t)2 +

M∑
m=1

am(t)2

+

M∑
m=1

(
N∑
n=1

dm,n(t)

)2

+

M∑
m=1

N∑
n=1

(
dm,n(t)2 + wm,n(t)2

)
+ 2

M∑
m=1

Qe
m(t) ·

(
am(t)−

N∑
n=1

dm,n(t)

)

+ 2
M∑
m=1

N∑
n=1

Qc
m,n(t) · (dm,n(t)− wm,n(t)) (28)

where (28) follows from (7), (8) and the inequality (max(a−
b, 0) + c)2 ≤ a2 + b2 + c2 + 2a(c− b) for a, b, c ≥ 0.

By rearranging equation (27) and (28), drift ∆(t) can be
bounded as follows:

∆(t) ≤ B +

M∑
m=1

Qe
m(t) ·

(
am(t)−

N∑
n=1

dm,n(t)

)

+

M∑
m=1

N∑
n=1

Qc
m,n(t) · (dm,n(t)− wm,n(t)) (29)

where B is a constant number defined in (18). By adding
V C(t) on both sides of (29) with some rearrangements, we
finally conclude the proof.
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