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Abstract—Motivated by emerging technologies for energy ef-
ficient analog computing and continuous-time processing, this
paper proposes continuous-time minimum mean squared error
estimation for multiple-input multiple-output (MIMO) systems
based on an ordinary differential equation. Mean squared error
(MSE) is a principal detection performance measure of estimation
methods for MIMO systems. We derive an analytical MSE
formula that indicates the MSE at any time. The MSE of the
proposed method depends on a regularization parameter which
affects the convergence property of the MSE. Furthermore,
we extend the proposed method by using a time-dependent
regularization parameter to achieve better convergence perfor-
mance. Numerical experiments indicated excellent agreement
with the theoretical values and improvement in the convergence
performance owing to the use of the time-dependent parameter.

Index Terms—Ordinary differential equation, MIMO, MMSE
estimation, analog computing

I. INTRODUCTION

In the next generation wireless communication systems,
beyond 5G and 6G, massive connectivity should be achieved
with ultra high speed and large capacity communication [1].
The number of mobile devices increases every year, and the
traffic and computational loads at the base stations are becom-
ing heavier. It has been pointed out that there remain various
implementation challenges with regard to the fulfillment of the
demand for large-scale signal processing in base stations of the
next generation wireless network systems [2]. In particular,
typical signal detection methods in multiple-input multiple-
output (MIMO) systems such as zero-forcing and minimum
mean squared error (MMSE) [3] detection methods depend on
centralized processing at the base station and require a heavy
computational burden for the matrix inversion computation,
which requires, in general, a cubic time complexity. The
significant amount of signal detection loads in a base station
has become a major bottleneck in the implementation of the
next generation systems [1]. Massive parallel computation with
matrix inversion hardware [4] may be one of the solutions but
it needs tremendous energy consumption. Therefore, there are
strong demands to develop novel signal processing methods
to achieve reasonable signal detection performance with high
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energy efficiency. One possibility to ease the bottleneck would
be to reconsider analog-domain signal processing.

Recently, in the field of deep learning (DL), analog-domain
computation has regained researchers’ attention mainly from
the perspective of computational efficiency [5]–[7]. Analog op-
tical computing such as a photonic chip-based neural network
(NN) proposed in [8] also has several advantages such as high
computational efficiency, scalability, and stability. One of the
recent studies was a complex-valued NN on a photonic chip
proposed by Zhang et al. [9]. In addition to this, the optical
computation is expected to play an important role in solving
large-scale problems such as combinatorial optimizations or
probabilistic graphical models [10].

These works inspire us to exploit such analog-domain signal
processing not only for deep neural networks but also for
wireless communication networks. An analog computer is
fundamentally composed of analog adders, multipliers, inte-
grators, and other nonlinear devices, and it can simulate any
linear/nonlinear ordinary differential equations (ODEs). If one
can formulate a high-dimensional signal detection task as a
continuous-time dynamical system, it can be implemented with
analog devices, and we can expect that they will provide high
energy efficiency.

Another advantage of continuous-time dynamical systems
for a signal processing task is that they bring us an insight
into the discrete-time algorithms for solving the task, which
is a counterpart of the continuous system. Neural ODE [11]
is an ODE including a NN, i.e, its dynamics can be learned
from data. Any numerical method for solving neural ODEs
such as the Euler method and the Runge-Kutta method can
be used for discretizing a high-dimensional neural ODE.
The correspondence between the continuous neural dynamical
system and the discrete-time inference procedure opens a new
way to understand the property of the discrete-time procedure.

In this paper, we revisit analog-domain computing as a tool
for overcoming the computing bottleneck at the base station
in wireless communications and explore new signal detection
methods. We present a continuous-time MMSE signal detec-
tion method for MIMO systems, which is derived directly as a
form of ODE without any matrix inversion computation. With
the benefit of the ODE representation, we can obtain theoret-
ical analyses of the ODE-based MMSE detection method for978-1-6654-3540-6/22 © 2022 IEEE
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MIMO signals. To the best of our knowledge, there are no
directly relevant proposals and analyses in previous literature.

The main contributions of this paper are listed below:
1) We propose a continuous-time MMSE detection method

for MIMO signals. The method includes a regularization
parameter that controls convergence behavior of the es-
timation method. We show the stability of the proposed
method.

2) We derive an analytical formula of mean squared error
(MSE) in a closed form. The MSE is the principal
performance measure of signal detection methods. The
formula is based on the eigenvalue decomposition of the
Gram matrix. From the MSE formula, we immediately
derive the asymptotic MSE. These analyses enable us to
track the quality of the estimation at any time instant.

3) We introduce a time-dependent regularization parameter
to achieve improved convergence performance. We also
derive an analytical MSE formula for the time-dependent
system. Numerical experiments will show that the con-
vergence performance is improved by optimizing the
time-dependent regularization parameter.

Analog computing for high-dimensional signal processing
is a developing technology from a hardware point of view,
but we believe that the analysis of the proposed method is
a meaningful step toward forthcoming analog-domain high
dimensional signal processing in wireless communications.

II. PRELIMINARIES

A. Notations

In the rest of the paper, we use the following notations.
The superscript (·)H denotes the Hermitian transpose. The
zero vector and identity matrix are represented as 0 and
I , respectively. `2-norm is ‖ · ‖. The complex circularly
symmetric Gaussian distribution CN (0,Σ) has mean vector 0
and covariance matrix Σ. The expectation and trace operators
are E[·] and Tr[·], respectively. The diagonal matrix is given
by diag[. . .] with the diagonal elements shown in the square
brackets.

B. System Model

In this paper, we consider the following received signal
model:

y = Hs+w, (1)

where y ∈ Cm is the received signal, H ∈ Cm×n is
the channel matrix, s ∈ Cn is the transmitted signal that
follows CN (0, I), and w ∈ Cm is the measurement noise
that follows CN (0, σ2I). In the following, the channel matrix
H is assumed not to be a zero matrix.

A linear estimate ŝ := Wy for MIMO systems is char-
acterized by the matrix W ∈ Cn×m, which is determined
according to each estimation method. The matrix W for
MMSE signal detection [3] can be obtained by minimizing the
MSE given by E[‖Wy−s‖2]. The resulting MMSE estimate
is derived as

ŝ =
(
HHH + σ2I

)−1
HHy. (2)

III. MMSE ESTIMATION AS ODE
In the case of continuous-time systems, it is often difficult

to calculate the inverse of a matrix [12], so that deriving the
MMSE estimate (2) is not straightforward. This paper con-
siders a gradient dynamical system for the MMSE estimation
and describes the evolution of the estimate in continuous-time
systems.

A function

f(x) := ‖y −Hx‖2 + η‖x‖2, (3)

where η > 0, can be regarded as the objective function for
MMSE signal detection because the unique stationary point
of f(x) coincides with the MMSE estimate (2) when η = σ2

[13]. The scalar value η in (3) behaves as a regularization
parameter. The gradient vector of f(x) is given by ∇f(x) =
(HHH + ηI)x−HHy.

In this paper, we regard the objective function (3) as a
potential function of a continuous-time gradient dynamical
system. We then obtain an estimate, x(t), of the transmitted
signal s at time t ≥ 0 that evolves according to the ODE
dx(t)

dt
= −∇f(x(t)) = −(HHH + ηI)x(t) +HHy. (4)

We further assume the initial condition x(0) = HHy. We
name the proposed signal detection based on the ODE (4)
Ordinary Differential Equation-based MMSE (ODE-MMSE)
method.

A closed-form representation of the estimate x(t) can be
derived by the solution for a first-order linear ODE with
constant coefficients [14]. This gives an analytical insight into
the ODE-MMSE method discussed in the next section.

Proposition 1: The estimate of ODE-MMSE method at time
t ≥ 0 that follows the ODE (4) is represented as a random
vector depending on the transmitted signal vector s and the
noise vector w, and given by

x(t) = (Q(t) +R)(Hs+w), (5)

where

Q(t) := exp (−(HHH + ηI)t)
(
I − (HHH + ηI)−1

)
HH

and R := (HHH + ηI)−1HH.
Proof : An equilibrium point x∗ of the ODE (4) can be
obtained as the solution of the equation dx(t)

dt = 0. This
is given by x∗ = (HHH + ηI)−1HHy. The equilibrium
point is unique because the potential function (3) is strictly
convex. We define the residual error vector between x(t) and
the equilibrium point as e(t) := x(t)−x∗, and then the ODE
(4) can be replaced with

de(t)

dt
=
dx(t)

dt
= −(HHH + ηI)e(t). (6)

This is the typical first-order linear ODE with constant coeffi-
cients and can be solved with a matrix exponential [14]. The
solution is given by

e(t) = exp
(
−(HHH + ηI)t

)
e(0)

= exp
(
−(HHH + ηI)t

) (
I − (HHH + ηI)−1

)
HHy.

(7)



Therefore, the solution of (4) can be obtained by substituting
(7) and (1) for x(t) = e(t) + x∗, and by summarizing the
terms of the equation. 2

The stability of the system (6) can be evaluated via the
eigenvalues of the matrix A := HHH + ηI .

Proposition 2: The system (6) is stable.
Proof : From (6), the stability of the system depends on the
Hermitian matrix −A = −(HHH + ηI). The Hermitian
matrix HHH is positive semidefinite and the matrix ηI is
positive definite. The Hermitian matrix −A becomes negative
definite so that it only has real and negative eigenvalues. From
these facts, the system (6) is proven to be stable. 2

From Proposition 2, ODE-MMSE method has the following
property.

Proposition 3: ODE-MMSE method minimizes the objec-
tive function (3).
Proof : The equilibrium point x∗ is the unique point for min-
imizing the objective function (3) where the derivative equals
zero. From Proposition 2, the estimate of the ODE-MMSE
method is guaranteed to converge to the equilibrium point,
i.e., the minimum value. Therefore, the estimate of ODE-
MMSE method converges to the unique point for minimizing
the objective function. 2

The ODE (4) has a close relation to the complex-valued
NN [9]. This NN can be regarded as a signal detection system
for MIMO by using the transmitted and received signals as
the outputs and inputs of the NN, respectively. Moreover, the
elementwise equation of (4) has the same formulation as an
output of the complex-valued NN which is represented by
weighted sum of the complex inputs and bias. This relation
motivates the realization of the proposed ODE-MMSE method
as well as the complex-valued NN.

IV. MSE ANALYSIS

In this section, we derive an analytical MSE formula and
then verify the validity and the convergence property of the
ODE-MMSE method by computer simulation.

A. Derivation of Analytical MSE

The MSE between the estimate x(t) and the transmitted
signal s,

MSE(t) := E[‖x(t)− s‖2], (8)

is a principal performance indicator of MIMO signal detection
methods [15] but the analytical formula cannot always be
derived. For instance, in a signal detection method based on
approximate message passing, the MSE is analyzed under the
assumption of large system limit [16]. However, the proposed
method has the advantage that the analytical MSE formula
can be described by a closed-form without any constraint on
system parameters, which is shown in Theorem 1 below.

In this section, we derive an analytical MSE formula by
using eigenvalue decomposition of the Gram matrix HHH .
Suppose that the Gram matrix is decomposed as HHH =
Udiag[λ1, . . . , λn]U

H, where U ∈ Cm×m is a unitary matrix
and λ1, . . . , λn are nonnegative eigenvalues. We assume λ1 ≥

. . . ≥ λn ≥ 0 for convenience of the subsequent analyses. By
using the decomposition, the following theorem holds.

Theorem 1: The analytical MSE for ODE-MMSE method
is given by

MSE(t) =

n∑
i=1

λi(λi + η − 1)2(λi + σ2)e−2(λi+η)t

(λi + η)2

−
n∑
i=1

2λi(λi + η − 1)(η − σ2)e−(λi+η)t

(λi + η)2

+

n∑
i=1

η2 + σ2λi
(λi + η)2

. (9)

Proof : Substituting (5) for the right-hand side of (8) yields

MSE(t) = E
[
‖ ((Q(t) +R)H − I) s+ (Q(t) +R)w‖2

]
= Tr

[
((Q(t) +R)H − I)H((Q(t) +R)H − I)

]
+ σ2Tr

[
(Q(t) +R)H(Q(t) +R)

]
. (10)

The matrix exponential e−(H
HH+ηI)t in Q(t) can be diago-

nalized by using the eigenvalues of the Gram matrix as

e−(H
HH+ηI)t = Udiag[e−(λ1+η)t, . . . , e−(λn+η)t]UH. (11)

From the fact, the terms in (10) can be diagonalized and
calculated as

Tr[(Q(t) +R)H(Q(t) +R)]

=

n∑
i=1

λi
(
(λi + η − 1)e−(λi+η)t + 1

)2
(λi + η)2

(12)

and

Tr
[
((Q(t) +R)H − I)

H
((Q(t) +R)H − I)

]
=

n∑
i=1

(
λi(λi + η − 1)e−(λi+η)t − η

)2
(λi + η)2

, (13)

respectively. The detailed calculation is shown in Appendix.
The analytical formula (9) is obtained by summarizing the
terms of the matrix exponential. 2

Theorem 1 explicitly gives the analytical MSE value of
ODE-MMSE method at any time t ≥ 0. By using this formula,
we can describe an asymptotic MSE value, i.e., MSE(t) at
the asymptotic limit of t. Before that, we mention the MSE
of MMSE estimation (2) to derive the asymptotic MSE value.

Lemma 1: The MSE of MMSE estimation (2), MSEmmse :=
E[‖ŝ− s‖2], is given by

MSEmmse =

n∑
i=1

σ2

λi + σ2
. (14)

Proof : This can be derived by using MMSE estimate (2) and
the eigenvalue decomposition of the Gram matrix. 2

Lemma 2: The asymptotic MSE value for ODE-MMSE
method, MSE∞ := limt→∞MSE(t), is given by

MSE∞ =

n∑
i=1

η2 + σ2λi
(λi + η)2

. (15)



The inequality MSEmmse ≤ MSE∞ holds and the equality
holds if and only if η = σ2.
Proof : In the case of t → ∞, the first and second terms
of (9) vanish because λi ≥ 0 for i = 1, . . . , n and η > 0.
The remaining term is the asymptotic MSE value. The latter
statement is supported by the difference between (15) and (14)

MSE∞ −MSEmmse =

n∑
i=1

λi(η − σ2)2

(λi + η)2(λi + σ2)

is always nonnegative and equals 0 if and only if η = σ2. 2

From Theorem 1 and Lemma 2, we can find that the
regularization parameter η controls the convergence rate and
the asymptotic MSE value of the ODE-MMSE method. The
convergence rate largely depends on behavior of the exponen-
tial terms in (9). The larger η accelerates the decrease in the
exponential terms, but the asymptotic MSE value could be
large depending on the value of η.

B. Numerical Examples

We show numerical examples to confirm validity of the
analytical MSE formula (9) and to evaluate the influence of
the parameter η on the convergence rate and the asymptotic
MSE value (15).

First, we evaluated the validity of the analytical MSE
formula (9) by comparing with the arithmetic MSE obtained
by Monte Carlo simulation under the single realization of
the channel matrix H . Each element of the channel matrix
H was generated by independent and identical distribution
CN (0, 1). The system parameters were set to (n,m, σ2, η) =
(8, 8, 1, 0.5). The horizontal line indicates the asymptotic MSE
(15). We employed the Euler method, where the behavior
of x(t) can be determined directly by the ODE (4) and
the estimate at time tN = δN , where δ is step-size and
N = 1, 2, . . ., is given by

xN = xN−1 − δ(HHH + ηI)xN−1 + δHHy. (16)

We set δ = 10−3. For the Monte Carlo simulation, pairs of
(s,w) and the corresponding received signal y were generated
1000 times and the arithmetic MSE was computed. Fig. 1
shows the analytical MSE values of ODE-MMSE method,
the arithmetic MSE values of the Euler method, and the
asymptotic MSE value of ODE-MMSE method. The curve of
the analytical MSE formula is comparable to that of the Euler
method with sufficient accuracy. The analytical MSE value
converges to the asymptotic MSE value. The results strongly
support the validity of the derivation of those theoretical results
presented in Sect. IV-A.

Second, we evaluated the influence of the regularization
parameter η on the convergence behavior of ODE-MMSE
method. Specifically, we focused on the transitional behavior
of ODE-MMSE method. The system parameters were set to
(n,m, σ2) = (32, 32, 1). Fig. 2 shows the analytical MSE
values with η = 0.05, σ2, and 10. The MSE with η = 10
rapidly decreases but increases in the middle and finally show
the higher asymptotic MSE value at the steady-state. The result

Fig. 1. Comparison of analytical MSE of ODE-MMSE with the arithmetic
MSE of the Euler method, (n,m, σ2, η) = (8, 8, 1, 0.5).

Fig. 2. Comparison of analytical MSE with different choices of the regular-
ization parameter η, (n,m, σ2) = (32, 32, 1).

is consistent with the interpretation of (9) where larger η
accelerates decay of the exponential terms. On the other hand,
the decrease of the MSE with η = 0.05 is the slowest but
the MSE is lower in 0.5 < t < 1 than that of η = 10. The
asymptotic MSE is, however, the highest. From these results,
the convergence behavior largely depends on the choice of the
regularization parameter η and the superiority and inferiority
of the MSE values can be switched depending on the time of
interest.

V. TIME-DEPENDENT CONTROL OF REGULARIZATION
PARAMETER

This section introduces time-dependent control of the reg-
ularization parameter aiming at the improvement of the con-
vergence property of ODE-MMSE method.

A. Derivation of Analytical MSE

By the theoretical and simulation results in the previous
section, we found that the regularization parameter η sig-
nificantly affects the convergence property of ODE-MMSE
method. Theorem 1 and Fig. 2 indicate that the larger η
yields faster convergence of ODE-MMSE method but yields



the worse MSE value than the MMSE estimation (MSE∞
with η = σ2). From these results, an adoption of time-
dependent control of the regularization parameter η is expected
to hold both properties of faster convergence and the better
asymptotic MSE value. In this section, we improve ODE-
MMSE method to be more flexible by employing the time-
dependent regularization parameter η(t).

We consider an estimate of s that evolves according to the
following ODE

dx(t)

dt
= −(HHH + η(t)I)x(t) +HHy. (17)

The expression η(t) implies that the regularization parameter
can vary depending on time t. The initial condition is the same
as that in (4), i.e., x(0) = HHy. We name the proposed signal
detection based on the ODE (17) ODE-MMSE with time-
dependent regularization parameter (tODE-MMSE) method.

The ODE (17) can be solved by using variation of parame-
ters method [14] because the matrix A(t) := HHH + η(t)I
is commutative.

Proposition 4: The estimate of tODE-MMSE method at time
t ≥ 0 that follows the ODE (17) is given by

x(t) = exp
(
−HHHt− ξ(t)I

)
×
(
I +

∫ t

0

eH
HHu+ξ(u)Idu

)
HHy, (18)

where ξ(T ) :=
∫ T
0
η(s)ds.

Even in this case, an analytical MSE formula for (18) can
be derived in the same way as in Sect. IV-A.

Theorem 2: The analytical MSE for the tODE-MMSE
method is given by

MSE(t) =

n∑
i=1

λi(λi + σ2)

(
1+

∫ t

0

eλiu+ξ(u)du

)2

e−2(λit+ξ(t))

− 2

n∑
i=1

λi

(
1 +

∫ t

0

eλiu+ξ(u)du

)
e−(λit+ξ(t)) + n.

(19)

Proof : MSE can be derived in the same procedure for The-
orem 1 by using the eigenvalue decomposition of the Gram
matrix. Note that ξ(t) is a scalar and that an integral in terms
of a matrix is applied elementwise. 2

We can obtain the result of Theorem 1 by setting η(t) =
η. The analytical formula (19) has a complicated form, but,
like the case of the ODE-MMSE method, the form of time-
dependent function η(t) influences behavior of the estimation.

B. Numerical Examples
We show numerical examples to confirm validity of the

analytical MSE formula (19) and to compare the convergence
performance of tODE-MMSE method with that of ODE-
MMSE method.

The integral ξ(t) =
∫ t
0
η(s)ds is analytically tractable in

some cases. For convenience, we use the following parametric
model as the function η(t),

η(t) =
1

αt+ ε
+ σ2, (20)

Fig. 3. Comparison of analytical MSE of tODE-MMSE with the arithmetic
MSE of Euler method, (n,m, σ2) = (8, 8, 1).

where α is a parameter, and ε is a small number fixed to
10−8 in this paper. The integral can be calculated as ξ(t) =
1
α log

(
αt+ε
ε

)
+ σ2t. The function η(t) converges to σ2 at the

limit of t→∞.
We evaluated the validity of the analytical MSE formula

(19) by the comparison with the arithmetic MSE obtained by
Monte Carlo simulation under the single realization of the
channel matrix H . We employed the Euler method where η
in the equation (16) was replaced with η(tN ). The received
and transmitted signals and the channel matrix were generated
in the same way as in Sect. IV-B. We used the tractable
regularization function (20) with α = 500. The system
parameters were set to (n,m, σ2) = (8, 8, 1). Fig. 3 shows
the MSE values at time t of the methods. The curve of the
analytical MSE formula is comparable to that of the Euler
method, so that the validity of the analytical formula (19) is
supported.

Finally, we present an example of using the analytical
MSE formula (19) of tODE-MMSE method for improving
the convergence property and compare the performance with
that of ODE-MMSE method. We have found in Fig. 2 that
the performance of the proposed method largely depends on
the choice of the regularization parameter. It is expected that
we can improve the convergence property by tODE-MMSE
method with an appropiate choice of the function η(t). There
are various possible indicators to evaluate the goodness of
convergence performance. In this paper, we employed the
functional

F (ξ(t)) :=

∫ T

0

MSE(t)dt

as the indicator. If a method holds both properties of faster
convergence and lower error, the value of the functional
becomes smaller. In the following, we optimize the parameter
by minimizing the functional value. Specifically, we choose
the parameter that minimizes the functional by employing the
grid search.

We set α = 1, 10, 50, 100 as the candidates for the param-
eter. The system parameters were set to (n,m, σ2) = (8, 8, 1)



TABLE I
VALUES OF FUNCTIONAL F (α).

α 1 10 50 100
F (α) 2.9136 2.4127 12.4011 17.5674

Fig. 4. The analytical MSE curves with different values of α, (n,m, σ2) =
(8, 8, 1).

and T = 0.8. Table I summarizes the evaluated values of
F (ξ(t)) = F (α). From the table, the value became the lowest
with α = 10. Fig. 4 shows the MSE of MMSE estimate
MSEmmse, the analytical MSE values of ODE-MMSE method
with η = σ2, and those of tODE-MMSE method with different
values of α. From the figure, all the MSE curves of tODE-
MMSE method converge to the value of MSEmmse faster
than ODE-MMSE method. Moreover, the convergence of the
method with α = 10, which shows the lowest functional value
in Table I, is the fastest among the candidates. This indicates
that we can find an improved estimation method by the grid
search using the functional value.

VI. CONCLUSIONS

Analog computing and continuous-time processing are gain-
ing attention from the perspective of computational efficiency
of DL and can be solutions to computational load problems
in the next generation wireless communication systems. In-
spired by this background, we have considered continuous-
time MMSE signal detection methods for MIMO systems. We
derived the continuous-time estimate as ODE and proposed
ODE-MMSE method. The analytical MSE formula is tractable
by using eigenvalue decomposition of the Gram matrix of the
channel matrix. Simulation results showed the validity of the
analytical MSE formula and the significant influence of the
choice of the parameter η on the convergence performance.
Moreover, we extended the ODE-MMSE method by intro-
ducing time-dependent parameter η(t) and proposed tODE-
MMSE method. The validity of the analytical MSE formula
for tODE-MMSE method and its convergence property were
confirmed via computer simulation.

As a further development of this research, we can consider
deriving a novel discrete-time algorithm by discretization of

an evolution described by ODE. The approach in [11] for
obtaining output at any discrete time of NN from ODE can
be applied to the development of signal detection algorithms.
The novel discrete-time signal detection algorithm is expected
to be derived by considering ODE for signal detection.

APPENDIX

A. Derivation of Theorem 1

The matrix B(t) := Q(t) +R can be calculated as

B(t) =
(
exp (−(HHH + ηI)t)

(
I − (HHH + ηI)−1

)
+ (HHH + ηI)−1

)
HH (21)

= U
(
diag

[
e−(λ1+η)t

(
1− 1

λ1 + η

)
, . . . ,

e−(λn+η)t

(
1− 1

λn + η

)]
+ diag

[
1

λ1 + η
, . . . ,

1

λn + η

])
UHH (22)

= Udiag
[e−(λ1+η)t(λ1 + η − 1) + 1

λ1 + η
, . . . ,

e−(λn+η)t(λn + η − 1) + 1

λn + η

]
UHH (23)

From (10),

Tr
[
((Q(t) +R)H − I)H((Q(t) +R)H − I)

]
= Tr

[
diag

[((
e−(λ1+η)t(λ1 + η − 1) + 1

λ1 + η

)
λ1 − 1

)2

, . . . ,

((
e−(λn+η)t(λn + η − 1) + 1

λn + η

)
λn − 1

)]]
(24)

=

n∑
i=1

(
λi(λi + η − 1)e−(λi+η)t − η

)2
(λi + η)2

(25)

and

Tr[(Q(t) +R)H(Q(t) +R)]

= Tr

[
diag

[(e−(λ1+η)t(λ1 + η − 1) + 1

λ1 + η

)2

λ1, . . . ,(
e−(λn+η)t(λn + η − 1) + 1

λn + η

)2

λn

]]
(26)

=

n∑
i=1

λi
(
(λi + η − 1)e−(λi+η)t + 1

)2
(λi + η)2

. (27)



VII. DERIVATION OF LEMMA 1

MSEmmse

= E[‖
(
HHH + σ2I

)−1
HH(Hs+w)− s‖2] (28)

= E

[∥∥∥((HHH + σ2I
)−1

HHH − I
)
s

+
(
HHH + σ2I

)−1
HHw

∥∥∥2] (29)

= Tr
[((

HHH + σ2I
)−1

HHH − I
)H

·
((

HHH + σ2I
)−1

HHH − I
)]

+ σ2Tr
[((

HHH + σ2I
)−1

HH
)H

·
((

HHH + σ2I
)−1

HH
)]

(30)

=
n∑
i=1

(
λi

λi + σ2
− 1

)2

+ σ2
n∑
i=1

(
λi

(λi + σ2)2

)
(31)

=

n∑
i=1

σ2

λi + σ2
(32)

VIII. DERIVATION OF THEOREM 2

The matrix in (18) can be decomposed as

exp
(
−HHHt− ξ(t)I

)(
I +

∫ t

0

eH
HHu+ξ(u)Idu

)
= U

(
diag

[
e−(λ1t+ξ(t))

(
1 +

∫ t

0

eλ1u+ξ(u)du

)
, . . . ,

e−(λnt+ξ(t))

(
1 +

∫ t

0

eλnu+ξ(u)du

)])
UH. (33)

By using this, the analytical MSE can be derived in the same
way as Theorem 1.
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