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Abstract—With the aim of accomplishing intelligence tasks,
semantic communications transmit task-related information only,
yielding significant performance gains over conventional com-
munications. To guarantee user requirements for different types
of tasks, we perform the semantic-aware resource allocation in
a multi-cell multi-task network in this paper. Specifically, an
approximate measure of semantic entropy is first developed to
quantify the semantic information for different tasks, based on
which a novel quality-of-experience (QoE) model is proposed.
We formulate the QoE-aware semantic resource allocation in
terms of the number of transmitted semantic symbols, channel
assignment, and power allocation. To solve this problem, we first
decouple it into two independent subproblems. The first one is to
optimize the number of transmitted semantic symbols with given
channel assignment and power allocation, which is solved by
the exhaustive searching method. The second one is the channel
assignment and power allocation subproblem, which is modeled
as a many-to-one matching game and solved by the proposed low-
complexity matching algorithm. Simulation results demonstrate
the effectiveness and superiority of the proposed method on the
overall QoE.

Index Terms—Quality of experience, resource allocation, se-
mantic communications, semantic-aware networks.

I. INTRODUCTION

Different from conventional communications that focus on
the engineering problem regardless of semantics and transmis-
sion tasks, semantic communications are task-oriented where
only task-related information is extracted and transmitted [1].
To be specific, different types of tasks, including single-modal
tasks, e.g., text transmission [2] and image retrieval [3], and
multimodal tasks, e.g., visual question answering (VQA) [?],
require different semantic transceivers to ensure the supe-
rior performance in transmission reliability and efficiency.
Therefore, the conventional resource allocation model is not
applicable and the resource allocation for such a semantic-
aware network need to be revisited.

Some researchers have made several preliminary studies
on this issue. In [5] and [6], the importance weights of the
extracted semantic features are taken into account. Particularly,
in addition to the conventional optimization variables, the
partial semantic information to be transmitted was optimized
in [5] for the text transmission task. The compression ratio of
semantic features has been investigated in [6] for the image
classification task. However, both works aimed to maximize
the task performance, without evaluating the semantic com-

munication efficiency. Although Xia et al. [7] maximized the
system throughput in message for text transmission, consider-
ing the dynamic background knowledge matching condition,
they optimized the resource allocation at the message level
rather than the semantic level.

To investigate the resource allocation at the semantic level,
our prior work [8] has defined the semantic transmission
rate (S-R) and the semantic spectral efficiency (S-SE), and
formulated a problem to maximize the overall S-SE. Neverthe-
less, since the parameters related to the semantic information
quantification are constants for a single task and are ignored
to obtain the solutions, the work can only be used to allocate
resources for the users with the same task. To cope with the
coexistence of multiple tasks, we conduct further study on the
semantic-aware resource allocation in this paper.

Particularly, since the performance of semantic communi-
cations depends on whether the user can complete the task,
focusing more on the subjective user experience, semantic
communications inherently have the advantage of enhancing
quality-of-experience (QoE) [9], which considers both objec-
tive quality-of-service (QoS) and subjective user experience
[10]. In this regard, we study the semantic-aware resource
allocation based on the QoE metric in a multi-cell multi-task
network. The main contributions of this paper are summarized
as follows:
• A QoE-aware resource allocation problem is formulated

for semantic communication networks. Specifically, based
on the developed approximate semantic entropy, a novel
QoE model is used to formulate the optimization problem
in terms of the number of transmitted semantic symbols,
channel assignment, and power allocation.

• The formulated problem is decoupled into two sub-
problems, which are solved by the exhaustive search-
ing method and a low-complexity matching algorithm,
respectively.

• Simulation results verify the superiority of the proposed
QoE-aware semantic resource allocation method in terms
of the overall QoE against the baselines.

Notation: Bold-font variables represent matrices and vec-
tors. Calligraphic-font variables represent sets. The super-
script, HH, represents the conjugate transpose of H. E(x) is
the expectation of x. In addition, x ∼ U(a, b) means that
x follows a uniform distribution over the interval [a, b], and
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x ∼ N(µ, σ2) means that x follows a normal distribution with
mean µ and covariance σ2.

II. SYSTEM MODEL

In this article, we consider an uplink cellular network with
B coordinated cells, where each cell has a base station (BS)
with Nr receiving antennas and a set of single antenna users.
Let Ub denote the user set in the b-th cell. We assume that B
BSs form a cooperation cluster, which can exchange channel
state information (CSI) and scheduling information with a
central controller through high-speed low-delay fiber backhaul
links [11]. In addition, we consider the coexistence of different
intelligence tasks in the network, including single-modal tasks
and multimodal tasks. Task-specific semantic communication
transmitters and receivers are equipped at users and BSs,
respectively. The transmission model and semantic commu-
nication models are introduced below.

A. Transmission Model

In order to fully exploit spectrum resources, we assume that
the B coordinated cells share the same channel set denoted
by M, and each user can occupy at most one channel with
bandwidth W . In each cell, the channels are orthogonally
allocated to users to eliminate the intra-cell interference. With
the maximal ratio combining (MRC) detection at the BS, the
receiving signal-to-interference-plus-noise ratio (SINR) of user
u, u ∈ Ub at the b-th BS can be expressed as

γbu =
∑
m∈M

αu,mpu|Wb
u,mHb

u,m|2

‖Wb
u,m‖2σ2 + Ibu,m

, (1)

where αu,m ∈ {0, 1}, αu,m = 1 if channel m ∈ M is
allocated to user u and αu,m = 0 otherwise, pu is the transmit
power of user u, and Hb

u,m is the Nr×1 channel matrix from
user u to the b-th BS over channel m. Accordingly, the MRC
detection matrix can be obtained by Wb

u,m = (Hb
u,m)H. In

(1), σ2 is the noise power spectral density and Ibu,m is the
interference experienced by user u over channel m from the
adjacent cells, that is

Ibu,m =
∑

b′∈B,b′ 6=b

∑
u′∈Ub′

αu′,mpu′ |Wb
u,mHb

u′,m|2. (2)

B. Semantic Communication Models

We focus on two types of intelligence tasks in this paper,
including a single-modal task and a bimodal task. However,
the proposed algorithm can be extended to the case of mul-
tiple multimodal intelligence tasks easily. Assume that NSi

single-modal users and NBi bimodal user pairs are randomly
deployed in the considered network, and the b-th cell has N b

Si

single-modal users and N b
Bi bimodal user pairs. For ease of

clarification, a single-modal user or a bimodal user pair is
regarded as a user group. The index set of all user groups in
the b-th cell is given by

Qb = {1, 2, . . . , q, . . . , |Qb|}
= {1, 2, . . . , N b

Bi, N
b
Bi + 1, . . . , N b

Bi +N b
Si},

(3)

where |Qb| = N b
Bi + N b

Si. Accordingly, the q-th user group
contains a bimodal user pair when q ≤ N b

Bi, and it contains a
single-modal user when q > N b

Bi. Besides, we denote the set
of all user groups in the b-th cell by Gb = {Gbq}q∈Qb where
Gbq ⊆ Ub represents the user set of the q-th group.

For the single-modal task, we take text transmission task as
an example. Specifically, DeepSC [2] is adopted, where the
sentence generated by the user is first mapped to semantic
symbols that can be directly transmitted over the physical
channel by the DeepSC transmitter, and then recovered by
the DeepSC receiver at the BS. Moreover, semantic similarity
is used to evaluate the performance, which is a function of the
number of transmitted semantic symbols and SINR [8]. Thus,
the semantic similarity of the user group Gbq , q > N b

Bi can be
expressed as ξbq = fSi(ku, γ

b
u), u ∈ Gbq where ku is the average

number of transmitted semantic symbols of user u.
For the bimodal task, we take VQA task as an example and

adopt the developed DeepSC-VQA model [?]. This task in-
volves two users for text and image transmission, respectively.
The two users first extract the semantic symbols from the text
and image information through the DeepSC-VQA transmitter,
respectively, and then send them to the BS. The received
semantic symbols of text and image will be fused by the
DeepSC-VQA receiver at the BS to predict the answer. As the
two users jointly decide the task performance, the answer ac-
curacy of this task could be modeled as a function with respect
to the numbers of transmitted semantic symbols and the SINR
of the two users, i.e., ξbq = fBi(kut

, kui
, γbut

, γbui
), ut, ui ∈ Gbq ,

where ut and ui represent the user for text transmission and
the one for image transmission, respectively.

III. PROBLEM FORMULATION

In this section, we first develop a method to obtain an
approximate measure of semantic entropy, based on which a
novel QoE model for semantic communications is proposed.
Then, the semantic resource allocation is formulated as a QoE
maximization problem.

A. Approximate Measure of Semantic Entropy

Information entropy measures the information based on the
statistical characteristic of source symbols, while semantic
entropy directly quantifies the semantic information of the
source and plays a significant role in evaluating semantic
communication efficiency and resource allocation. However,
a common semantic information metric is still missing, and
most existing metrics are non-calculable [1].

Since the semantic information carried by a source depends
on the specific task, semantic entropy should be a measure
with respect to the source and the task. Following Chattopad-
hyay et al. [12], we define the semantic entropy as following:

Definition 1. Given semantic source X , semantic entropy is
defined as the minimum number of semantic symbols about
the data X ∈ X that are sufficient to predict task Y , i.e.,

H(X;Y )
∆
= min

E
E
(∣∣CodeE(X)

∣∣)
s.t. P (Y |CodeE(X)) = P (Y |X),

(4)



where CodeE(x) denotes the semantic symbol vector extracted
from X with the semantic encoder E, and P (Y |X) is the
conditional probability of Y given X .

From Definition 1, the semantic entropy of X given Y is
actually defined as an expected value over the whole data
set X , i.e., the semantic entropy is a constant for the same
task and dataset, which shares a similar philosophy as [8].
However, it is intractable to find an optimal E to derive the
semantic entropy. To obtain a measure that is both meaningful
and manipulable, we utilize a well-designed deep learning
(DL) model as the semantic encoder to obtain the approximate
semantic entropy for a task, which can be expressed as

H̃(X;Y )
∆
= minE

(∣∣CodeEDL(X)
∣∣)

s.t. P (Y |X)− P (Y |CodeEDL(X)) < ε,
(5)

where the constraint indicates that the gap between P (Y |X)
and P (Y |CodeEDL(X)) can not exceed ε.

According to the aforementioned method, the approximate
semantic entropy of the considered tasks can be derived
based the corresponding DL models. In particular, we first
remove the channel models from DeepSC and DeepSC-VQA,
then train them under different settings of the number of
semantic symbols, and finally find the minimum number of
semantic symbols that can guarantee a performance very close
to the upper bound. Furthermore, we define the unit of the
approximate semantic entropy as sut as in [8].

B. QoE Model for Semantic Communications

We formulate the QoE model based on two objective
metrics, semantic accuracy and semantic rate. The former,
the accuracy of message transmission, corresponds to the
semantic similarity in the considered single-modal task and
the answer accuracy in the considered bimodal task. The latter
is defined as the amount of semantic information emitted to
the transmission medium per second, measured in suts/s. The
semantic rate of the single-modal user u ∈ Gbq , q > N b

Bi is
given as

ϕu =
H̃Si

ku/W
, (6)

where H̃Si represents the DeepSC [2] based approximate
semantic entropy. The semantic rate of bimodal users ut and
ui, ut, ui ∈ Gbq , q ≤ N b

Bi are expressed as

ϕut =
H̃Bi,t

kut
/W

, and ϕui =
H̃Bi,i

kui
/W

, (7)

respectively, where H̃Bi,t and H̃Bi,i represent the DeepSC-
VQA [?] based approximate semantic entropy for text trans-
mission user and image transmission user, respectively.

Note that the semantic rate is significantly different from
the S-R that is defined as the amount of successfully delivered
semantic information per second in [8]. With Γu denoting the
S-R, we have Γu = ϕuξq , i.e., the difference between them
lies in that whether the semantic accuracy is considered. The
S-R couples semantic accuracy and semantic rate. However,

from the perspective of users, accuracy and efficiency of
message transmission are different, and users may have their
own preferences on them depending on the applications. For
example, some users prefer high accuracy but are delay-
tolerated, while others may desire higher semantic rate but
do not need a very high accuracy. In order to reflect the
QoE requirements of users more properly, we consider the
two parameters to formulate the QoE model as

QoEbq =
∑
u∈Gb

q

wuG
R
u + (1− wu)GA

u

=
∑
u∈Gb

q

wu

1 + eβu(ϕreq
u −ϕu)

+
(1− wu)

1 + eλu(ξrequ −ξbq)
,

(8)

where QoEbq is the QoE of the q-th user group in the b-
th cell, wu and (1 − wu) are the weights of semantic rate
and semantic accuracy at user u respectively, GR

u and GA
u

are the scores of semantic rate and semantic accuracy at user
u respectively, and βu and λu represent the growth rates of
GR
u and GA

u respectively. Additionally, ϕreq
u and ξreq

u represent
the minimum semantic rate and semantic accuracy to acquire
the 50% of the scores, respectively. Due to the simplicity
and generality, we choose the logistic function to model the
correlation between QoE and QoS metrics while other QoE
function types are applicable as well for the proposed method,
such as MOS-based function or exponential function. Here,
QoEbq , GR

u , and GA
u are between 0 and 1.

C. Problem Formulation

In this part, we formulate the semantic-aware resource
allocation with the goal of maximizing the overall QoE of all
users in terms of channel assignment, power allocation, and
the number of transmitted semantic symbols. The optimization
problem can be expressed as follows:

(P0) max
{{αu,m},{pu},{ku}}

∑
b∈B

∑
q∈Qb

QoEbq (9)

s.t. C1 : αu,m ∈ {0, 1}, ∀u ∈ Ub, ∀m∈M, ∀b∈B,
(9a)

C2 :
∑
u∈Ub

αu,m ≤ 1, ∀m ∈M, ∀b∈B, (9b)

C3 :
∑
m∈M

αu,m ≤ 1, ∀u ∈ Ub, ∀b∈B, (9c)

C4 :
∑

u∈Gb
q ,q≤Nb

Bi

αu,m ∈ {0, 2}, ∀m ∈M, ∀b∈B,

(9d)

C5 : ku ∈ Ku, ∀u ∈ Ub, ∀b∈B, (9e)

C6 : 0 ≤ pu ≤ Pmax, ∀u ∈ Ub, ∀b∈B, (9f)

C7 : GR
u , G

A
u ≥ Gth, ∀u ∈ Ub, ∀b∈B, (9g)

where C1 constrains the range of αu,m, C2 ensures the
orthogonal channels for each user in a cell, C3 restricts each
user to occupy at most one channel, C4 ensures that a bimodal
user pair will be allocated no channel or two channels as only



one channel assigned to one of them will lead to a failure, C5

specifies the range of the number of transmitted semantic sym-
bols for each user, and Ku = KSi,KBi,t, and KBi,i when u is
the user with the single-modal task, the user with the bimodal
task for text transmission, and the user with the bimodal task
for image transmission, respectively, C6 constrains the range
of transmit power, and C7 limits the minimum required scores
of semantic rate and semantic accuracy.

IV. A MATCHING THEORY BASED SOLUTION

In this section, we first decouple (P0) into two independent
subproblems, and then solve them respectively to obtain a
suboptimal solution.

A. Problem Decoupling

By observing (P0), the optimization variables, {αu,m} and
{pu}, jointly decide the SINR γbu. Additionally, the objective
function can be expressed as a function with respect to γbu and
ku. Therefore, given γbu, the optimal {ku} for each Gbq can be
obtained by solving the following optimization problem:

(P1) max
{ku},u∈Gb

q

QoEbq (10)

s.t. C5 and C7.

Then the channel assignment and power allocation problem
can be written as

(P2) max
{{αu,m},{pu}}

∑
b∈B

∑
q∈Qb

QoEbq (11)

s.t. C1,C2,C3,C4, and C6.

Therefore, for each option of {{αu,m}, {pu}}, the SINR of
each user in the network can be calculated using equation
(1). Then the optimal ku and the corresponding maximum
QoEbq can be obtained by solving (P1). Since ξbq can only be
obtained by the look-up table method, the exhaustive searching
method is utilized to solve (P1) here. Note that the complexity
is acceptable due to the limitation of |Ku|. Finally, with the
obtained maximum QoEbq , we can solve (P2) to get the
solutions, which will be detailed in the next subsection.

B. Channel Assignment and Power Allocation Subproblem

To cope with the tight coupling among users in multiple
cells and those in a bimodal user pair, we construct a matching
game to model (P2) and propose a low-complexity matching
algorithm to obtain the stable matching in this part.

Problem (P2) is a three-sided many-to-one matching game
among users, channels, and power levels, where each user
can select at most one channel and one power level while
each channel or power level can serve multiple users. For the
convenience of algorithm implementation, we put all combina-
tions of channels and power levels together to form a resource
set T = {(m, p),∀m ∈ M,∀p ∈ P} where P denotes the
power set. Then the three-sided many-to-one matching can be
converted to a two-sided matching. In addition, since the QoE
of each user depends not only on the opposite partners to be
matched, but also on the users of other cells sharing the same

channel. More specifically, this is a matching problem with
externalities. The idea of swap matching [13] can be used for
reference to obtain the solution.

Considering two cases may exist in each cell, i.e., |Ub| ≤
|M| and |Ub| > |M|, the markets of different sides will be
focused on to maximize the overall QoE. In particular, the
proposed algorithm aims to keep the utility of users increasing
by the swap operation to achieve the stable matching for the
first case, while focuses on the utility of channels for the
second case.

Case 1: |Ub| ≤ |M|. Firstly, we add |M| − |Ub| virtual
single-modal users to enable every channel to match with a
user, making the swap operation easier. Then, the user group
set in the b-th cell can be updated as GbA = Gb ∪ Ub0 , where
Ub0 is the established virtual single-modal user set with |Ub0 | =
|M|−|Ub|. Correspondingly, we denote the updated index set
of GbA as QbA.

As the users belonging to a user group jointly decide the task
performance, a bimodal user pair (rather than an individual
bimodal user) or a single-modal user is regarded as a selfish
and rational player to make decisions, i.e., there are totally
|GbA| players in the b-th cell and each of them is denoted by
Gbq ∈ GbA. Clearly, the resource sets of the players with the
single-modal task and those with the bimodal task are differ-
ent, which are TSi = T and TBi = {(m,m′, p, p′),∀m,m′ ∈
M,m 6= m′,∀p, p′ ∈ P}, respectively. Thus, by denoting T bq
as the resource set of the player Gbq , we have T bq = TBi when
q ≤ N b

Bi and T bq = TSi, otherwise.
Then, we can define a matching Φ as a function from set

GA ∪ TA mapping into set GA ∪ TA, where GA =
⋃
b∈B GbA

and TA = TSi ∪ TBi. For a matching pair (Gbq , t), t ∈ TA, we
have Φ(Gbq) = t and Φ(t) = Gbq . The utility function of player
Gbq under matching Φ is defined as

U bq (Φ) =

{
QoEbq , if q ∈ Qb;
0, otherwise.

(12)

Based on this, whether the considered matching is stable can
be judged from the following definition.

Definition 2. A matching Φ is stable if and only if, for each
player Gbq ∈ GbA,∀b ∈ B with Φ(Gbq) = t, there does not exist
a blocking matching ΦB

q such that, ∃t′ ∈ T bq :

1) ∀i ∈ G(t) ∪ G(t′), U
b
i (Φ

(t,t′)
q ) ≥ U bi (ΦB

q ) and
2) ∃i ∈ G(t) ∪ G(t′), U

b
i (Φ

(t,t′)
q ) > U bi (ΦB

q ),
where G(t) is formed by all players who have at least one
same channel as those included in t, and Φ

(t,t′)
q represents the

swap matching, where the player Gbq swap t with t′, the players
who are in both G(t′) and the b-th cell swap their channels
accordingly, and the remaining players keep unchanged.

Case 2: |Ub| > |M|. Evidently, if we follow the solution for
Case 1, no channel will be tentatively matched with |Ub|−|M|
of all users even if the overall QoE will increase. To deal with
this problem, we focus on the market of channels to achieve
the stable matching. However, when a channel is matched with



a user with the bimodal task, its utility depends not only on
which user it matches but on which channel the other user in
the same group matches. Hence, we propose the user groups
to perform the swap operation but the channels to make the
swap decision based on their utility changes.

Similar to Case 1, we first add |Ub| − |M| virtual channels
to enable the swap operation at each user. Then, the channel
set in the b-th cell can be updated asMb

A =M∪Mb
0, where

Mb
0 is the established virtual channel set with |Mb

0| = |Ub|−
|M|. Then, the resource sets can be reformed in the similar
manner but based on Mb

A. For simplicity, we use the same
notation T bq to denote the resource set of each player Gbq ∈ Gb.
Furthermore, the utility function of channel m ∈ Mb

A in the
b-the cell under a matching Φ is defined as

U bm(Φ) =


0, if m ∈Mb

0;

U bµ(m)(Φ)/2, if m ∈Mb, µ(m) ≤ N b
Bi;

U bµ(m)(Φ), if m ∈Mb, µ(m) > N b
Bi.

(13)

where µ(m) ∈ Qb represents the index of the player that
matches channel m. When the player is a bimodal user pair,
U bm(Φ) is set as the half of the utility of the player, and when
the player is a single-modal user, U bm(Φ) is equal to the utility
of the player. Then, we give the following definition.

Definition 3. A matching Φ is stable if and only if, for each
channel m ∈ Mb

A with µ(m) ∈ Qb, there does not exist a
blocking matching ΦB

m such that, ∃t′ ∈ T bµ(m):

1) ∀i ∈M(G), U
b
i (Φ

(t,t′)
µ(m)) ≥ U

b
i (ΦB

m) and

2) ∃i ∈M(G), U
b
i (Φ

(t,t′)
µ(m)) > U bi (ΦB

m),
whereM(G) is formed by all channels of all players in G,G =
G(t) ∪ G(t′).

Based on the two definitions, we develop an efficient
matching algorithm to obtain the stable matching, as shown in
Algorithm 1. The proposed algorithm starts by a random initial
matching. Then the users will search their resource set to find
the blocking matching and thus update the current matching.
Once no blocking matching is found, the stable matching Φ
will be the output.

Remark 1: The worst-case complexity of Algorithm 1 is
as O(V × |B| × ((|GbA| − N b

Bi) × |Mb
A| × |P| + N b

Bi ×(
2
|Mb

A|
)
×|P|2)) where V is the number of iterations. However,

the complexity of exhaustive searching method here is as
O(( max(|Ub|,M)!

min(|Ub|,M)!
× |P||Ub|)|B|).

Remark 2: Since the utility of user groups or channels is
bounded by 1 and will increase monotonically by the swap
operation, Algorithm 1 will terminate to a final matching after
a finite number of iterations.

V. SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the performance of the proposed QoE-aware resource alloca-
tion method in a multi-cell multi-task network.

We consider three cells in the simulation, where users are
randomly deployed. The radius of each cell is set as 500 m.

Algorithm 1: Proposed Matching Algorithm for
Channel Assignment and Power Allocation

Input: B, Ub, Mb
A, GbA, T bq , ∀q ∈ QbA, ∀b ∈ B.

1 Initialization: For each cell b ∈ B, initial the matching
channels and power levels of all users with a
permutation of all channels and the minimum power
level, respectively. Denote the current matching as Φ.

2 repeat
3 for all b ∈ B do
4 for all Gbq ∈ GbA do
5 t = Φ(Gbq);
6 for all t′ ∈ T bq , t′ 6= t do
7 if |Ub| ≤ |M| then
8 If Φ is a blocking matching

according to Definition 2, update
the matching as Φ = Φ

(t,t′)
q ;

otherwise, keep the current
matching state.

9 else
10 If Φ is a blocking matching

according to Definition 3, update
the matching as Φ = Φ

(t,t′)
µ(m) where

m is the channel in t; otherwise,
keep the current matching state.

11 until No blocking matching is found;
Output: the stable matching Φ.

Each BS is equipped with two receiving antennas and each
user is with single antenna. For the channel model, both large-
scale fading, including pathloss and shadowing, and small-
scale Rayleigh fading are considered. The adopted pathloss
model is 128.1 + 37.6lg[d(km)] dB and the shadowing factor
is set as 6 dB. The bandwith of each channel is W = 180 kHz.
The noise power spectral density is σ2 = −174 dBm/Hz.
In the simulation, we consider the available power levels
as P = {−10,−5, 0, 5, 10, 15, 20} dBm. Meanwhile, each
user generates its QoE-related parameters as wu ∼ U(0, 1),
ξreq
u ∼ U(0.8, 0.9), and λu ∼ N(55, 2.52). In addition,

for text transmission users, we set ϕreq
u ∼ U(50, 70) in

ksuts/s and βu ∼ N(0.2, 0.052). For image transmission
users, we set ϕreq

u ∼ U(80, 100) in ksuts/s and βu ∼
N(0.1, 0.022). The threshold of the scores is set as Gth =
0.5. Further, we run the DeepSC model and DeepSC-VQA
model to obtain the mapping relations ξbq = fSi(ku, γ

b
u)

and ξbq = fBi(kut, kui, γ
b
ut, γ

b
ui) based on the settings as

KSi = {1, 2, . . . , 20}, KBi,t = {2, 4, 6, 8, 10}, and KBi,i =
{394, 788, 1576, 2364, 3152}, respectively.

We first verify the superiority of the developed QoE based
formulation. Fig. 1 compares the QoE maximization and S-R
maximization methods [8]. Here, the upper bound is obtained
by assuming that the maximum number of users in each cell,
i.e., max(|Ub|, |M|), can be served and their QoE can reach 1.
Thus the upper bound is irrelevant to Gth, which is compared
to demonstrate the effectiveness of the proposed method. As
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Fig. 1. The overall QoE of the proposed QoE maximization method and the
S-R maximization method [8] with (NSi, NBi) = (6, 6) and |M| = 6.
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Fig. 2. The overall QoE of different algorithms with (NSi, NBi) = (6, 6).

Gth increases, the overall QoE of both methods decreases
due to the tighter restriction. However, the overall QoE of the
proposed method keep above 13 while the S-R maximization
method shows worse performance, especially when Gth > 0.5.
This implies that the proposed method can better adapt to the
changes in the user requirements.

Fig. 2 illustrates the overall QoE versus the number of
channels for different algorithms. Due to the unacceptable
computation complexity of the exhaustive searching method
as analysed in Section IV-B, we do not compare the proposed
matching algorithm with that but with the upper bound of
overall QoE, along with the random matching method. From
this figure, the proposed matching algorithm outperforms the
random method significantly and is very close to the upper
bound.

The proposed method with and without multi-cell coop-
eration are compared in Fig. 3. The method with multi-cell
cooperation yields better performance than the one without
multi-cell cooperation, which verifies the effectiveness of the
proposed method in coping with the inter-cell interference.

VI. CONCLUSION

In this paper, we studied the semantic-aware resource al-
location in multi-task networks with multi-cell cooperation.
Specifically, a novel quality of experience (QoE) model was
developed for semantic communications in terms of semantic
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Fig. 3. The overall QoE of the proposed method with and without multi-cell
cooperation with |M| = 6.

rate and semantic accuracy. Then we formulated a QoE
maximization problem and solved it by a matching theory
based solution. Simulation results showed that the developed
formulation can characterize the user requirements for seman-
tic communications more properly and provide higher user
satisfaction than the semantic transmission rate (S-R) based
formulation. Moreover, the proposed algorithm outperforms
all baselines significantly.
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