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Abstract—Networks in 5G and beyond utilize millimeter wave
(mmWave) radio signals, large bandwidths, and large antenna
arrays, which bring opportunities in jointly localizing the user
equipment and mapping the propagation environment, termed
as simultaneous localization and mapping (SLAM). Existing
approaches mainly rely on delays and angles, and ignore the
Doppler, although it contains geometric information. In this
paper, we study the benefits of exploiting Doppler in SLAM
through deriving the posterior Cramér-Rao bounds (PCRBs)
and formulating the extended Kalman-Poisson multi-Bernoulli
sequential filtering solution with Doppler as one of the involved
measurements. Both theoretical PCRB analysis and simulation
results demonstrate the efficacy of utilizing Doppler.

Index Terms—MmWave radio SLAM, Doppler, PCRB, ex-
tended Kalman-Poisson multi-Bernoulli filter.

I. INTRODUCTION

MmWave communications in 5G and beyond are useful for
simultaneous localization and mapping (SLAM) applications,
due to geometrical propagation channels, large bandwidths,
and large antenna arrays [1]. Signals sent from the base
station (BS) reach the user equipment (UE) via the propagation
channel, which is determined by the geometric relationships
among the propagation environment, the UE, and the BS.
Large bandwidths and antenna arrays result in high tempo-
ral and spatial resolutions [2], [3]. Therefore, state-of-the-
art channel estimators can provide accurate estimates for
multipath components by using the received signals, in terms
of groups of channel gain, time of arrival (TOA), angles of
arrival (AOA), angles of departure (AOD), and Doppler, which
contain the necessary information for SLAM [4]. Although
Doppler contains geometric information, it is usually ignored.

The related works can be divided into two areas: works
that exploit Doppler for radio positioning or mapping and
works in the area of radio SLAM. Doppler has been used
in most radars for mapping and tracking [5], but limited
works have been done in radio scenarios. Doppler is used
to localize radio emitters in [6], but the proposed method can
only be used for narrow-band signals, while [7] shows that
the Doppler shift can provide more direction information for
localization, and [8] shows that the mobility can significantly
improve the non-line-of-sight (NLOS)-only scenario in MIMO
mmWave system, indicating the involvement of the Doppler
shift brings gain in the localization accuracy. Doppler is used
for tracking UEs’ positions and velocities in a Wi-Fi-based

system in [9]. However, these methods do not solve the SLAM
problem. Several approaches have been proposed to address
the mmWave radio SLAM problem, including geometry-
based methods [10], [11], message passing-based methods
[12], [13], and random finite set (RFS)-based methods [14]-
[16]. RFS-based methods can handle uncertainties, as well as
inherently deal with challenges of the unknown number of
landmarks, unknown data associations (DAs), misdetections,
and clutter measurements in radio SLAM. Within these RFS-
based methods, the probability hypothesis density (PHD) filter
is used in [14], which does not have an explicit enumeration
of DAs, and the Poisson multi-Bernoulli mixture (PMBM)
filter is used in [15], [16], which enumerates all possible DAs
explicitly, thus allowing for improved performance. However,
the Doppler is not considered in these works. To our best
knowledge, the inclusion of Doppler in radio SLAM has not
yet been conducted in the existing literature.

In this paper, we harness the Doppler component in bistatic
mmWave radio SLAM and analyze how Doppler benefits
the SLAM filter. The main contributions of this paper are
summarized as follows: (i) we derive the position error bound
(PEB), heading error bound (HEB), clock bias error bound
(CEB) of the UE and the landmark error bounds (LEBs)
of landmarks by computing the posterior Cramér-Rao bound
(PCRB) for the system with utilizing Doppler; (ii) we analyze
the effect of the quality of the Doppler measurement on the
bounds of the UE and the average LEB of landmarks; (iii) we
extend our previous work in [16] by involving the Doppler as a
dimension of the measurement in the extended Kalman (EK)-
Poisson multi-Bernoulli (PMB) SLAM filter, and validate the
benefits of exploiting Doppler in the system through numerical
experiments in the mmWave network context.

Notations: Scalars (e.g., x) are denoted in italic, vectors
(e.g., ) in bold lower-case letters with |x| representing
its L2-norm, matrices (e.g., X) in bold capital letters, sets
(e.g., X) in calligraphic with |X| representing its cardinality.
The transpose is denoted by (-)T, the Hermitian transpose is
denoted by (-)", the union of mutually disjoint sets is denoted
by w©, the expectation is denoted by E[-], N'(u,X) denotes a
multivariate Gaussian distribution with mean « and covariance
¥, and dy = dim(x).
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Fig. I. A mmWave downlink scenario with the environment of a BS, a UE, a
reflecting surface, and a small object. The reflecting surface can be modeled
as a virtual anchor (VA), which is the reflection of the BS with respect to the
surface. The small object is modeled as a scattering point (SP). The BS sends
signals to the UE via line-of-sight (LOS) path and/or NLOS paths, shown as
the blue line and purple lines, respectively. The channel parameters of each
path depend on the underlying geometry.

II. SYSTEM MODEL

In this section, the UE model, the environment model, the
signal model, and the measurement model for a mmWave
radio downlink scenario as shown in Fig. 1 are briefly intro-
duced.

A. State Models

In this paper, a single-user scenario is considered, where the
UE does a constant turn-rate movement around a known BS on
the z—y plane. We denote the dynamic state of the UE at time
step k as sy = [2, Yr, @k, bk ] ", containing the UE position
on z- and y-axis, heading, and clock bias, respectively. The
UE dynamics can be expressed as [17]

Ty Tp_1+ %” sin(%) cos(wk_l + %)
W o (WT T
Uk | _ | yror + 2 sin(S50) sin(wpor + 457) ., (1)
Wk Whk-1 + wT ks
bk bkrfl
——
8k F(sk-1)

where v, w, and T are known control inputs, denoting the
speed, the turn-rate, and the sampling interval, respectively,
and n;, ~ NV (0,Q).

The considered scenario contains a single known BS, and
multiple unknown reflecting surfaces and small objects, which
are modeled as VAs and SPs, respectively. The BS sends
downlink signals to the UE, which can reach the UE directly,
termed as the LOS path, and/or can be reflected by the
reflecting surfaces or scattered by the small objects and reach
the UE, termed as NLOS paths (see Fig.1). In this paper,
we assume that there is at most one path associated to each
landmark every time step. The landmark state can be modeled
as x = [x]y, m]", with 1y € R® denoting the landmark
location, and m € {BS, VA, SP} denoting the landmark type.
Therefore, the map of the environment can be modeled by a
set of landmark X = {a' ... x!}, with I representing the
total number of landmarks.

B. Signal Model

The BS sends downlink signals to the UE at every time
step with a period of T seconds. These signals can reach the
UE via LOS path and/or NLOS paths, and the received signal
for OFDM symbol n, at subcarrier x and time step k can be
expressed as [18]

I :
H i i H i\ _—12mkAfT]
Y,k = Wn,k ngaR(ek)aT(¢k)e sRAITE
i=1
i
% eJ2TrnTm€adk/§pn,k + Wgyknn,n,k; (2)

where y,, ,, ,, denotes the received signal, p,, ;, denotes the
pre-coded pilot signal, n ,, . denotes a white Gaussian noise,
W, denotes a combining matrix, [; denotes the number
of all visible landmarks at time k, ar(-) and ar(-) denote
the steering vectors of the receiver and transmitter antenna
arrays, respectively, A f denotes the subcarrier spacing, Ty,
denotes transmission duration of each symbol, and ¢ denotes
the wavelength. Each path ¢ can be described by a complex
gain g,i, a TOA ‘T]i, an AOA pair 0}, in azimuth and elevation,
an AOD pair ¢}, in azimuth and elevation, and a Doppler d,
which we express in [m/s]. These parameters can be estimated
by a parametric channel estimation algorithm from y,, ,, ;. for
example, by [19]-[21], which is out of the scope of this paper,
and the estimation results are utilized directly. Adding Doppler
can make paths more resolvable, as there may be some paths
not resolvable in delay or angle domains, but resolvable in the
Doppler domain.

C. Measurement Model

At time step k, the channel estimator provides a set of
measurements Zj = {2}, .. .,z,{f}, where usually I, # I, as
some visible landmarks may be misdetected and there could be
some clutter measurements. Please note that the source of each
element in Z;, is unknown. If the measurement noise is zero-
mean Gaussian, the measurement originating from landmark
x® at time step k can be described as follows

zi = h(z', sp) + €k, 3)
where h(x' s) = [7f,(00)7, (¢L)T,di]" represents the
nonlinear function that transforms the geometric information
to the channel parameters, and €5, ~ A/ (07 R;C)

These channel parameters depend on the geometric relation-
ships among the BS, the UE and the landmarks. Specifically,
TOA 7} can be defined as

i ) l@ss — @l /e + b mi = BS
=Y - _
(Hmiznmk ~ TUEk | + Hmiznc,k - "BBSH)/C +by, m'# BS,
4)

where Tug k = [Tk, Yk, 0]" denotes the 3D position of the UE,
x! . is the incidence point of the i-th path on the correspond-
ing landmark at time step k, which can be determined by T v
and xyg,k, and c is the speed of light. As 6. is determined



by the arrival direction of the signal, which can be calculated
by

(zBs — xug,k)/|xBs — m' =BS
Tronk = i 5
(@ = TR L)/ [T i CBUE,k” m' # BS,
we can define 9}; as
9§z,k = arCtan2([quOA,k]27 [Qi\OA,k]l) - Wk, (6)
Oc1. e = arcsin([@aoa 113 | 7

Similarly, the departure direction can be calculated by

oo = {(mUE = ans)/|(@ops —aps)| mi=BS o

(mmc k wBS)/Hxiinc,k - wBS” mi # BS?

and ¢}; can be defined as

¢eilz,k = arCtan?([QfxOD,k]% [QZOD,k]l), )
ber 1 = aresin([@aop 113 [@aop & ])- (10)

The Doppler dfc can be calculated by projecting the UE
velocity on the direction of gj, ;. as displayed in Fig. 1.
It can be computed by

)

where v, denotes the 3D velocity of the UE at time k, which
can be defined as

i _ T i
k = VEdA0A, k>

vy, = [vcoswk.,vsinwk,O]T7 (12)

since we assume the UE only moves on the =z — y plane.
Therefore, d}, is positive, when the UE approaches the i-th
landmark, and it is negative, when the UE moves away from
the ¢-th landmark.

III. PROPOSED DOPPLER-ASSISTED SLAM

In this section, the PCRB is briefly introduced, the PEB,
HEB, CEB and LEB are derived, and the contribution of
Doppler to the SLAM system is analyzed.

A. PCRB

The PCRB is the lower bound that is analogous to the
Cramér-Rao bound (CRB) but takes a Bayesian perspective
and assumes that there is a prior on the parameters, indicating
that the mean squared error (MSE) of an estimator should
always be larger than the inverse of the posterior information
matrix (PIM) [22, Ch. 4.2]. Suppose « denotes a vector of the
measurements, 3 denotes an r-dimensional estimated random
parameter, and g(ca) denotes an estimate of 3, which is a
function of a. The PCRB on the estimation error has the
form

E[(g(a) - B) (g(a)-B)"] 2T, (13)
where J is the r x r PIM with elements
2
[']]HW = E[_w] u,v = 1) Ty (14)

9p,.0By

with f(a, 3) denoting the joint density. The inequality in (13)
indicates that the MSE of an estimator is larger than J !

the positive semidefinite sense. The PIM is a counterpart to
the Fisher information matrix (FIM) for the PCRB, and can
be decomposed into two parts J = J gaa + J prior, Where J gaea 18
the standard FIM, which contains information obtained from
the measurements, and J o, is the priori information matrix,
which contains prior information. The elements are given by

(or v = 1,w.7) % 10g f(alf)

[Jdata ], = E[~ 953,08, 1, (15)
, _r 9P log £(B)
[Jprlor]u,l/ - E[ W] (16)

B. Performance Bounds

To compute the error bounds for the considered prob-
lem, we need to construct a complete state of the system,
denoted as 3, = [(sz), (acLM S LI (:cLM k)T] the
transition function of the complete state, denoted as f(8g) =
[(f(se)T, (a:LM’k)T, ey (wLM’k)T] , and the measurement
function of the complete state given the ground-truth DA, de-
noted as h(8y) = [(h(s, @iy, WD (A i) T
with h(sp, ]y ;) = Od.»1 when the landmark is not detected,
and h(sk,a:LM k) is the same as h(sk,mLM ) when the
landmark is detected. Then, if the ground- ~truth DA is given,
the PIM can be recursively updated by [23], [24]

o Tl o Lo T\t
Jk ZHkRk Hk;"’(Q}c“‘Fkalek) .
J data, o

a7

J prior, k

Here H and F, are the Jacobian matrices of ﬁ(sk) and
f(sk) with respect to 8y, evaluated at the true state, and
Q, = blkdiag(Q,0s7.3;) and Ry = blkdiag(R},-, R}.)
denote the process and measurement noise covariances, re-
spectively. Then, the PEB can be computed as PEB; =

VI[JEITh + [Jk]5), the HEB can be computed as HEBy =
\ /[Jk]g}g, the CEB can be computed as CEBy, = 4 /[Jk];’lzl,

and the LEB of i-th landmark can be computed as LEB} =
Db 1% i
C. Contribution of Doppler
From (17), we can observe that the Doppler of the current
measurements only contribute to Jgua k. as Doppler-related
components are only involved in H . and Rk As H k18

the Jacobian matrices of h(3;) with respect to 3y, it can be
correspondingly decomposed into blocks

A% . B, 06><23 O6x3
Doy :
A} ' Ogx3 Oexs By

Here, A: and B} are the Jacobian matrices of h(sy, i)
with respect to sy and xj,, respectively, which are Ogx4 and
0gx3 when the i-th landmark is not detected, and are



when the landmark is detected, where A; is the Jacobian of
[T, (OQ)T, (qbz)T]T with respect to s, BZ is the Jacobian
of [7¢, (6;)7,(;)T]" with respect to x¢,;, and

~i\T adi  adi adi  adi
(G,Z) = [ Bmi By: awi TbI; ]’ 20)
(B;C )T _ [ ad,, ad,, 8(1.2, :| (2] )

dzly  Oylm D2y
i . ~ i ; .

Furthermore, we assume R}, = diag(R,, (0% ,)?). According

to (17) and the inverse of a block matrix, Jgaw,x is only non-

zero in the diagonal block related to the UE state

I . 4
(Jaaw k] a,1:4 = Y. (A} T(R},) A,

i=1
L e B S B P U
= Z(Ak)T(Rk) 1Ak+zak(f’d,k) Q(Gk)T7
i=1

=l —
Doppler related

(22)

non-Doppler related

and the diagonal blocks related to each landmark
(T data ke J3i42:3044 30423004 = (B}) " (Ry) ™' By,

- (BT (Ry) ™' By, + by (0d,) 2 (B) T

(23)

Clearly, Doppler provides non-negative information to both
UE and landmark states. Due to the block-diagonal structure
of Jgata,k» (22) and (23) can be interpreted as the equivalent
FIMs of the UE and landmark states. )

To gain further insights, we expand d}; and IN);c as

i T
’UI,kqAOA,kvo] , 249

~i [_ ([”k]1=2 - d}c[qlAOA,k]L?)
‘l{l’:fnc’k — LUE,k

ak, = |
) gy
=i 8miznc,k Vi — qu/LAOA,k
Tim Hwinc,k - wUE:’f|

where v, ), = [-vsinwy,veoswy, 0] (e, v] vr = 0).
Then, the additive Doppler-related parts in (22) and (23) can
be summarized as follows:

o UE position: as vk,—dzquA’k = vk—quZOA’quOA’k, the
information brought by Doppler is along the direction of
the velocity, when the velocity is orthogonal to a path’s
qion , direction, i.e., when v]g%o, ;. = 0. On the other
hand, when the velocity is parallel to a path’s gjo,
direction, the Doppler of that path does not provide
direct Fisher information. A similar argument holds for
landmark locations.

e Heading wy;: the direct contribution is from the projec-
tion of v, on the direction of g}, , of each path.
Hence, if the UE velocity is parallel to a path’s gjo,
direction, the direct Fisher information is 0.

e Clock bias by: there is no direct Fisher information
contribution. However, the direct contributions to the
other dimensions still benefit estimate of the clock bias.

Therefore, if the UE moves alongside the same or the opposite
direction of the gjo, . the corresponding group of measure-
ment does not have any Doppler-related information. More-

over, a smaller ((f&k)2 results in larger additional Doppler-
related information.

IV. EK-PMB(M) SLAM FILTER

The SLAM framework in this paper follows the EK-PMB
SLAM filter proposed in [16]. In this section, the basics of
the PMB(M) density and the EK-PMB(M) SLAM filter are
summarized in the following.

A. Basics of PMB(M) Density

The map of the environment X is formulated as a PMBM
RFS, which can be viewed as the union of two disjoint
RFSs: Xy for the set of undetected landmarks, which are the
landmarks that have never been detected, and Xp for the set
of detected landmarks, which are the the landmarks that have
been detected at least once before. Its density follows [25]

f(X)= > fe(Xu)fusm(Xp), (26)
X018 X=X

where Xy and Xp are modeled as a Poisson point process
(PPP) and a multi-Bernoulli mixture (MBM), respectively,
with densities following

fo(Xy) = e /2@ TT \(a), 27)
xeXy
) [¥p| )
fuBm (Ap) o< Y w? > IT /x5, (28)

jgel X1y XI¥Dl=xp =1

Here, A(-) denotes the intensity function of the PPP density,
and I is the index set of all global hypotheses with weights
satisfying ¥ w’ = 1,w’ > 0, and the global hypotheses
in SLAM correspond to different DAs [26]. Each individual
component in (28) is termed as a Bernoulli process, and f"(-)
denotes the Bernoulli density of the i-th landmark under the
j-th global hypothesis, following

1 — i Xi=g
BIX) = () A= {x} 29)
0 otherwise,

where f7¢(-) denotes the state density, and 77** € [0, 1] denotes
the probability that the corresponding landmark exists. We
note that if there is only one mixture component in the MBM,
then (28) reduces to a multi-Bernoulli (MB), and (26) reduces
to a PMB.

B. EK-PMB(M) SLAM Filter Recursion

The EK-PMB(M) SLAM filter follows the Bayesian filter-
ing recursion with RFSs, and it computes the joint posterior
f(3k+1a X|lek+l) by [16]

F(8ka1, X|Z1041) o< U(Zps1|Sha1, X) f(X]|Z211)
< f(sk+1]21:8), (30)
with  f(spi1|Z1x) = [ f(sklZ1x) f(Skealsk)dsy  and
0(Zk+1|8k+1,X) denoting the RFS likelihood function, given

by [25, egs. (5)—(6)]. Instead of tracking the joint density, the
filter keeps track of the marginal UE f(sg|Z1x) and map



f(X|Z1) posteriors by marginalizing out the map and the
UE state from the joint posterior, respectively. The marginal
posteriors are given by

f(Sk+1|Z1k41) = f F(8k1, X[ Z1:041)0 X,
F(X|Z1441) = f F(Sk+1, X| 2141 )dSks1,

where [ 1)(X)dX refers to the set integral [26, eq. (4)].

The EK-PMB(M) SLAM filter proposed in [16] determines
v > 1 most likely DAs for each prior global hypothesis
with corresponding weights, and the joint posterior of the
UE state and the map conditioned on each DA is computed
by utilizing an extended Kalman filter (EKF)-like update
step. Then the joint posterior in (30) can be acquired by
the weighted summation of the densities for DAs, followed
by (31) and (32) to compute the UE state and the map. To
avoid the exponential increase of DAs, we can approximate
the PMBM density to a PMB density at the end of each update
step, which reduces the complexity significantly.

It is important to mention that the weights of v > 1 most
likely DAs for each prior global hypothesis are computed by
using measurements [16, eq. (29)]. Since more information is
provided with the involvement of Doppler, finding the correct
DAs becomes more likely, as correct local hypothesis weights
computed in [16, eqgs. (22)—(24)] become more prominent.

€2V}
(32)

V. RESULTS
A. Simulation Environment

We consider a 5G downlink scenario with a sin-
gle BS located at [0m,0m,40m]’, 4 VAs Ilocated
at [+200m,0m,40m]", [Om,+200m,40m]', and 4 SPs
located at [+99m,0m,10m]", [0Om,+99m,10m]". The
UE does a counterclockwise constant turn-rate move-
ment around the BS according to (1), with v =
2222 m/s, w = wf/10rad/s, T = 05s, and Q =
diag(0.22 m2, 0.2% m?, 0.0012 rad?, 0.2 m?), and it takes
K = 40 samples for the UE to circle the road once.
The measurement covariance matrix is set as Rj =
blkdiag(1072 m?,2.5 x 1073 - I; rad®, 03). We initialize the
UE at [70.7285m,0m, 7/2rad,300m]" with covariance as
diag[0.3m?,0.3m?0.0052rad?, 0.3 m?]. The BS is a priori
known to the UE. We implemented the EK-PMB SLAM
filter with considering v = 10 best DAs every time step, and
compared the results of cases using different levels of o4 and
without considering Doppler. The mapping performance is
quantified by the generalized optimal subpattern assignment
(GOSPA) distance [27] for both VAs and SPs, separately, the
positioning performance is evaluated by the root mean squared
error (RMSE), and we also compare bounds of different
cases. More details on parametric settings of the filter can
be found in [16]. The results are averaged over 100 Monte
Carlo simulations.

B. Results and Discussion

We firstly analyze how different levels of o4 affect the
bounds. Fig.2 shows how the bounds change with o4, com-

100 -
"""""""""" —PEB, with Doppler =~ — HEB, with Doppler

CEB, with Doppler =~ —LEB, with Doppler
--- PEB, without Doppler - -- HEB, without Doppler

CEB, without Doppler --- LEB, without Doppler

. . . . . , . . |
5.10-2 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 0.5

oq4 [m/s]
2. The PEB, the HEB, the CEB gnd the average LEB change with og.
benchmarks are the bounds of the case without considering Doppler.

30
— With Doppler
=== Without Doppler

0;0%1 PEB [m], HEB [deg], CEB [m], LEB [m]

20 -

GOSPA distance [m]

O S R S S R S R
8§ 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
) . ‘ . time step

Fig. 3. Comparison of mapping performances for VAs between two cases:
with and without considering Doppler.

0 I I I
0 2 4 6

pared with the bounds without considering Doppler. We ob-
serve that involving Doppler as a dimension of the measure-
ment improves the positioning and mapping performances of
the SLAM system, as the error bounds are lower than in the
case where the Doppler measurement is ignored. This effect is
stronger when Doppler measurements are more accurate, i.e.,
when oqg is smaller.

To validate the benefits of Doppler in mmWave radio
SLAM, we then implement the EK-PMB SLAM filter on
two cases: 1) involving Doppler into the measurement with
04 = 0.1 m/s and 2) without considering Doppler, and compare
the mapping performance for both VAs and SPs, and the
positioning performance between two cases, as illustrated
in Fig.3, Fig.4 and Fig.5, respectively. Fig.3 and Fig.4
demonstrate that the SLAM filter can map the environment
for both cases, and the mapping accuracy improves with
more measurements being received, as overall, all GOSPA
distances gradually decrease over time. Clearly, when Doppler
is involved, the SLAM filter has better mapping performance,
as the solid lines are lower than the dashed lines in both Fig. 3
and Fig. 4. Fig. 5 indicates that considering Doppler results in
better UE state estimates, as lower RMSEs can be acquired.
The reasons are that considering Doppler as a dimension of the
measurement brings lower bounds. In addition, it also helps
the SLAM filter to solve the DA problem, which improves
the average weight for the correct DA from 0.6763 to 0.8622,
with weights of all selected v = 10 DAs summed to 1 every
time step.

VI. CONCLUSIONS

In this paper, we exploited Doppler as a part of mea-
surement in bistatic mmWave radio SLAM, formulated the
EK-PMB SLAM filter on the new measurement model, and
provided the PCRB for the model. Our results theoretically
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Fig. 4. Comparison of mapping performances for SPs between two cases:
with and without considering Doppler.
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Fig. 5. Comparison of UE state estimation between two cases: with and
without considering Doppler.

indicate that the involvement of Doppler helps the SLAM
filter to acquire better mapping and positioning performance
than the case without considering Doppler. The better Doppler
observations are, the lower PCRBs and the more accurate
map and UE state estimates will be. The implementation of
the EK-PMB SLAM filter validates the theoretical benefits
of involving Doppler. Future work will include extending the
UE model to a model with unknown speed, the inclusion of
high-dimensional channel estimation, as well as extending the
SLAM problem to a simultaneous localization and tracking
(SLAT) problem.
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