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Analysis and Optimization of Hybrid Caching in

mmWave Networks with BS Cooperation

Le Yang, Fu-Chun Zheng and Shi Jin

Abstract—In this paper, we investigate a hybrid caching
strategy maximizing the success transmission probability (STP)
in a millimeter wave (mmWave) cache-enabled network. First,
we derive theoretical expressions of the STP and the average
system transmission delay by utilizing stochastic geometry, then
we consider the maximization of the STP and the minimization of
the average system transmission delay by optimizing the design
parameters. Considering the optimality structure of the NP-hard
problem, the original problem is transferred into a multi-choice
knapsack problem (MCKP). Finally, we investigate the impact
of key network parameters on the STP and the average system
transmission delay. Numerical results demonstrate the superiority
of the proposed caching strategy over the conventional caching
strategies in the mmWave cache-enabled networks.

Index Terms—Caching strategy, stochastic geometry, millime-
ter wave, delay, successive interference cancellation.

I. INTRODUCTION

Due to the rapid proliferation of various multi-media ap-

plications and smart mobile devices, the mobile data traffic

has witnessed an unprecedented growth and imposed heavy

burden on the backhaul links. Caching the popular contents

at the BSs has become a promising way to alleviate the

burden of the backhaul link. The utilization of the millimeter

wave (mmWave) band is another technique to meet the ever-

increasing demand of the data traffic for future networks due

to that the available spectrum at these frequencies can be 200

times greater than all cellular allocations today that are largely

constrained to the sub-6GHz prime RF real estate [1].

Compared with the sub-6GHz networks, the mmWave net-

works have two fundamental differences: the sensitivity to

blockages and the propagation loss [2]. Fortunately, the beam-

forming gain of directional antenna arrays can be utilized to

compensate the propagation loss experienced by the receiver,

resulting in comparable coverage ranges [3]. In fact, several

channel measurements have revealed that the transmission

range of 150-200m can be obtained in mmWave bands [4][5].

The caching strategy design in the cellular networks has

been studied in the existing works utilizing stochastic ge-

ometry as the analyzing tool. Note that caching strategy

design is a prerequisite for the file dissemination due to

the limited cache size. In addition, the file diversity affects

the performance of a caching strategy. In [6], the outage

probability and the average delivery rate of the cache-enabled

networks were analyzed. In [7]–[9], the analytical expression

of the successful transmission probability (STP) for the sub-

6GHz cache-enabled heterogeneous networks was derived. In

particular, the authors in [8] obtained the optimal caching

probability (maximizing the STP in the interference-limited

regime) as well as investigating the tradeoff between the

BS density and the cache size under the uniform caching

strategy. In [9], the caching probability optimization problem

in the sub-6GHz multi-tier cache-enabled networks with a non-

uniform SIR threshold was proved to be non-convex and the

sub-optimal caching probabilities were obtained. Furthermore,

the caching probability optimization problem with a uniform

SIR threshold was convex and the corresponding closed-form

solution was achieved. In [10], the authors studied the optimal

caching policy which respectively maximizes the STP and the

area spectral efficiency (ASE) in the sub-6GHz two-tier cache-

enabled networks. In [21], the expressions of STP under two

cooperative transmission strategies in the sub-6GHz cache-

enabled networks were derived. In addition, locally optimal

caching probabilities were achieved in the general case and

the globally optimal caching probability were provided in the

low data rate case.

The analysis was also extended to the mmWave or hybrid

networks. In [11], a cross-entropy optimization method was

proposed to obtain the sub-optimal performance in a hybrid

cache-enabled network. In addition, a heuristic file placement

scheme was provided to achieve the balance between the

transmission reliability and the content diversity. In [12], the

performance of a hybrid small-cell network where the SBSs

was overlaid by the backhaul-connected SBSs was analyzed

and the most popular caching (MPC) strategy was proved to be

the optimal caching strategy for achieving the maximal ASE

for the case of high Zipf skewedness factors. The performance

of the hybrid cache-enabled heterogeneous networks utilizing

the LOS ball model was analyzed and the impact of critical

physical layer parameters on the network performance was

examined in [13]. The authors [6]-[13] considered the random

caching strategy where the files were wholly cached in the

BSs. The main drawback of the random caching strategy lies in

that the serving distance becomes larger when the file diversity

increases. Therefore, the advantage of the file diversity cannot

be fully utilized.

When a user is served by multiple BSs, a file may be divided

into multiple subfiles and each subfile can be cached in a BS.

Hence, the distance between the user and its serving BS may

be reduced, leading to the improvement of the file diversity. In

[14], the network coding-based caching strategy was proposed

and the cache miss probability was analyzed. In [15], the max-

imum distance separable (MDS) code-based caching strategy

was proposed and the total number of packet transmissions

was minimized. In [16], a partition-based caching strategy

was proposed and the successful content delivery probability
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was analyzed. Note that successive interference cancelation

(SIC) was adopted at each user to decode the subfiles of its

requested file. With the application of the SIC, the exploitation

of the file diversity was facilitated and the performance of

the cache-enabled networks was improved. The utilization of

SIC depends on the imbalance of received signal powers from

the transmitters at different locations. The idea of SIC is to

decode the signals according to the decreasing signal power

and subtract the decoded signal from the received signals. The

process continues until all the signals are decoded. The benefit

of SIC in the large-scale wireless networks was revealed by

utilizing tools from stochastic geometry. In [17], the SIC

based on power order was considered and the bounds on the

successful decoding probability was derived. In [18] and [19],

the SIC based on the distance order was considered and the the

closed-form expressions for the coverage probabilities were

obtained in D2D and heterogeneous networks, respectively.

While the partition-based caching strategies in the sub-

6GHz networks has been investigated, the partition-based

strategy in the mmWave networks still remains to be studied.

Furthermore, the advantage of the BS cooperation has not been

utilized in the existing works. Note that the benefit of BS

cooperation in the mmWave networks was demonstrated in

[22] and [23]. Specifically, the performance of the coordination

multipoint (CoMP) and macro-diversity was analyzed. The

measurement quantitatively showed that, compare to a user

served by a single BS, the outage probability of the user served

by multiple BSs was significantly reduced. Therefore, we con-

sider a hybrid caching strategy in the mmWave networks. The

files with higher popularity are cached wholly and the joint

transmission (JT) strategy is utilized to provide transmission

reliability. The files with lower popularity are partitioned and

coded cached and the parallel transmission (PT) strategy is uti-

lized to provide file diversity. By utilizing the hybrid caching

strategy, we can strike a balance between the transmission

reliability and file diversity. The main contribution of this

paper are summarized as follows:

1) By utilizing the LOS probability function to model

the LOS/NLOS state of each link, we characterize

the distribution of the path loss between u0 and its

serving BS. We derive the expression of the STP in

the mmWave cache-enabled networks under the JT and

PT strategies. In addition, a simplified expression of the

STP is obtained under a special case where the blockage

parameter is sufficiently small. Moreover, by taking the

backhaul delay into consideration, the expressions of the

average system transmission delays for the JT, PT and

uncached transmission (UT) strategies in the mmWave

cache-enabled networks are obtained.

2) We consider the maximization of the STP or the mini-

mization of the average system transmission delay by

optimizing the design parameters. By exploiting the

optimality structure of the NP-hard problem, the op-

timization problem is transformed into a multi-choice

knapsack problem (MCKP) and a near optimal solution
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Fig. 1. The layouts of a mmWave cache-enabled network.

can be obtained with 1/2 approximation guarantee. In

addition, the we consider the special case where the

blockage parameter and the file size are both sufficiently

small and obtained a closed-form asymptotically optimal

solution.

3) We reveal the effect of the physical layer parameters and

the design parameters on the STP and the average system

transmission delay. Numerical results demonstrates the

superiority of the proposed method over the existing

caching strategies and shows that the advantage of

the cooperative case over the non-cooperative case is

reduced when the blockage parameter increases.

The reminder of this paper is organized as follows. In

Section II, the system model is introduced. In Section III, the

STP and local delay of the mmWave cache-enabled network

is derived. In Section IV, the maximization of the STP and

the minimization of the average system transmission delay are

obtained by optimizing the design parameters. In Section V,

numerical results are presented to demonstrate the superiority

of the proposed algorithm over the existing schemes. In

addition, the effect of the key network parameters on the

STP and the average system transmission delay are presented.

Finally, conclusions are provided in Section VI.

II. SYSTEM MODEL

We consider a downlink cache-enabled network, as shown in

Fig. 1. The locations of the BSs and the gateways are assumed

to follow the independent homogeneous Poisson point pro-

cesses (PPP) Φ with density λ and ΦG with λG, respectively.

Let P denote the transmit power of each BS. We assume

that the BSs operate over the mmWave frequency band. The

available bandwidth is denoted by W (in Hz). We consider

a discrete time system where the time is slotted with equal

duration, i.e., T seconds. Without loss of generality, according

to Slivnyak’s theorem [3], we can study the performance of a

typical user u0 located at the origin o ∈ R.



Both large-scale and small-scale fading are considered.

Depending on the visibility of the BS to u0, the BS can be

either line-of-sight (LOS) or non-line-of-sight (NLOS). That

is, if there are no blockages between u0 and the BS, the

corresponding link is considered to be LOS. Otherwise, the

link is NLOS. A LOS probability function, i.e., p(x) = e−βx,

is utilized to model the LOS probability of an arbitrary link

between the BS at the distance x and u0. Note that the

blockage parameter β is dependent on the blockages and

BS density [3]. Accordingly, the NLOS probability of the

corresponding link is therefore 1 − e−βx. The desired signal

received by u0 is attenuated by the path loss. To distinguish

the LOS/NLOS states of the links, different path loss laws are

applied to the links under the LOS/NLOS link states, which

are given by

L(x) =

{

κLOSx
αLOS , with prob. e−βx

κNLOSx
αNLOS , with prob. 1− e−βx

(1)

where κLOS and κNLOS are the path losses of the LOS/NLOS

links at the reference distance of 1 meter, αLOS and αNLOS

represent the path loss exponents of the LOS and NLOS links,

respectively.

The small-scale fading is assumed to be independent Nak-

agami fading for all BSs and the Nakagami parameters is de-

noted by M . Therefore, |h|2 is a normalized Gamma variable.

Note that when νLOS = νNLOS = 1, the small-scale fading

reduces to Rayleigh distribution.

Let F , {1, 2, · · · , F} denote a set of F files in the core

network. Assume that all the files has the same size of S
bits. 1, and the file popularity distribution is identical among

all users. Time is divided into slots with equal duration T .

Let R = S/T denote the target data rate for a successful file

delivery. Let pf denote the probability that File f is requested

by a user, i.e., the popularity of File f is pf , where
∑F

f=1 pf =
1. In addition, we can always assume that p1 ≥ p ≥ · · · ≥
pF . Hence, the file popularity distribution can be expressed as

p , {p1, p, · · · , pF }, which is assumed to be known a priori.

Note that the popularity of different files evolves at a relatively

slow timescale and can be estimated in practice (e.g. by the

machine learning [24]). Each BS is equipped with a cache of

size C ≤ F to store C different files from F .

A. Performance Metric

Two phases, i.e., file placement phase and the file delivery

phase, are considered. In the file placement phase, the files

are retrieved from the core network and placed into the BS by

utilizing the hybrid strategy in the off-peak time. For the MPC

strategy, the files are wholly cached in the BSs. For the LDC

strategy, the files are partitioned into subfiles and coded cached

in the BSs. Compared with the MPC strategy, the LDC strategy

provides a larger file diversity since more files are cached in

the BSs. However, the transmission reliability for the LDC

1Note that the results can easily be extended to the case where the contents
have different file sizes (e.g. by combining multiple files of different sizes to
form files of equal size or splitting files of different sizes into segments of
equal size) [7].

strategy degrades since different subfiles of the requested file

needs to be decoded.

Assume that N is the SIC capability of u0. That is, the

decoding and cancellation can be performed at most N times

to obtain the desired signal. Let N̄ , {2, 3, · · · , N}, N =
N̄ ∪ {0, 1}. In addition, denote by sf ∈ N the caching status

of File f and we have

sf ∈ N , f ∈ F . (2)

Note that all the subfiles are coded by utilizing random

linear network coding (RLNC) [25]. If sf = 1, File f will

wholly cached in N cooperative BSs. If sf = 0, File f will

be not cached in the BSs and should be retrieved from the

core network through the backhaul link. If sf ∈ N̄ , File f
will be partitioned into subfiles and coded cached in the BSs.

Note that the BS cache size satisfies that

F
∑

f=1

1

sf
≤ C. (3)

In the file delivery phase, File f is transmitted to u0

from the cooperative BSs. If the transmission fails, File f
will be retransmitted. Note that the retransmission continues

until a successful transmission occurs. Different transmission

strategies are applied according to the caching status, which

is shown as follows:

1) Joint Transmission: If File f with sf = 1 is requested,

it will be simultaneously transmitted from N BSs to enhance

the transmission reliability.

2) Parallel Transmission: If File f with sf ∈ N̄ is

requested, different subfiles of File f will be transmitted

from the cooperative sf BSs simultaneously. SIC is utilized

to increase the SINR at u0, where the subfiles are decoded

according to the distance and the subfiles from nearer BSs are

decoded first and then removed from the received subfiles at

u0.

3) Uncached Files Transmission: If File f with sf = 0
is requested, File f will be retrieved by the BS providing

the largest signal power from the core network through the

backhaul link.

Note that, in this paper, we assume that the antenna arrays

at the BSs perform directional beamforming, where the main

lobes are directed towards the dominant propagation paths

while smaller side lobes direct power into other directions.

In addition, for analytical tractability, as in [3], array patterns

are approximated by the sectored antenna model where the

beam direction of the interfering links is assumed to follow a

uniform distribution within [0, 2π]. The effective antenna gain

between a BS in tier k and u0 is a discrete random variable

described by

G =

{

MT , with probability θT
2π ,

mT , with probability 2π−θT
2π ,

(4)

where θT denote the half power beamwidth of the antenna

arrays deployed at the BS and the users, MT , mT the main

lobe gain and side lobe gain of the antenna arrays deployed the



BSs. Assume that the perfect CSI is available at the BS and

the antenna array is steerable to guarantee that the maximum

array gain can be exploited with the aid of perfect estimation

of channels (the channel between u0 and its serving BS lies in

the boresight direction of the antennas of both BSs and u0).

Next, we analyze the expression of SINR under two trans-

mission strategies. Under the JT strategy, the instantaneous

signal-to-interference-and-noise ratio (SINR) is given by (6),

as shown on the top of the next page.

SINRJT =

∑

xi∈C PGxi |hxi |
2L−1(xi)

∑

xi∈Φ\C PGxi |hxi |
2L−1(xi) + σ2

, (5)

where Gxi , xi ∈ C denotes the antenna gain of the cooperative

serving links between the BS at xi and u0, n0 ∼ CN (0, σ2)
the complex additive white Gaussian noise (AWGN).

Under the PT strategy, the instantaneous SINR for the nth

transmission can be expressed as:

SINRPT
n =

PGxn |hxn |
2L−1(xn)

∑

xi∈Φ\B(0,xn)
PGxi |hxi |

2L−1(xi) + σ2
. (6)

In this paper, we adopt the STP [7] and the average system

transmission delay [26] as the performance metrics. First, we

provide the definition of the STP. If sf = 1, the JT strategy

is employed. Under the JT strategy, the transmission of File f
is considered to be successful if the data rate exceeds a pre-

defined threshold T . If sf ∈ N̄ , the PT strategy is employed.

Under the PT strategy, the transmission of File f is considered

to be successful only if all the sf transmissions succeed. Based

on the above analysis, the STP of the cache-enabled mmWave

networks is given by

Pf =















P

[

W
(

1 + SINRJT
)

> S
sfT

]

, if sf = 1,

P

[

⋂

n=1,··· ,sf

W
(

1 + SINRPT
n

)

> S
sfT

]

, if sf ∈ N̄ .

(7)

Next, we provide the definition of the average system

transmission delay. If sf ∈ N\{0}, the average system

transmission delay equals the mean local delay. We denote

the mean local delay by D. Conditioned on Φ, the local delay

is geometrically distributed with parameter P(θ|Φ), we then

have

P[D = d | Φ] = (1 − P(θ | Φ))d−1P(θ | Φ), (8)

for d = 1, · · · . The mean of the geometrically distributed

random variable D conditioned on Φ is E[D | Φ] = 1
P(θ|Φ) .

The mean local delay can then be obtained by calculating the

expectation with respect to Φ as

E[Df ] = EΦ [E [Df | Φ]] = EΦ

[

1

Pf (θ | Φ)

]

. (9)

If sf = 0, the average system transmission delay equals the

summation of the backhaul delay and the transmission delay

from the BS providing the strongest signal power to u0. Then

the average system transmission delay is

E[Df ] =



















































EΦ

[

P

[

W
(

1 + SINRJT
)

> S
sfT

∣

∣

∣Φ
]−1
]

,

if sf = 1,

EΦ





P

[

⋂

n=1,··· ,sf

W
(

1 + SINRPT
n

)

> S
sfT

∣

∣

∣

∣

∣

Φ

]−1


 ,

if sf ∈ N̄ ,

DUT, if sf = N + 1,
(10)

where DUT denotes the average system transmission delay for

the files not cached in the BSs.

In this paper, our goal is therefore to obtain the maxi-

mization of the conditional STP or the minimization of the

average system transmission delay by optimizing the design

parameters.

III. ANALYSIS OF STP AND LOCAL DELAY

In this section, we provide the STP and delay of the

cache-enabled networks. Since the files may be non-partitioned

cached, coded cached or uncached. The expressions of STP

and delay can be derived based on different caching status.

A. Analysis of STP

In this subsection, we provide the expressions of STP under

the JT and PT strategy, respectively.

1) JT Strategy: When File f is non-partitioned and cached

in N BSs, it will be jointly transmitted from N BSs. Before

we provide the expression of the STP under PT strategy, we

first derive the joint probability density function (PDF) of the

path loss between u0 and its serving BSs in the following

lemma.

Lemma 1: For the JT strategy, the joint PDF of the path

loss between u0 and its serving BSs is given by

fL(x) =

N
∏

n=1

Λ
′

([0, xn)) exp(−Λ([0, xN))), (11)

where

Λ([0, x)) = πλ(x/κNLOS)
2/αNLOS − 2πλβ−2

(

1− e−β(x/κNLOS)
1/αNLOS

(

1 + β(x/κNLOS)
1/αNLOS

))

+ 2πλβ−2
(

1− e−β(x/κLOS)
1/αLOS

(

1 + β(x/κLOS)
1/αLOS

))

,

(12)

Λ
′

([0, x)) =
2πλ

αLOSκ
2

αLOS

LOS

x
2

αLOS
−1

e
−β( x

κLOS
)

1
αLOS

+
2πλ

αNLOSκ
2

αNLOS

NLOS

x
2

αNLOS
−1

(

1− e
−β( x

κNLOS
)

1
αNLOS

)

.

(13)

Proof: See Appendix A.

Next, the expression of the STP under the JT strategy is

provided in the following theorem.



Theorem 1: The STP of the cache-enabled mmWave net-

works under the JT strategy is given by

Pf =

∫

· · ·

∫

0<l1<···<lN<∞

‖exp{ΩMN}‖1fL(l)dl1 · · · dlN , (14)

where exp(A) is the matrix exponential and exp(A) =
∑∞

k=0
A

k

k! . ‖·‖ denotes the l1-induced norm. NMN is the

toeplitz matrix, which can be expressed as

ΩMN =











ω0

ω1 ω0

...
...

. . .

ωMN−1 ωMN−2 · · · ω0











, (15)

where ω0 and ωj are given by (16) and (17), as shown on the

top of the next page.

ω0 = −
∑

G

(

∫ ∞

lN

(

1−

(

1 +
G

xG0M

)−M
)

Λ(dx)

)

,

(16)

ωj =
∑

G







G(M)j

(

2
S

sfT − 1
)

j!MG0

∑N
n=1 l

−1
n

∫ TG

MG0lN
∑N

n=1
l
−1
n

0

tj−2

(1 + t)M+j

Λ
′






0,

G
(

2
S

sfT − 1
)

MG0

∑N
n=1 l

−1
n






dt






−

σ2

PG0
max{2− j, 0}.

(17)

Proof: See Appendix B.

It can be observed from Theorem 1 that the expression

of STP is in a complex form including multiple integrals.

The main challenge in analyzing the mmWave networks is to

tackling the high order derivatives of the Laplace transforms

of the noise and interference. The Faà di Bruno formula is

employed in [28] in order to evaluate the performance of the

mmWave networks. However, the complexity of the analytical

expression is high since a large number of products and

summations are included. Therefore, we utilize the method in

[29], [30] with which the STP is expressed by the l1-induced

norm of a Toeplitz matrix.

The STP is dependent on two sets of network parameters:

the physical layer parameters (i.e., the BS density λ and the

transmit power P ) and the content-related parameters, (i.e.,

the caching status s , [s1, . . . , sF ]
T). Note that the STP under

the JT strategy is a monotonically increasing function of the

Nakagami parameter and the number of cooperative BSs. For

the Nakagami parameter, an intuitive explanation is that the

fading is less severe with the increasing Nagakami parameter,

which results in a better STP. For the number of cooperative

BSs, the reason is that the signal strength can be enhanced

when more BSs are included into the transmission process,

leading to a better STP.

The expression in Theorem 1 requires numerical evaluation

of multiple integrals. In order to simplify the expression,

we consider a special case where the blockage parameter is

sufficiently small and the Nakagami parameter M = 1.

Corollary 1: When β → 0 and M = 1, the STP of the

cache-enabled networks under the JT strategy is given by

P JT
f,∞ =

∫

· · ·

∫

0<u1<···<uN<∞

exp (−uNF (α, T )) du1 · · · duN ,

(18)

where

F (α, T )

= 2F1






−

2

αLOS

, 1; 1−
2

αLOS

;−
2

S
sfT − 1

∑N
n=1

(

uN

u1

)

αLOS
2






− 1,

(19)

Proof: See Appendix C.

2) PT strategy: When File f is partitioned and coded

cached in sf BSs, sf subfiles will be transmitted simultane-

ously by parallel streams. Before we provide the expression

of the STP under PT strategy, we first derive the PDF of the

path loss between u0 and its nth cooperative serving BS in the

following lemma. From [33], we can obtain the distribution

of the path loss between u0 and its nth serving BS in the

following lemma.

Lemma 2: For the PT strategy, the PDF of the path loss

between u0 and the BS with the nth smallest path loss is

given by

fLn(x) =
(Λ([0, x)))n−1Λ

′

([0, x))

(n− 1)!
exp(−Λ([0, x))) (20)

where Λ([0, x)) and Λ
′

([0, x)) are given by (12) and (13),

respectively.

Next, the expression of the STP under the PT strategy is

provided in the following theorem.

Theorem 2: The STP of File f in the cache-enabled

mmWave networks under the PT strategy is given by

PPT
f =

sf
∏

n=1

∫ ∞

0

‖exp{ΩM}‖1fLn(l)dl, (21)

where exp(A) is the matrix exponential and exp(A) =
∑∞

k=0
A

k

k! . ‖·‖ denotes the l1-induced norm. NM is the toeplitz

matrix, which can be expressed as

ΩM =











ω0,n

ω1,n ω0,n

...
...

. . .

ωM−1,n ωM−2,n · · · ω0,n











, (22)

where ω0,n and ωj,n are given by (23) and (24), as shown on

the top of the next page.

ω0,n =−
∑

G

∫ ∞

ln

(

1−

(

1 +
G

xG0M

)−M
)

Λ(dx), (23)



ωj,n =
∑

G

Gln(M)j

(

2
S

sfT − 1
)

j!MG0

∫ TG
MG0

0

tj−2

(1 + t)M+j

Λ
′






0,

Gln

(

2
S

sfT − 1
)

MG0






dt−

σ2

PG0
max{2− j, 0}.

(24)

Proof: See Appendix D.

We consider a special case where the blockage parameter

is sufficiently small and the Nakagami parameter M = 1.

Corollary 2: When β → 0 and M = 1, the STP of the

cache-enabled networks under the PT strategy is given by

PPT
f,∞ =

1

2F1

(

2
αLOS

, 1; 1− 2
αLOS

; 1− 2
S

sfT

)

sf (sf+1)

2

.
(25)

Proof: When β → 0 and νLOS = 1, the PDF of fln(x)
reduces to

fln(x) =
2πnλn

αLOSκ
2n

αLOS

LOS

x
2n

αLOS
−1

exp

(

−πλ

(

x

κLOS

)
2

αLOS

)

(26)

When the nth subfile of File f is transmitted by the BS, the

STP Pn can be derived as

Pf,n,∞ =

∫ ∞

0

fln(x)πλ

(

x

κLOS

)
2

αLOS





2F1






−

2

αLOS

,M ; 1−
2

αLOS

;
G
(

2
S

sfT − 1
)

MG0

∑N
n=1 l

−1
n






− 1






dx

=
1

2F1

(

2
αLOS

, 1; 1− 2
αLOS

; 1− 2
S

sfT

)sf .

(27)

Then the STP of File f the cache-enabled networks under

the PT strategy is

Pf,∞ =

sf
∏

n=1

Pf,n,∞ (28)

=
1

2F1

(

2
αLOS

, 1; 1− 2
αLOS

; 1− 2
S

sfT

)

sf (sf+1)

2

. (29)

B. Analysis of Average System Transmission Delay

The average system transmission delays are different for the

files cached in the BSs and those not cached (e.g., [31]). When

u0 requests a file which happens to be cached in the BS, u0

can directly obtain the corresponding file from the cooperative

serving BSs by utilizing the MPC or LDC strategy in which

case only the local delay is involved. However, when the

requested file is not cached in any BS, u0 needs to retrieve the

corresponding file from the core network through the backhaul.

Hence, the average system transmission delay now includes

both the local delay and the backhaul delay.

1) JT Strategy: When File f is wholly cached, it will be

transmitted jointly from the N cooperative BSs. According to

10, the mean local delay under the JT strategy can be obtained

in the following theorem.

Theorem 3: The local delay of File f in the cache-enabled

mmWave networks under the JT strategy is given by

DJT =

∫

· · ·

∫

0<l1<···<lN<∞

‖exp{ΩMN}‖−1
1 fL(l)dl1 · · · dlN . (30)

2) PT Strategy: When File f is partitioned and coded

cached in sf BSs (sf ∈ N̄ ), sf subfiles will be transmitted

simultaneously by parallel streams. According to (10), the

average system transmission delay of File f can be obtained

in the following theorem.

Theorem 4: The mean local delay of File f in the cache-

enabled mmWave networks under the PT strategy is given by

DPT
f =

sf
∏

n=1

∫ ∞

0

‖exp{ΩM}‖−1
1 fLn(l)dl. (31)

3) UT strategy: When File f is uncached (sf = 0), it will

be retrieved from the core network through the backhaul link.

Let Db be the backhaul delay, the average system transmission

delay is given by

Db =
1

2
υλλ

−3/2
G , (32)

where υ denotes a scaling factor of the backhaul infrastructure.

Then we obtain the average system transmission delay as

follows:

DUT = Db +

∫ ∞

0

‖exp{ΩMN}‖1fL(l)dl, (33)

where the latter term of (33) is obtained by substituting N = 1
into (14).

IV. OPTIMIZATION OF STP AND AVERAGE SYSTEM

TRANSMISSION DELAY

The caching design affects the STP and the average system

transmission delay of the mmWave cache-enabled networks.

Therefore, we aim to maximize the STP and the average

system transmission delay by optimizing s.

A. Optimization of STP

In this subsection, we would like to maximize the STP by

optimizing s.

Problem 1 (Optimization of STP):

max
s

P∗(s) ,

F
∑

f=1

(

pfP
JT
f 1(sf = 1) + pfP

PT
f 1(sf ∈ N̄ )

)

(34)

s.t. (2), (3).

By the optimality structure of Problem 1, it can be easily

verified that P∗(s) is a nondecreasing function of the cache

size C and SIC capability N . When N = 1, we have sf ∈
{0, 1} for f ∈ F and the maximization of the STP can be



obtained by utilizing the MPC strategy. When N ≥ 2, Problem

1 is a discrete optimization problem. The complexity of the

exhaustive search is O((N + 1)F ), which is not acceptable

when N and F become large. Therefore, we aim to provide

a low complexity algorithm when M ≥ 2.

First, we can convert the problem to a MCKP. Consider

F classes, each containing N + 1 items, and a knapsack of

capacity C. Item n ∈ N in f th class indicates that the cache

size allocated to File f is 1/q, and item N+1 in the f th class

indicates that the cache size allocated to File f is 0. Each item

f ∈ N in the f th class has a profit af,n and a weight wf,n,

which correspond to the STP and the cache size of File f ,

where

af,n ,











pfP JT
f , n = 1

pfPPT
f , n ∈ N̄

0, n = N + 1

(35)

wf,n ,











1, n = 1
1
q , n ∈ N̄

0, n = N + 1

(36)

Note that wf,n, f ∈ F are the same for all n ∈ N . The

cache at each BS is represented by the knapsack and one item

is packed from each of the F classes into the knapsack. Let

xf,n ∈ {0, 1} denote whether item q in the f th class is packed

into the knapsack, where xf,n = 1 indicates that item q in the

f th class is packed into the knapsack and xf,n = 0 otherwise.

Therefore, the profit sum is

P̃ ,
∑

f∈F

∑

n∈N

af,nxf,n, (37)

and the weight sum is
∑

f∈F

∑

n∈N

wf,nxf,n. (38)

Therefore, Problem 1 is converted to a MCKP, which selects

one item from each class to maximize the profit sum without

exceeding the cache size C.

Problem 2 (Equivalent Problem of Problem 1)

P∗(x) , max
x

P̃∗(x) (39)

s.t.
∑

f∈F

∑

n∈N wf,nxf,n ≤ C,

∑

n∈N xf,n = 1, f ∈ F ,

xf,n ∈ {0, 1}, f ∈ F , n ∈ N .

MCKP is a NP-hard problem and can be solved by uti-

lizing two approaches, i.e., the dynamic programming and

branch-bound method, with non-polynomial complexity. The

drawback of these approaches lies in the dramatically increas-

ing complexity with the increase in the number of items.

Therefore, the approximate algorithm with polynomial are

adopted. For instance, the performance that is no less than

1− ǫ times the optimal solution can be achieved with running

time polynomial to 1/ǫ in the dynamic programming-based

approximate algorithm, where ǫ ∈ (0, 1). In addition, the

performance that is no less than 1/2 times the optimal solution

can be achieved with complexity O((N+1)F log((N+1)F ))
in the greedy algorithm. In the following, we adopt a greedy

algorithm to obtain a near optimal solution to Problem 2.

In order to reduce the search space of the greedy algorithm,

some items could be deleted since they don’t exist in an

optimal solution. Here we first introduce some definitions.

Definitions: If two items i and j in the same class satisfy

wf,i ≤ wf,j and af,i ≥ af,j , then item j is dominated by item

i. If three items i, j, k in the same class with wf,i < wf,j <
wf,k and af,i < af,j < af,k satisfy

af,k−af,j

wf,k−wf,j
≥

af,j−af,i

wf,j−wf,i
,

then item j is LP-dominated by items i and k.

From (46) and (36), we know that the indices of the

undominated items are the same in each class and the item 1 or

N+1 is not dominated by any item in each class. Let R be the

set of the indices of the undominated items, and denote n+ ,

min{k|k ∈ R, k > m} for all n ∈ R\{N + 1}. By [32], we

know that the dominated or LP-dominated items don’t exist in

an optimal solution. In other words, if item n is dominated or

LP-dominated by any item in the f th class, an optimal solution

with xf,n = 0 exists. Based on these properties, we adopt the

greedy algorithm to solve Problem 1. In the greedy algorithm,

the prune and search algorithm is adopted to determine the

set R, then the items in R is sorted according to decreasing

incremental efficiencies
af,n−af,n+

wf,n−wf,n+
. The complexity of the

algorithm is O((N+1) log(N+1)+F (N+1) log(F (N+1))),
where the first term is from the reduction process and the

latter term is from the sorting process. In order to reduce the

complexity of the greedy algorithm, we introduce the partition

algorithm, with which the complexity of the reduction process

could be reduced to O(N+1). Note that the partition algorithm

relies on the property that finding the optimal slope, i.e., the

incremental efficiency of the last item added in the greedy

algorithm is sufficient to solve the MCKP. The detailed proof

can be found in [32]. The complete process is summarised

below as Algorithm 1.

Note that Step 1 is conducted by utilizing the partition

algorithm, as shown in Algorithm 1. In Step 2 of the partition

algorithm, the pairing process is continued until all items in Ni

have been paired. Note that one item is unpaired if the number

of items is odd. The overall process of the MCKP is shown

in Algorithm 2. In step 3, the slope of,n measures the profit

gain per unit weight achieved by replacing wf,n with wf,n+ .

In Steps 4-8, items are selected according to their slopes in

a greedy manner. In Steps 9-14, a near optimal solution to

Problem 2 is constructed.

Problem 3 (Optimization of STP in the small file size

regime):

max
s

P∗
∞(s) ,

F
∑

f=1

(

pfP
JT
f,∞1(sf = 1) + pfP

PT
f,∞1(sf ∈ N̄ )

)

(40)

s.t. (2), (3).



Algorithm 1 Partition Algorithm

1: for all classes in Nf do

2: Pair the items two by two as (j, k).
3: Order each pair such that wf,k ≤ wf,k breaking ties such that af,j ≥

af,k .

4: if
wf,j

af,j
≥

wf,k

af,k
then

5: Nf ← Nf\k and pair item j with item k + 1.

6: end if

7: end for

8: for all classes in Nf do

9: if the class has only one item j then
10: C = C − wf,j .

11: end for

12: for all pairs (j, k) in Nf do

13: ηf,j,k =
af,k−af,j

wf,k−wf,j

14: Let α be the median of the slopes {αf
j,k
}

15: end for

16: for f = 1, ·, F do

17: of (η) = argmaxn∈Nf (o∗){af,n − owf,n}
18: ηmin,f = argminf∈Nf (o∗){wf,n},
19: ηmax,f = argminf∈Nf (o

∗){wf,n}

20: if
∑F

f=1 wf,ηmin,f
≤ C <

∑F
f=1 wf,ηmax,f

then

21: o is the optimal slope o∗.

22: if
∑F

f=1 wf,ηmin,f
> C then

23: for all pairs (j, k) in Nf with of
j,k
≤ o delete item k

24: else

25: for all pairs (j, k) in Nf with of
j,k
≥ o delete item j

26: end if

Algorithm 2 Solution of Problem 1: Equation (42)

1: Find the set of the indices of undominated items R through the partition
algorithm. The following indices refer to the items in R

2: Set xf,n+1 = 1, xf,n for all f ∈ F , n ∈ N , and set the weight sum
W =

∑
f∈F wf,N+1 and the profit sum A =

∑
f∈F af,N+1.

3: For all f ∈ F and n ∈ R\{N+1}, define slope of,n =
af,n−a

f,n+

wf,n−w
f,n+

.

Order the slopes in {of,n|f∈F,n∈R\{N+1}} in nondecreasing order.

Let o(l) be the lth largest slope.
4: l = 1
5: while W +wf,n ≤ C do
6: Set xf,n = 1, xf,n+ = 0, and update W = W + wf,n − wf,n+

and A = A+ af,n − af,n+

7: Update l = l+ 1. Let f, n be the indices satisfying of,n = o(l).

8: end while
9: if W = C then

10: Set x∗ = x

11: else

12: Construct a feasible solution x̄ , (xi,j)f∈F,n∈N to Problem 2 by
setting x̄f,n = 1, x̄i,j = 0 for i ∈ F , i 6= f or j ∈ N , j 6= q

13: end if

14: x
∗ = argmaxy∈{x,x̄} P̃(y)

It is a discrete optimization problem. The indicator function

hinders the solution of the optimization problem. Therefore, an

equivalent problem is constructed by utilizing the optimality

property of Problem 3. Since F ∗
c files are cached in the BSs, an

auxiliary variable Fc is introduced and the objective function

of Problem 3 can be rewritten as

P∗
∞(s) , Pf,∞,1(Fc) + P∗

f,∞,2(Fc), (41)

where Pf,∞,1(Fc) =
∑Fc

f=1 pfP
JT
f,∞ and Pf,∞,2(Fc) =

∑F
f=Fc+1 pfP

PT
f,∞.

From (41), we can observe that two types of variables are

to be determined. One is the discrete variable sf , f ∈ F and

the other is the discrete variable Fc. Note that Fc can be de-

termined by the exhaustive search. Given Fc, the optimization

of s∗f can be obtained by solving the following problem:

Problem 4 (Optimization of STP for given Fc in the small

file size regime):

max
s

P∗
∞(s, Fc) , Pf,∞,1(Fc) + P∗

f,∞,2(Fc) (42)

s.t.
∑F

f=Fc+1
1
sf

≤ C − Fc.

Lemma 3 (Optimal solution to Problem 4): When β → 0,

νLOS = 1 and CN ≤ F , there exits S0 > 0, such that for all

S < S0, s∗f (Fc) is given by

s∗f (Fc) =

{

1
N , f ≤ CN

0, f > CN
(43)

and the optimal value to Problem 4 is

P∗
∞(s, Fc) =






1−

2
(

2
S

sfT − 1
)

N !

αLOS − 2

∫

0<u1<···<uN<1

du1 · · · duN
(

1 +
∑N

n=1 u
−

αLOS
2

n

)
2

αLOS









Fc
∑

f=1

pf

+

(

1−
S ln 2(sf + 1)

T (2− αLOS)

) C−Fc
∑

f=Fc+1

pf .

(44)

Proof: See Appendix E.

B. Optimization of Average System Transmission Delay

In this subsection, we would like to minimize the average

system transmission delay by optimizing s.

Problem 5 (Optimization of average system transmission

delay):

min
s

D∗(s) ,
F
∑

f=1

(

pfD
JT
f 1(sf = 1) + pfD

PT
f 1(sf ∈ N̄ )

+pfD
UT
f 1(sf = N + 1)

)

(45)

s.t. (2), (3).

We can convert the problem to a MCKP. Each item f ∈ N
in the f th class has a profit af,n and a weight wf,n, which

correspond to the average system transmission delay and the

cache size of File f , where

af,n ,











pfD
JT
f , n = 1

pfD
PT
f , n ∈ N̄

DUT
f , n = N + 1

(46)

Therefore, Problem 5 is converted to a MCKP, which selects

one item from each class to maximize the profit sum without

exceeding the cache size C.



Problem 6 (Equivalent Problem of Problem 5)

−D∗(x) , max
x

−D̃∗(x) (47)

s.t.
∑

f∈F

∑

n∈N wf,nxf,n ≤ C,

∑

n∈N xf,n = 1, f ∈ F

xf,n ∈ {0, 1}, f ∈ F , n ∈ N .

By utilizing Algorithm 1 and 2, Problem 5 can be solved

and the optimal value of the average system transmission delay

can be obtained.

V. SIMULATION RESULTS

In this section, we consider a mmWave cache-enabled

network. We first present the the impact of the physical layer

parameters on the the STP and average system transmission

delay, then compare the optimal caching strategy with two

baseline strategies: MPC and LDC schemes. Unless otherwise

stated, the parameters are set as listed in the following table.

We assume the popularity pf of the files satisfies the Zipf

distribution, i.e., pf = f−δ/
∑F

f=1 f
−δ, where δ is the Zipf

exponent which reflects the skewedness of the file popularity

distribution. Also, the files are ranked according to their

popularity: p1 > p... > p50.

TABLE I
SYSTEM PARAMETERS

Parameters Values

Transmit power P = 33dBm

Bias factor B = 1
Path loss exponent αLOS = 2, αNLOS = 4

Density λ = 50/(5002π)
Blockage parameter β = 0.01
Nakagami parameter νLOS = 3, νNLOS = 2

Bandwidth W = 1G

κLOS = κNLOS (Fc/4π)2

Zipf exponent δ = 0.6
Caching capacity F = 50, C = 35

Fig. 6 illustrates the effect of the cache size on the STP

under different caching strategies. The numerical results match

the simulation results well, thereby demonstrating the cor-

rectness of the numerical results. It can be observed that the

STP increases with the cache size for three caching strategies

and the proposed algorithm always outperform the MPC and

LDC strategies. In addition, the gap between the three caching

strategies becomes smaller when the cache size increases and

the STPs become identical when the cache size is equal to 50.

Note that the STP under the MPC strategy is larger than that

under the LDC strategy. The reason is that the files are wholly

cached in the BSs under the MPC strategy and corresponding

files can be jointly transmitted by the cooperative BSs.

Fig. 2 illustrates the STP as functions of the density under

different caching strategies. We can observe that the STPs for

the three caching strategies initially increase when the density

increases. However, further increase in the density causes a

degradation in the STP. The reason is that when the density
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Fig. 2. STP versus cache size C under different caching strategies.
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Fig. 3. STP versus BS density λ under different caching strategies.

is relatively small, the received signal becomes stronger due

to the shorten distance between u0 and its serving BS. When

the density increases further, the interference experienced by

u0 becomes larger and the enhancement in the signal power

cannot compensate the increase in the interference power.

Fig. 3 presents the effect of the Zipf exponent δ on STP.

It can be seen that the STP under three caching strategies

increase with the Zipf exponent δ. In addition, the gain of the

hybrid caching strategy over the MPC strategy approaches to

zero when the Zipf exponent δ is large, indicating that only a

small number of files (i.e. the most popular ones) need to

be cached. In such a case, the MPC strategy can achieve

the same STP as the hybrid caching strategy. In contrast,

the gap between the hybrid caching strategy and the LDC

strategy becomes larger when δ increases and there exists

an intersection point between the two curves representing the

MPC and LDC strategies. This is because when the popularity

of all the files is similar or the same, the largest possible
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Fig. 4. STP versus Zipf exponent δ under different caching strategies.
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Fig. 5. Average system transmission delay versus cache size C under different
caching strategies.

number of files should be cached. Moreover, the STP of the

cache-enabled networks with MPC strategy benefits more from

the BS cooperation than that with the LDC strategy.

Fig. 4 presents the effect of the cache size on the average

system transmission delay. It can be observed that the average

system transmission delay under the LDC strategy is almost

identical to that under the hybrid caching strategy while the

average system transmission delay under the MPC strategy is

larger than that under the other two strategies in the small

cache size region. Note that the average system transmission

delay under the MPC strategy decreases more rapidly than

that under the LDC strategy and the hybrid caching strategy

always performs better than the other two caching strategies.

The reason is that more files can be cached in the BSs under

the MPC strategy and the users are less likely to suffer from

the backhaul delay.

Fig. 5 illustrates the average system transmission delay as
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Fig. 6. Average system transmission delay versus BS density λ under different
caching strategies.
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Fig. 7. Average system transmission delay versus Zipf exponent δ under
different caching strategies.

functions of the BS density λ. We can observe that the average

system transmission delay for three caching strategies initially

increase with the density. In addition, the STP under the MPC

strategy is always larger than that under the LDC strategy.

Fig. 7 illustrates the average system transmission delay as

functions of the Zipf exponent δ. It can be observed that the

average system transmission delay under the three strategies

decrease with δ. The average system transmission delay under

the LDC strategy is almost identical to that under the hybrid

strategy and variation under the LDC strategy tends to be

gentle. In contrast, the average system transmission delay

under the MPC strategy is larger than that under the other

two strategies in the small cache size region and decreases

more rapidly than the MPC strategy. The reason is that the

majority of the user requests are concentrated on fewer files

when γ increases.



VI. CONCLUSION

We proposed a hybrid caching strategy for the maximization

of the STP and the minimization of the average system

transmission delay in the cache-enabled network. We derive

STP utilizing stochastic geometry, then propose two different

algorithms to obtain the optimal caching probability for maxi-

mizing the STP. Finally, the numerical results demonstrate the

superiority of the hybrid caching strategy over the MPC and

LDC strategies.

VII. APPENDIX

A. Proof of Lemma 1

The intensity measure for the BSs can be computed as

Λ([0, x)) =

∫

(

x
κLOS

) 1
αLOS

0

2πλve−βv dv

+

∫

(

x
κNLOS

) 1
αNLOS

0

2πλv
(

1− e−βv
)

dv

=
2πλ

β2

(

1− e
−β

(

x
κLOS

) 1
αLOS

(

1 + β

(

x

κLOS

)
1

αLOS

))

+ πλ

(

x

κNLOS

)
2

αNLOS

−
2πλ

β2

(

1− e
−β

(

x
κNLOS

) 1
αNLOS

(

1 + β

(

x

κNLOS

)
1

αNLOS

))

(48)

The intensity for the BSs can be obtained by computing the

derivative of the intensity measure as

Λ
′

([0, x)) =
∂Λ([0, x))

∂x
=

2πλ

αLOSκ
2

αLOS

LOS

x
2

αLOS
−1

e
−β( x

κLOS
)

1
αLOS

+
2πλ

αNLOSκ
2

αNLOS

NLOS

x
2

αNLOS
−1

(

1− e
−β( x

κNLOS
)

1
αNLOS

)

(49)

B. Proof of Theorem 1

It is difficult to obtain the closed-form expression of a

weighted sum of Nakagami random variables, we utilize the

Cauchy-Schwartz’s inequality to obtain the upper bound of

received signal at u0 as

G0

∣

∣

∣

∣

∣

∑

i∈C

l
− 1

2
i hi

∣

∣

∣

∣

∣

2

≤ G0

∑

i∈C

l−1
i

∑

i∈C

|hi|
2 (50)

Given that u0 requesting File f is associated with a

LOS/NLOS BS, the STP can be expressed as

P = P







PG0

∣

∣

∣

∑

i∈C l
− 1

2

i hi

∣

∣

∣

2

σ2 + I
> T







≤ P

(

G0

∑

i∈C l
−1
i

∑

i∈C |hi|2

σ2 + I
> T

)

(a)
= EI,s

[

Γ(M, s(σ2 + I))

Γ(M)

]

=

NM−1
∑

m=0

EI,s

[

e−s(σ2+I) (s(σ
2 + I))m

m!

]

= Es

[

NM−1
∑

m=0

(−s)m

m!
L(m)(s)

]

(51)

where (a) follows from that
∑

i∈C |hi|2 ∼ G (NM, 1/M)
and s = MT

G0
∑

i∈C
l−1
i

. L(s) is the Laplace transform of the

interference and the noise and the superscript (m) denotes the

m-th derivative of L(s). Due to the independence of K tiers,

L(s) can be expressed as

L(s) = exp(−s
σ2

P
)LILOS

(s)LINLOS
(s) (52)

We first compute the Laplace transform of the LOS inter-

fering BSs Lj,L(s) as

LILOS
(s) =

∏

G

E



exp



−s





∑

i∈Φ\C

GhiL
−1
i













=
∏

G

∏

i∈Φ\C

E

[

exp
(

−sGhiL
−1
i

)]

=
∏

G

∏

i∈Φ\C

1
(

1 + sG
M L−1

i

)M

=
∏

G

exp

(

−

∫ ∞

lN

(

1−

(

1 +
sG

Mx

)−M
)

ΛLOS,f (dx)

)

,

(53)

Note that LINLOS
(s) can be obtained following the similar

steps. Let L(s) = exp(ω(s)) and we have the 1-st order

derivative of L(s) L(1)(s) = ω(1)(s)L(s). Therefore, Lm(s)
can be derived recursively following the formula of Leibniz

for the product of two functions, which is given by

L(m)(s) =
dm−1

ds
L(1)(s) =

m−1
∑

j=0

(

m− 1

j

)

ω(m−j)(s)L(j)(s).

(54)



ω(j)(s) can be derived as

ω(j)(s) = −
K
∑

j=1

∑

ν∈{LOS,NLOS}

∑

G

∫ ∞

lN

(−1)j(M − 1)j(Gx−1)j
(

1 +
sG

Mx

)−Mν−j

Λν(dx)

= −
σ2

P
[2− j]+ −

K
∑

j=1

∑

ν∈{LOS,NLOS}

∑

G

(−1)j(Mν − 1)j

Gs1−j

∫ TG

G0lN
∑

i∈C l
−1
i

0

tj−2

(1 + t)Mν+j
Λν(dt)

(55)

Letting xm = 1
j! (−s)jL(j)(s), the STP can be rewritten as

P = E

[

NM−1
∑

m=0

xm

]

. (56)

Substituting xm = 1
j! (−s)jL(j)(s) into (54), we have

xm =

m−1
∑

j=0

m− j

m

(

(−s)m−j

(m − j)!
ω(m−j)(s)

)

xj , (57)

Letting qj ,
(−s)j

j! ω(j)(s), the recursive relationship of xm

in (57) can be rewritten as xm =
∑m−1

j=0
m−j
m qm−jxj . In order

to solve xm, two power series are defined as

N(z) ,

∞
∑

m=0

qmzj , X(z) ,

∞
∑

m=0

xmzm (58)

Letting X(1)(z) and N (1)(z) be the derivatives of X(z) and

N(z), it can be easily verified that X(1)(z) = N (1)(z)X(z).
In addition, we have X(0) = exp(N(0)). Therefore, the

solution of (58) is

X(z) = exp(N(z)) (59)

Combining (56), (58) and (59), we have

P = E

[

NM−1
∑

m=0

xm

]

= E

[

NM−1
∑

m=0

1

m!
X(m)(z)

∣

∣

∣

∣

z=0

]

= E

[

NM−1
∑

m=0

1

m!

dm

dzm
eN(z)

∣

∣

∣

∣

z=0

] (60)

From [27], the first M coefficients of exp(N(z)) form the

first column of exp(NM ). Therefore, the STP is given by

Pρ = EΦ [‖exp (NM )‖1] . (61)

By average over the PDF of the distance between u0 and

its serving BS, the STP can be obtained in (14).

C. Proof of Corollary 1

When β → 0, the Laplace transform of interference from

the BSs can be derived as

LI∞(s)

=
∏

G

E



exp



−s





∑

i∈Φ\C

GhiL
−1
i













=
∏

G

exp

(

−

∫ R

lN
(

1−

(

1 +
sG

Mx

)−M
)

ΛLOS,∞(dx)

)

= πλ

(

l

κLOS

)
2

αLOS

(

F1

[

−
2

αLOS

,M ; 1−
2

αLOS

;
TG

MG0

∑N
n=1 l

−1
n

]

− 1

)

.

(62)

Note that the intensity measure Λ([0, x)) and the intensity

λ([0, x)) for β → 0 reduces to

Λ∞([0, x)) = πλ

(

x

κLOS

)
2

αLOS

, (63)

λ∞([0, x)) =
2πλ

κ
2

αLOS

LOS

x
2

αLOS
−1

. (64)

Thus, we have

P JT
f,∞ =

∫

· · ·

∫

0<l1<···<lN<∞

L∞([0, x))fl∞(l)dl1 · · · dlN , (65)

By using the changes of variables un = πλ
(

x
κLOS

)
2

αLOS
, we

can get P JT
f,∞ in Corollary 1.

D. Proof of Theorem 2

First, we have

Pf = P





⋂

n=1,··· ,sf

W
(

1 + SINRPT
n

)

>
S

sfT





= P

[

W
(

1 + SINRPT
1

)

>
S

sfT

]

×
N
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n=2

P

[

W
(

1 + SINRPT
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S

sfT
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(

1 + SINRPT
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S

sfT
, k = 1, · · · , n− 1

]

(a)
≈

N
∏

n=1

[

W
(

1 + SINRPT
n

)

>
S

sfT

]

,

(66)

where (a) is from the independence between the events

W
(

1 + SINRPT
n

)

> S
sfT

, n ∈ 1, · · · , N . Then we derive the



expression of the STP between the BS with the nth smallest

path loss and u0 after cancelling the signals from the nearer

BS in {1, · · · , n−1}. When nth subfile of File f is transmitted

by the BS, the STP Pn can be derived as

Pf,n = P

(

PG0hnl
−1
n

σ2 + I
> T

)

=

M−1
∑

m=0

EI,s

[

e−s(σ2+I) (s(σ
2 + I))m

m!

]

= Es

[

M−1
∑

m=0

(−s)m

m!
L(m)(s)

]

(67)

where s = ln

(

2
S

sfT − 1
)

and the Laplace transform of the

interfering BSs can be obtained as

Since the PDF of the distance between u0 and its nth

serving BS is given by (21), the STP can be obtained by

averaging over fLn(x). Combining the results from (51), the

proof can be completed.

E. Proof of Lemma 5

When sf = 0, we have Pf,∞ = 0 as S → 0. It remains to

calculate Pf,∞ as S → 0 for sf ∈ N {0, 1}. When S → 0,

we have

2F1

(

2

αLOS

, 1; 1−
2

αLOS

; 1− 2
S

sfT

)

= 1 +
2
(

2
S

sfT − 1
)

2− αLOS

(68)

Then we have

Pf,∞,2 =
1

(

1 +
(

2
S

sfT − 1
)

2
2−αLOS

)

sf (sf+1)

2

(a)
= 1−

(

2
S

sfT − 1
) 2

2− αLOS

sf (sf + 1)

2
(b)
= 1−

S ln 2(sf + 1)

T (2− αLOS)

(69)

where (a) is from 1
(1+x)b = 1− bx+ 0(x) as x → 0.

Therefore, we have

Pf,∞,2(Fc) =

F
∑

f=1

pf1[sf 6= 0, 1]

−
F
∑

f=1

pf
S ln 2(sf + 1)

T (2− αLOS)
1[sf 6= 0, 1].

(70)

Substituting feasible solution s∗ given in (43) into (70), we

have P∗
f,∞,2(Fc) =

∑F
f=1 pf1[s

∗
f 6= 0, 1]− S ln 2(N+1)

T (2−αLOS)
1[s∗f 6=

0, 1]. On the other hand, for any feasible solution ∫ to

Problem 4, we have Pf,∞,2(Fc) =
∑F

f=1 pf1[sf 6= 0, 1] −
S ln 2(sf+1)
T (2−αLOS)

1[sf 6= 0, 1]. Thus, we have
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f,∞,2(Fc)− Pf,∞,2(Fc)

=
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

 .

(71)

For any feasible solution to Problem 3, u0 can obtain at

most (C−Fc)N files from the N cooperative BSs. Under s∗,

u0 can obtain the (C − Fc)N most popular files. Therefore,

for any feasible solution s 6= s∗, we have

F
∑

f=1

pf1[s
∗
f 6= 0, 1] >

F
∑

f=1

pf1[sf 6= 0, 1]. (72)

If sf ∈ N̄ , we have sf 6= N , implying
1+sf
1+N ≤ 1. Therefore,

we have

F
∑

f=1

pf1[sf 6= 0, 1] >

F
∑

f=1

pf
1 + sf
1 +N

1[sf 6= 0, 1]. (73)

By (72) and (73), we have

F
∑

f=1

pf1[s
∗
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F
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pf
1 + sf
1 +N
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Based on (71), we have

P∗
f,∞,2(Fc)− Pf,∞,2(Fc) > 0

⇒


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